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Abstract

We seek to discover the object categories depicted in a set of
unlabelled images. We achieve this using a model developed
in the statistical text literature: probabilistic Latent Seman-
tic Analysis (pLSA). In text analysis this is used to discover
topics in a corpus using the bag-of-words document repre-
sentation. Here we discover topics as object categories, so
that an image containing instances of several categories is
modeled as a mixture of topics.

The model is applied to images by using a visual ana-
logue of a word, formed by vector quantizing SIFT-like re-
gion descriptors. The topic discovery approach successfully
translates to the visual domain: for a small set of objects,
we show that both the object categories and their approxi-
mate spatial layout are found without supervision.

We also demonstrate classification of new images and of
images containing multiple objects. Performance of the pro-
posed unsupervised method is compared to the supervised
approach of [6] on a set of images containing only one ob-
ject per image, and also compared with the ground truth
labeling on a set of images containing multiple objects per
image. These results demonstrate that we can successfully
build object class models from an unsupervised analysis of
images.

1. Introduction

Common approaches to object recognition involve some
form of supervision. This may range from specifying
the object’s location and segmentation, as in face detec-
tion [15, 21], to providing only auxiliary data indicating
the object’s identity [1, 5, 6, 22]. For a large dataset, any
annotation is expensive, or may introduce unforeseen bi-
ases. Results in speech recognition and machine translation
highlight the importance of huge amounts of training data.
The quantity of good, unsupervised training data – the set
of still images – is orders of magnitude larger than the vi-
sual data available with annotation. Thus, one would like
to observe many images and infer models for the classes of
visual objects contained within themwithout supervision.
This motivates the scientific question which, to our knowl-
edge, has not been convincingly answered before: Is it pos-
sible to learn visual object classes simply from looking at
images?

Given large quantities of training data there has been no-
table success in unsupervised topic discovery in text, and it
is this success that we wish to build on. We apply mod-
els used in statistical natural language processing to dis-
cover object categories and their image layout analogously
to topic discovery in text. In our setting, documents are im-
ages and we quantize local appearance descriptors to form
visual “words” [4, 16, 17, 23]. The two models we have
investigated are the probabilistic Latent Semantic Analysis
(pLSA) of Hofmann [7, 8], and the Latent Dirichlet Allo-
cation (LDA) of Blei et al. [3]. Each model consistently
gave similiar results and we focus our exposition in this pa-
per on the simpler pLSA method. Both models use the ‘bag
of words’ representation, where positional relationships be-
tween features are ignored. This greatly simplifies the anal-
ysis, since the data are represented by an observation ma-
trix, a talley of the counts of each word (rows) in every doc-
ument (columns).

The ‘bag of words’ model offers a rather impoverished
representation of the data because it ignores any spatial re-
lationships between the features. Nonetheless, it has been
surprisingly successful in the text domain, because of the
high discriminative power of some words and the redun-
dancy of language in general. But can it work for objects,
where the spatial layout of the features may be almost as
important as the features themselves? While it seems im-
plausible, there are several reasons for optimism: (i) as op-
posed to old corner detectors, modern feature descriptors
have become powerful enough to encode very complex vi-
sual stimuli, making them quite discriminative; (ii) because
visual features overlap in the image, some spatial informa-
tion is implicitly preserved (i.e. randomly shuffling bits of
the image around will almost certainly change the bag of
words description). In this paper, we show that this opti-
mism is not groundless.

While we ignore spatial position in our ‘bag of words’
object class models, our models are sufficiently discrimina-
tive to localize objects within each image, providing an ap-
proximate segmentation of each object topic from the others
within an image. Thus, these bag-of-features models are a
step towards top-down segmentation and spatial grouping.

We take this point on segmentation further by develop-
ing a second vocabulary which is sensitive to the spatial
layout of the words. This vocabularly is formed from spa-
tially neighbouring word pairs, which we dubdoublets. We
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Figure 1: (a) pLSA graphical model, see text. Nodes inside a given
box (plate notation) indicate that they are replicated the number
of times indicated in the top left corner. Filled circles indicate
observed random variables; unfilled are unobserved. (b) In pLSA
the goal is to find the topic specific word distributionsP (w|zk)
and corresponding document specific mixing proportionsP (z|dj)
which make up the document specific word distributionP (w|dj).

demonstrate that doublets provide a cleaner segmentation of
the various objects in each image. This means that both the
object category and image segmentation are determined in
an unsupervised fashion.

Sect. 2 describes the pLSA statistical model; various im-
plementation details are given in Sect. 3. To explain and
compare performance, in Sect. 4 we apply the models to sets
of images for which the ground truth labeling is known. We
also compare performance with a baseline model: a mixture
model of Gaussian word distributions. Results are presented
for object detection and segmentation. We summarize in
Sect. 5.

2. The topic discovery model

We will describe the models here using the original terms
‘documents’ and ‘words’ as used in the text literature. Our
visual application of these (as images and visual words) is
then given in the following sections.

Suppose we haveN documents containing words from
a vocabulary of sizeM . The corpus of text documents is
summarized in aM by N co-occurrence tableN, where
n(wi, dj) stores the number of occurrences of a wordwi

in documentdj . This is the bag of words model. In addi-
tion, there is a hidden (latent) topic variablezk associated
with each occurrence of a wordwi in a documentdj .

pLSA: The joint probabilityP (wi, dj , zk) is assumed to
have the form of the graphical model shown in figure 1(a).
Marginalizing over topicszk determines the conditional

probabilityP (wi|dj):

P (wi|dj) =
K∑

k=1

P (zk|dj)P (wi|zk), (1)

whereP (zk|dj) is the probability of topiczk occurring in
documentdj ; andP (wi|zk) is the probability of wordwi

occurring in a particular topiczk.
The model (1) expresses each document as a convex

combination ofK topic vectors. This amounts to a matrix
decomposition as shown in figure 1(b) with the constraint
that both the vectors and mixture coefficients are normal-
ized to make them probability distributions. Essentially,
each document is modelled as a mixture of topics – the his-
togram for a particular document being composed from a
mixture of the histograms corresponding to each topic.

Fitting the model involves determining the topic vectors
which are common to all documents and the mixture co-
efficients which are specific for each document. The goal
is to determine the model that gives high probability to the
words that appear in the corpus, and a maximum likelihood
estimation of the parameters is obtained by maximizing the
objective function:

L =
M∏
i=1

N∏
j=1

P (wi|dj)n(wi,dj), (2)

whereP (wi|dj) is given by (1).
This is equivalent to minimizing the Kullback-Leibler

divergence between the measured empirical distribution
P̃ (w|d) and the fitted model. The model is fitted using
the Expectation Maximization (EM) algorithm as described
in [8].

LDA: In contrast to pLSA, LDA treats the multinomial
weights over topics as latent random variables. The pLSA
model is extended by sampling those weights from a Dirich-
let distribution, the conjugate prior to the multinomial dis-
tribution. We consistently found similar performance with
the two algorithms, and focus our description here on the
simpler pLSA method. Reference [?] gives details of our
LDA implementation and results, and [3] compares LDA
with pLSA.

3. Implementation details
Obtaining visual words: We seek a vocabulary of vi-
sual words which will be insensitive to changes in view-
point and illumination. To achieve this we use vector quan-
tized SIFT descriptors [9] computed on affine covariant re-
gions [10, 11, 14]. Affine covariance gives us tolerance to
viewpoint changes; SIFT descriptors, based on histograms
of local orientation, give some tolerance to illumination
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change. Vector quantizing these descriptors gives tolerance
to morphology within an object category. Others have used
similar descriptors for object classification [4, 13], but in a
supervised setting.

Two types of affine co-variant regions are computed for
each image. The first is constructed by elliptical shape
adaptation about an interest point. The method is described
in [11, 14]. The second is constructed using the maximally
stable procedure of Mataset al. [10] where areas are se-
lected from an intensity watershed image segmentation. For
both of these we use the binaries provided at [20]. Both
types of regions are represented by ellipses. These are com-
puted at twice the originally detected region size in order
for the image appearance to be more discriminating.

Each ellipse is mapped to a circle by appropriate scaling
along its principal axes and a SIFT descriptor is computed.
There is no rotation of the patch. Alternatively, the SIFT
descriptor could be computed relative to the the dominant
gradient orientation within a patch, making the descriptor
rotation invariant [9]. The SIFT descriptors are then vector
quantized into the visual ‘words’ for the vocabulary. The
vector quantization is carried out here byk-means cluster-
ing computed from about 300K regions. The regions are
those extracted from a random subset (about one third of
each category) of images of airplanes, cars, faces, motor-
bikes and backgrounds (see experiment (2) in section 4).
About 1K clusters are used for each of the Shape Adapted
and Maximally Stable regions, and the resulting total vocab-
ulary has 2,237 words. The number of clusters,k, is clearly
an important parameter. The intention is to choose the size
of k to determine words which give some intra-class gen-
eralization. This vocabulary is used for all the experiments
throughout this paper.

In text, a word with two different meanings is called pol-
ysemous (e.g. ‘bank’ as in (i) a money keeping institution,
or (ii) a river side). Of course, we observe the analogue of
polysemy in our visual words, however, the topic discov-
ery models can cope with these. A polysemous word would
have a high probability in two different topics. The hid-
den topic variable associated with each word occurrence in
a particular document can assign such a word to particular
topic depending on the context of the document. We return
to this point in section 4.3.

Doublet visual words: For the task of segmentation, we
seek to increase the spatial specificity of object description
while at the same time allowing for configurational changes.
We thus augment our vocabulary of words with “doublets”
– pairs of visual words which co-occur within a local spa-
tial neighborhood. As candidate doublet words, we consider
only the 100 words (or less) with high probability in each
topic after an initial run of pLSA. To avoid trivial doublets
(those with both words in the same location), we discard

Figure 2: The doublet formation process. We wish to form dou-
blets consisting of the two nearest neighbors with the word ellipse
outlined in black. The two green ellipses are the resulting words
that are used to form the doublets. The smaller red ellipse, while
actually closer than the two green ellipses, is significantly smaller
and consequently is not a nearest neighbor (after its distance is
scaled by the scale ratio of the ellipses). The larger red ellipse
significantly overlaps the black ellipse and is discarded.

those pairs of ellipses with significant overlap. We then
consider all pairs of the remaining words that are within
4 nearest neighbor words of each. For scale-invariance,
we scale the distances between word pairs by their relative
sizes, multiplying the distance by the ratio of the larger of
the two ellipse major axes over the smaller. Figure 2 shows
the geometry and formation of the doublets.

Model learning: For pLSA, the EM algorithm is initial-
ized randomly, typically converges in 100-300 iterations,
and takes about 10 mins to run on 3K images (Matlab im-
plementation on a 2GHz PC).

Baseline method – Gaussian Mixture Model: To under-
stand the contributions of the topic discovery model to the
system performance, we also implemented an algorithm us-
ing the same features of word frequency vectors for each
image, but without the final statistical machinery. This com-
parison algorithm determinesk clusters by fitting a Gaus-
sian mixture model withk components using EM fitting,
i.e. the pLSA clustering on KL divergence is replaced by
Euclidean distance. Each image is then assigned to a mix-
ture of components (topics). This model allows for multiple
topics per image, but treats the histograms as vectors, rather
than as word frequency distributions,

4. Experiments
Given a collection of unlabelled images, our goal is to auto-
matically discover/classify the visual categories present in
the data and localize them in the image. To understand how
the algorithms perform, we train on image collections for
which we know the desired visual topics.

We investigate three areas: (i) topic discovery – where
categories are discovered by pLSA clustering on all avail-
able images, (ii) classification of unseen images – where
topics corresponding to object categories are learnt on one
set of images, and then used to determine the object cat-
egories present in another set, and (iii) object detection –
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where we also wish to determine the location and approxi-
mate segmentation of in each image.

We use two datasets of objects, one from Caltech [?] and
the other from MIT [19]. The Caltech datasets depict one
object per image. The MIT dataset depicts multiple ob-
ject classes per image, and includes ground truth labeling
for where many of the objects are. We report results for
the three areas first on the Caltech images, and then in sec-
tion 4.4 show their application to the MIT images.

Caltech image data sets Our data set consists of images
of five categories from the Caltech 101 datasets (as previ-
ously used by Ferguset al. [6] for supervised classifica-
tion). The categories and their number of images are: faces,
435; motobikes, 800; airplanes, 800; cars rear, 1155; back-
ground, 900. The reason for picking these particular cat-
egories is pragmatic: they are the ones with the greatest
number of images per category. All images have been con-
verted to grayscale before processing. Otherwise they have
not been altered in any way, with one notable exception: a
large number of images in the motorbike category (2) and
airplane category (3) have a white border around the image
which we have removed since it was providing an artifactual
cue for object class.

4.1. Topic discovery
In each experiment images are pooled from a number of
original datasets, and the pLSA and baseline models are fit-
ted to the ensemble of images (with no knowledge of the im-
age’s labels) for a specified number of topics, K. For exam-
ple, in experiment (1) the images are pooled from four cat-
egories (airplanes, cars, faces and motorbikes) and models
with K = 4 objects (topics) are fitted. In the case of pLSA,
the model determines the mixture coefficientsP (zk|dj) for
each image (document)dj (wherez ∈ {z1, z2, z3, z4} for
the four topics). An imagedj is then classified as contain-
ing objectk according to the maximum ofP (zk|dj) overk.
This is essentially a one against many (the other categories)
test. Since here we know the object instances in each image,
we use this information as a performance measure. A con-
fusion matrix is then computed for each experiment. The
results are summarized in figure 3.

(1) Images of four object categories with cluttered
backgrounds. The four Caltech categories have cluttered
backgrounds and significant scale variations (in the case of
cars rear). An interesting observation comes from varying
the number of topics,K. In the case ofK = 4, we discover
the four different categories in the dataset with very high ac-
curacy (see figure 3). In the case ofK = 5, the car dataset
splits into two subtopics. This is because the data contains
sets of many repeated images of the same car. Increasing

Ex Categories K pLSA GMM baseline
% # % #

(1) 4 4 98 70 72 908
(2) 4 + bg 5 78 931 56 1820
(2)* 4 + bg 6 76 1072 – –
(2)* 4 + bg 7 83 768 – –
(2)* 4 + bg-fxd 7 93 238 – –

Figure 3: Summary of the experiments. Column ‘%’ shows the
classification accuracy measured by the average of the diagonal
of the confusion matrix. Column ‘#’ shows the total number of
misclassifications. See text for a more detailed description of
the experimental results. In the case of (2)* the two/three back-
ground topics are classified as one category. Evidently the baseline
method performs poorly, showing the power of the pLSA cluster-
ing.

(a)

(b)

(c)

(d)

Figure 4: The most likely words (shown by 5 examples in a row)
for four learnt topics in experiment (2): (a) Faces, (b) Motorbikes,
(c) Airplanes, (d) Cars.

K to 6 splits the motorbike data into sets with a plain back-
ground and cluttered background. IncreasingK further to 7
and 8 ‘discovers’ two more sub-groups of car data contain-
ing again other repeated images of the same/similar cars.

It is also interesting to see the visual words which are
most probable for an object, by selecting those with high
topic specific probabilityP (wi|zk). These are shown for
the pLSA model for the case ofK = 4 in figure 4. Thus,
for these four object categories, topic discovery analysis
cleanly separates the images into object classes, with rea-
sonable behavior as the number of topics increases beyond
the number of objects. The most likely words for a topic
appear to be semantically meaningful regions.

(2) Images of four object categories plus “background”
category. Here we add images of an explicit “back-
ground” category (indoor and outdoor scenes around Cal-
tech campus) to the above experiment (1). The reason for
adding these additional images is to give the methods the
opportunity of discovering background “objects”.
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Figure 5: Confusion tables for pLSA for increasing number of
topics (K=5,6,7) and pLSA with 7 topics and fixed background re-
spectively. Brightness indicates number. The ideal is bright down
the diagonal. Note how the background (category 5 splits into 2
and 3 topics (for K=6 and 7 respectively) and that some amount of
the confusion between categories and background is removed.

(a)

(b)

(c)

Figure 6: The most likely words (shown by 5 examples in a row)
for the three background topics learned in experiment (2): (a)
topic 2,mainly local feature-like structure (b) topic 4, mainly cor-
ners and edges coming from the office/building scenes, (c) topic
5, mainly textured regions like grass and trees. For topic numbers
refer to figure 10(c).

The confusion tables asK is varied are shown as images
in figure 5. It is evident, for example, that for pLSA the first
topic confuses faces and backgrounds to some extent. The
case ofK = 7 with three topics allocated to the background
gives the best performance.

In the case of many of the Caltech images there is a
strong correlation of the foreground and backgrounds (e.g.
the faces are generally against an office background). This
means that in the absence of other information the learnt
topic (for faces for example) also includes words for the
background. In classification, then, some background im-
ages are errorenously classified as faces. If the background
distributions were to be fixed, then when determing the new
topics the foreground/backgrounds are decorrelated because
the backgrounds are entirely explained by the fixed topics,
and the foreground words would then need to be explained
by a new topic.

Motivated by the above, we now carry out a variation in
the learning where we first learn three topics on a separate
set of 400 background images alone. This background set
is disjoint from the one used in experiment (2). These top-
ics are then frozen, and a pLSA decomposition with seven

True Class→ Faces Moto Airp Cars Backg
Topic 1 - Faces 94.02 0.00 0.38 0.00 1.00
Topic 2 - Motorb 0.00 83.62 0.12 0.00 1.25
Topic 3 - Airplan 0.00 0.50 95.25 0.52 0.50
Topic 4 - Cars rear 0.46 0.88 0.38 98.10 3.75
Topic 5 - Bg I 1.84 0.38 0.88 0.26 41.75
Topic 6 - Bg II 3.68 12.88 0.88 0.00 23.00
Topic 7 - Bg III 0.00 1.75 2.12 1.13 28.75

Figure 7: Confusion table for experiment (3) with three back-
ground topics fixed. The sum of the diagonal (counting the three
background topics as one) is 92.9%. The total number of miss-
classified images is 238.

topics (four to be learnt, three fixed) again determined for
experiment (2). The confusion table classification results
are given in figure 7. It is evident that the performance is
improved over not fixing the background topics above.

Discussion: In the experiments it was necessary to spec-
ify the number of topicsK, however Bayesian [18] or mini-
mum complexity methods [2] can be used to infer the num-
ber of topics implied by a corpus.

4.2. Classifying new images
The learned topics can also be used for classifying new im-
ages, a task similar to the one in Ferguset al. [6]. In the
case of pLSA, the topic specific distributionsP (w|z) are
learned from a separate set of ‘training’ images. When
observing a newunseen‘test’ image, the document spe-
cific mixing coefficientsP (z|dtest) are computed using the
‘fold-in’ heuristic described in [7]. In particular, the un-
seen image is ‘projected’ on the simplex spanned by learned
P (w|z), i.e. the mixing coefficientsP (zk|dtest) are sought
such that the Kullback-Leibler divergence between the mea-
sured empirical distributioñP (w|dtest) andP (w|dtest) =∑K

k=1 P (zk|dtest)P (w|zk) is minimized. This is achieved
by running EM in a similar manner to that used in learn-
ing, but now only the coefficientsP (zk|dtest) are updated
in each M-step. The learnedP (w|z) are kept fixed.

(3) Training images of four object categories plus “back-
ground” category. To compare performance with Fergus
et al. [6], experiment (2) was modified such that only the
‘training’ subsets for each category (and all background im-
ages) from [6] were used to fit the pLSA model with 7 top-
ics (four object topics and three background topics). The
‘test’ images from [6] were than ‘folded in’ as described
above. For example in the case of motorbikes the 800
images are divided into 400 training and 400 test images.
There are test images for the four object categories, but no
background images. Each test image is assigned to object
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True Class→ Faces Motorb Airplan Cars rear
Topic 1 - Faces 99.54 0.25 1.75 0.75
Topic 2 - Motorb 0.00 96.50 0.25 0.00
Topic 3 - Airplan 0.00 1.50 97.50 0.00
Topic 4 - Cars rear 0.46 1.75 0.50 99.25

Figure 8: Confusion table for unseen test images in experiment (3)
– classification against images containing four object categories,
but no background images. Note there is very little confusion be-
tween different categories. See text.

Object categ. pLSA (a) pLSA (b) Ferguset al. [6]
Faces 5.3 3.3 3.6
Motorbikes 15.4 8.0 6.7
Airplanes 3.4 1.6 7.0
Cars rear* 21.4 / 11.9 16.7 / 7.0 9.7

Figure 9: Equal error rates for image classification task for pLSA
and the method of [6]. Test images of a particular category were
classified against (a) testing background images (test performed
in [6]) and (b) testing background imagesandtesting images of all
other categories. The improved performance in (b) is because our
method exhibits very little confusion between different categories.
(*) The two performance figures correspond to training on 400 /
900 background images respectively. In both cases, classification
is performed against an unseen test set of road backgrounds (as
in [6]), which was folded-in. See text for explanation.

topic k with maximumP (zk|dtest) (background topics are
ignored here). The confusion table is shown in figure 8.

(4) Binary classification of category against background.
Up to this point the classification test has been one against
many. In this test we examine performance in classify-
ing (unseen) images against (unseen) background images.
The pLSA model is fitted to training subsets of each cat-
egory and a training subset of only 400 (out of 900) back-
ground images. Testing images of each category and testing
background images are ‘folded-in’. The mixing proportion
P (zk|dtest) for topic k across the testing imagesdtest (i.e.
a row in the landscape matrixP (z|d) in figure 1b) is then
used to produce a ROC curve for the topick. Equal error
rates for the four object topics are reported in figure 9.

Note that for Airplanes and Faces our performance is
similar to that of [6] despite the fact that our ‘training’ is
unsupervised in the sense that the identity of the object in
an image isnot known. This is in contrast to [6], where each
image is labelled with an identity of the object it contains,
i.e. about 5×400 items of supervisory data vs. one label
(the number of topics) in our case.

In the case of motorbikes we perform worse than [6]
mainly due to confusion between motorbike images con-
taining textured background and textured background topic.

(a) (b)
Topic P (topic|image) # regions
1 Motorbikes (green) 0.07 1
2 Backg I (magenta) 0.09 1
3 Face (yellow) 0.48 128
4 Backg II (cyan) 0.17 12
5 Backg III (blue) 0.15 23
6 Cars (red) 0.03 0
7 Airplane (black) 0.00 0

(c)

Figure 10: Image as a mixture of visual topics (Experiment (2)) - I.
(a) Original frame. (b) Image as a mixture of a face topic (yellow)
and background topics (blue, cyan). Only elliptical regions with
topic posteriorP (z|w, d) greater than 0.8 are shown. In total 7
topics were learned for this dataset which contained (faces, motor-
bikes, airplanes, cars, and background images). The other topics
are not significantly present in the image since they mostly repre-
sent the other categories and other types of background. Table (c)
shows the mixture coefficientsP (z|d) for this particular image.
In total there are 693 elliptical regions in this image of which 165
(102 unique visual words) haveP (z|w, d) above 0.8 (those shown
in (b)).

The performance on Cars rear is poor because Car images
are split between two topics in training (a similar effect
happens in experiment D forK=6). This splitting can be
avoided by including more background images. In order to
make results comparable with [6], Cars rear images were
classified against completely new background dataset con-
taining mainly empty roads. This dataset was not seen in
the learning stage and had to be ‘folded-in’ which makes
the comparison on Cars rear slightly unfair to the topic dis-
covery approach.

4.3. Segmentation
In this section we evaluate the image’s spatial segmentation
that have been discovered by the model fitting. As a first
thought, it is absurd that a bag of words model could possi-
bly have anything useful to say about image segmentation,
since all spatial information has been thrown away. How-
ever, the pLSA model delivers the posteriors

P (zk|wi, dj) =
P (wi|zk)P (zk|dj)∑K
l=1 P (wi|zl)P (zl|dj)

, (3)

and consequently for a word occurrence in a particular doc-
ument we can examine the probability of different topics.

Figure 10 shows examples of ‘topic segmentation’ in-
duced byP (zk|wi, dj) for the case of experiment (2) with
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7 topics. In particular, we show only visual words with
P (zk|wi, dj) greater than 0.8. There is an impressive align-
ment of the words with the corresponding object areas of
the image. Note the words shown are not simply those most
likely for that topic. Rather, from (3), they have high proba-
bility of that topicin this image. This is an example of over-
coming polysemy – the probability of the particular word
depends not only on the probability that it occurs within
that topic (face, say) but also on the probability that the face
topic has for that image, i.e. the evidence for the face topic
from other regions in the image.

(5) Image segmentation for faces: We now investigate
how doublets (i.e. an additional vocabularly formed from
the local co-occurrences of visual words) can improve im-
age segementation (cf single visual words – singlets). To il-
lustrate this clearly, we start with a two class image dataset
consisting of faces (217 images) and backgrounds (400
training / 217 test). The procedure for learning the doublets
is as follows: a pLSA decomposition is learnt for all train-
ing faces and training background with fixed background
topics (learned from the 400 training backgound images in
experiment (2)); a doublet vocabulary is then formed from
the top 100 visual words of the face topic; a second pLSA
decomoposition is then learnt for the combined vocabulary
of singlets and doublets with the background topics fixed.
The reason for running the first level singleton pLSA is to
reduce the doublet vocabulary size to a managable size. Fig-
ure 11 compares segmentation on one example image of a
face using singlets and doublets.

The accuracy of the resulting segmentations is assessed
by comparing to ground truth bounding boxes for the 217
face images. The performance score is the percentage of
regions which fall inside the bounding box. The singleton
segmentation score is 77.02%, and the doublet segmenta-
tion improves this score to 94.1%. We have also inves-
tigated using doublets composed from the top 40 visual
words across all topics (including background topics) of
experiment (2). In this case the segmentation score drops
slightly to 92.7%. So there is some benefit in topic specific
doublets.

Note the level of supervision to achieve this segmenta-
tion: the images are an unordered mix of faces and back-
grounds. It is not necessary to label which is which at any
stage, yet both the face objectsand their segmentationare
learnt.

4.4. MIT image dataset results
MIT image data sets: The MIT dataset contains 2873
images of outdoor and indoors scenes, with partial anno-
tations. Again all images have been converted to grayscale
before processing.

a b

c d

e f

Figure 11: Improving object segmentation. ** reorder ** (a)
The original frame with ground truth bounding box. (b) All 601
detected elliptical regions superimposed on the image. (c) Seg-
mentation obtained by pLSA on single regions (d) Segmentaion
obtained using localized spatial co-occurrences of pairs of regions.
Note the extra regions on the right-hand side background of (c) are
removed in (d). (e) and (f) show examples of locally co-occurring
regions.

(a)

Figure 12: Indoor/Outdoor ** still in? **

Topic discovery and classification: We fit pLSA withK
topics to the entire dataset. The topic discovery is shown
for K = 2 and10. Ten images for each discovered topic
are shown in figure 4.4. ForK = 2 the images are mainly
split into indoor and outdoor scenes. However, note that
we are not here classifying images as a whole (as was done
using GIST in [12] for example), but are classifying images
by the objects they contain. This is seen more clearly in the
case ofK = 10 where several of the discovered topics have
a clear semantic interpretation, see figure 14.

Segmentation of the mixed category images** this
needs tidying *** Procedure is: Learn pLSA decomposi-
tion for 10 topics; form doublets from top 50 pLSA words
for each topic (** ?= how many doublets **); relearn pLSA
for 10 topics for new vocabularly consisting of all singlets
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a

b

c

d

e

Figure 13: Example segmentations induced by five (out of 10) dis-
covered topics on the MIT dataset. Examples from the first 20
most probable images for each topic are shown. For each topic
the top row shows the original images and the bottom row shows
visual words (doublets) belonging to that particular topic in that
image. Note that we can give semantic interpretation to these top-
ics: a,e covers building regions in 17 out the top 20 images; b
covers trees and grass in 17 out of the top 20 images; c covers
computres in 15 out of the top 20 images, d covers bookshelves in
17 out of top 20 images

and all doublets. Figure 14 shows only the (top?) doublets
for each topic.

5. Conclusions
1. We have demonstrated that it is possible to learn vi-

sual object classes simply by looking; we identify the
object categories for each image with the high relia-
bilities shown in figure 3, using a corpus of unlabelled
images.

2. Using these learnt topics for classification, we repro-
duce the experiments (training/testing) of [6], and ob-
tain very competitive performance – despite the fact

Figure 14: Example segmentations on the MIT dataset for 10 topic
decomposition. (a) the original image. (b) all detected regions su-
perimposed (c) the topic induced segmentation. Note each image
is segmented into several ‘topics’.

that [6] had to provide about400× number of classes
supervisory labels, and we provide one label.

3. Using visual words with the highest posterior probabil-
ities for each object correspond fairly well to the spa-
tial locations of each object. This is rather remarkable
considering our use of the bag of words model.

4. By introducing a second vocabularly built on spatial
co-occurrences of word pairs, cleaner and accurate
segmentations are achieved. These enable objectde-
tection, rather than simply classification.

5. What’s next ?
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