
A Web Interface for a Large Calibrated Image Dataset

Zachary Bodnar
MIT Computer Graphics Group

Advanced Undergraduate Project
Prof. Seth Teller, Advisor

May 17, 2001

Abstract
 During the Spring of 2000 the City Scanning Project team of the Computer Graphics Group at the
Laboratory for Computer Science collected approximately ten thousand geo-referenced, color, digital
images at over five hundred locations, or "nodes", in an out-door region of MIT's campus. Each of these
nodes is a collection of 20 images which share a common optical center. The Computer Graphics Group
would like to make this dataset available to other researchers in the field of machine vision, as well as
members of the general public. This paper describes a world -wide-web based interface that allows
members of the public to browse the data via the internet. The interface allows the user to navigate through
the collection of nodes by ID number, date and time of acquisition, or by location by selecting points from
clickable map of the campus. The interface provides access to the raw images, spherical textures generated
from the nodes, files detailing the camera position and orientation for each of the images, as well as edge
and point features extracted from each of the images. The interface also provides a number of visualization
tools such as a mosaic viewer that displays a planar projection a spherical texture created from the node, a
tool that allows the user to view the epipolar geometry of two nearby nodes and a mini-map that shows a
close-up of the node's location with lines connecting the node to each of its 3 or 4 nearest neighbors.

Introduction

Over a two month period in Spring 2000 the City Scanning Project team of the Computer

Graphics group at the Laboratory for Computer Science collected roughly ten thousand geo-referenced

color images at about five hundred locations in an-out door region of MIT's campus. At each of these

"nodes" a camera fixed to an automated pan tilt head collected 20 images with a common optical center in

orientations tiling a portion of the sphere. Each of these images in annotated with time and date of

acquisition as well as approximate position and orientation with respect to an Earth-centered, Earth-fixed

coordinate system. After acquisition a suite of algorithms was applied to the images during four stages of

post-processing, mosaic, rotation, translation, and geo-referencing. These algorithms were used to recover

intrinsic and extrinsic parameters, extract edge and point features and generate spherical textures from the

images. The City Scanning team would like to make this large collection of calibrated imagery, which we

believe to be the larges of its kind, available to the public and other researchers in the field.

To make this data easily accessible I have created a web interface to the image repository. The

web interface allows users to browse the date set by node number or by selecting a node's location from a

clickable map. When a user selects a node, a web page is generated using a Perl CGI script that displays

thumbnails of the raw images that comprise the node as well as the spherical mosaic of these images

viewed as a cylindrical projection. The spherical mosaic is also displayed, via a java applet, as a planar

projection from a vantage point inside the sphere. The viewpoint of the projection can be rotated

Zachary Bodnar Page 2 May 17, 2001

horizontally or vertically using the keyboard or mouse. In addition, the user can zoom-in or zoom-out of

the projection. The node display page also contains links to directories containing the raw images, as well

as the spherical and cubic mosaics -all at full, half, or one-quarter resolution. It also has links to directories

containing the camera position files as well as the edge and point features for each image of each resolution

from each stage of post-processing. Figure 1 shows a screen shot of the node display page:

Figure 1: A Screenshot of the Node Display Page Viewed With Netscape Navigator

On the node display page, as seen in Figure 1, the node's location is shown on mini-map of the

node's immediate surroundings. Each node is color-coded to indicate the most refined stage of post

processing that the node has completed and is labeled with its ID number. The mini-map also displays the

other nearby nodes in the region of interest with lines connecting each of the visible nodes to its three or

four nearest neighbors. These lines are called adjacencies. Clicking an adjacency on the mini-map brings

Zachary Bodnar Page 3 May 17, 2001

up another java applet that displays planar projections of the spheres of both of the adjacent nodes. This

applet can be used to view the epipolar geometry of the nodes. When the user selects a point in one of the

images its epipole is displayed in the other.

Navigating the Data on the Web is Independent from
how the Data is Organized on Disk

The nodes that comprise this dataset are all stored on a large disk array accessible from any

computer on the Computer Graphics Group's intranet. The images, camera position files, features, mosaics,

etc. that correspond to a single node are all stored in a unique directory named "nodeXXXX" where XXXX

is the four digit ID number of the node. All of the node directories are stored in a single, top level directory

called "all_nodes". Symbolic links to certain subsets of the nodes, such as the nodes around the Green

Building or Ames Court are contained in other top-level directories. This provides access to some subsets

of the data, but not necessarily the set of nodes a user accessing the repository over the internet might be

interested in. For example, the remote user might be interested in nodes within a certain geographical

region, nodes acquired on a given day, or any number of other attributes which are not implicit in the flat,

one-level organization of the physical data. For this reason, it was important to provide a layer of

abstraction between the way the data appears to be organized on the web, and its actual structure in

physical storage.

 To provide this abstraction I wrote a number of Perl scripts which are used to generate hierarchical

symbolic link trees which map the physical data files to new directory structure which is suitable for

navigation on the web. These trees are placed on the web server and given world readable permissions so

that they can be browsed by a remote user. The primary advantage of abstracting the directory structure in

this way is that eliminates the need to copy or move any physical data. Another advantage is that the

mapping between the physical data and the way it is presented on the web is as simple as reassigning a few

variable bindings in the Perl scripts. This method is disadvantageous, however, in that small changes in

the organization of the physical data require complete regeneration of the symbolic link trees. A better

solution might be the use of a transactional database which stores a pointer to each node directory and can

be keyed on a number of different navigable attributes, such as data of acquisition, location in Cartesian

coordinates, etc. This is one direction for further work on this project.

 A symbolic link tree that is navigable by node number is generated by the Perl script

gensymtree2.pl. This script basically creates a web accessible version of "all_nodes" in which links to the

nodeXXXX directories are placed. In addition this script also re -maps the internal structure of the

nodeXXXX directories themselves to a structure that is more intuitive to a web user who may be unfamiliar

with the data. The re-mapping is shown in Figure 2:

Zachary Bodnar Page 4 May 17, 2001

���������	�	�	�

���
�������	�	�

����

����

����
�����

� � ������� �
�� �
� �
 �
� �
� �
 �

 �
 �
 ��� � � � ���
 ��� ���!� �"� � ���
 ���
��� �

�$� � # ��� � # �$� �

�$� �
� % # � � �� � & �

�'% # � � � � ��& � � � ���(��� �
�%
�
�)�
� �����
 �
 �
 ���

��� �� �
� �
 �
��� �

� � � ��� ���
��� �

�(��� �*�,+-�)� �/.

0 1 2 3 4 5 6 7 8 6 9 6

:;6=<�4�>?6A@;7�BDCFEGBHB

Figure 2: Re-mapping of the Physical Directories to the Web Accessible Navigation Tree

Of course, browsing by node number in the fashion is not the most natural way of getting at the

data. An additional script, gensymtree_by_date.pl, constructs a symbolic link tree like the one generated

by gensymtree2.pl, except that the nodes are organized into subdirectories named after the date and time of

the session during which the nodes were acquired. This works by taking advantage of the fact that the

collection of node directories in the physical "all_nodes" directory is itself an abstraction. When the nodes

are acquired all of the nodes collected during a given session are stored in a single directory with a name

such as Apr_25_00_1541, which denotes date and time that the camera was activated at the beginning of

the session. The nodeXXXX directories are actually symbolic links to the node directories contained

within the data-and-time directories. gensymtree_by_date.pl exposes this hidden organization by creating

a symbolic link tree that duplicates the structure of the date-and-time directories. Like gensymtree2.pl, it

also re-maps the nodeXXXX directories to the less complicated structure shown in Figure 2.

A Clickable Map Makes the Nodes Navigable by Location

 Perhaps the most convenient way to visualize the dataset is by displaying the locations of the

nodes superimposed on top of a map of MIT's campus. An interactive map that allows the user to select a

node directory to view by clicking on the node's location is a nice way to navigate the dataset. I

implemented a map viewer java applet to provide just such an interface. The map viewer loads the

positions of the nodes from a file called nodelocs.txt which is generated by a Perl script, getlocs.pl, that is

run prior to deployment of the website. This script extracts the most refined position data available for

each node from the camera position files in each of the nodeXXXX dirs and places a line of the following

format for each node in nodelocs.txt:

Zachary Bodnar Page 5 May 17, 2001

node0009 110.8753617353333900 - 354.1783813950600600 0

The first element of each line is the name of the node's nodeXXXX dir. This is followed by the nodes x

and y coordinates in meters, expressed in the City Group's local tangent plane coordinates (the z component

of the node's location is omitted because it is of no use to the map viewer). The origin of these coordinates

is at the location of the GPS base station on the roof of the Laboratory for Computer Science and is

oriented with the y axis pointing north, and the z axis pointing in the vertical direction. The coordinates are

extracted from the camera position files that were generated during the most advanced stage of post

processing that has been completed for each node. The final element of each line in nodelocs.txt is an

integer ranging from 0-2 that denotes this level of refinement. Table 1 explains the meaning of these

integers:

2 mosaiced This is the first stage of post processing. During this stage the overlapping edges of
the raw images are aligned and the images are blended together to form a spherical
texture. This stage refines the orientation estimates of the raw images with respect
to the optical center.

1 rotated This is the second stage of post processing. During this stage the rotational estimate
of the node's orientation is refined by performing the alignment of visible features.

0 translated This is the final stage of post processing. During this stage the position estimates of
the nodes are refined.

Table 1: Post Processing Refinement Codes

 When the map viewer applet is instantiated each node's name, location and refinement is extracted

from nodelocs.txt and stored in a java class representing a node. As each node is loaded, the City Group's

coordinates are transformed into the local x, y coordinates of the map image. The origin of the map's local

coordinate system is located at the point on the map where the GPS base station would be found (on the

roof of the Laboratory for Computer Science). The transformation from the City Group's coordinates to the

map viewer's local coordinates simply consists of a rotation, a translation, and multiplication by a scale

factor. There is also a sign reversal of the y coordinate because north is up on the map, but the y axis in

image coordinates points down. The coordinate transformation for the map viewer was calibrated by

calculating the scale factor and rotation angle from the known position of the GPS base station and one of

the nodes near the Green Building in map coordinates, used in conjunction wi th coordinates of the

corresponding points in the City Groups coordinate system. I wrote a general 2D vector class in java,

Vect2D, that is capable of computing the distance between two points, the angle between two vectors,

rotating a vector by a fixed angle as well as other vector operations to aid with these transformations.

 The nodes are rendered on the map as circles of different colors representing their level of post

processing refinement. A click that lies on one of these circles is detected by determining whether the

distance between the mouse click and a given node location is less than the radius of the circles rendered on

the map. When a node is clicked on, a URL to the corresponding web page is constructed by appending the

Zachary Bodnar Page 6 May 17, 2001

node's name to the URL of the base of the "all_nodes" symbolic link tree which is given to the map viewer

via a <PARAM> tag in the HTML document in which the applet is embedded.

Adjacency Mode Displays a Mini -map Showing Each Node's
Neighbors

 The map viewer can also be i nvoked in adjacency mode by including the tag <PARAM

Name="mode" VALUE="adj"> in the HTML document in which the map viewer is embedded. In

adjacency mode the map viewer zooms in 4 times on the location of a particular node, which is also

specified by a parameter in the HTML codebase of the applet. This node is highlighted with a green

square. Each of the node's 3 or 4 nearest neighbor's (the default is 3 but this value can also be specified

with a <PARAM> tag) is shown by a line that connects the node to each of its neighbors. These

adjacencies are loaded from one of two files, all_nodes_3.txt or all_nodes_4.txt which correspond to 3

and 4 nearest neighbor adjacencies respectively. These files are generated during post processing, and are

parsed when the map viewer is initialized. The entries in the adjacency files for each node are one line and

have the following format, where the node IDs are indexed beginning at 0 and are listed in an abbreviated

form (1 is equivalent to 0001, as in the directory name node0001):

Node 0 has 3 neighbors: 1 350 145

 The adjacencies are stored in the map viewer as a vector of edges, where an edge is a class that

represents a connection between two nodes. As the adjacency files are parsed the edges are inserted into

the vector after first checking that a duplicate edge between the same two nodes does not already exist.

That way if node A and node B both happen to be nearest neighbors of each other, a duplicate edge

between them will not be inserted into the vector of adjacencies. This prevents the map viewer from

wasting time by drawing adjacencies twice, or by searching through a redundant vector of edges when

detecting whether a mouse click is near an edge. In adjacency mode, the map viewer also removes all of

the nodes outside of the clipping region that are not nearest neighbors of a visible node from the vector of

nodes. This is done so that the applet will not waste time rendering nodes or edges that are not visible, or

searching through vectors which contain a large number of nodes or edges that are impossible to click on.

 Click detection for edges is performed using the following algorithm: To test whether a mouse

click is near an edge a vector P is formed from the first node of the edge to the coordinates of the mouse

click and a second vector, B, is formed between the two nodes defining the edge. The point on the line

through the two nodes that is nearest the coordinates of the mouse click is then found by projecting P onto

B. If this point is within a reasonable radius (3 pixels) of the mouse click, the algorithm reports that the

edge has been clicked on. Of course, the line passing through the two nodes is infinite in length, so the

algorithm must also check that the x and y coordinates of the mouse click are contained within the

bounding rectangle with vertices at the locations of the two nodes before it can be sure. When a pair of

Zachary Bodnar Page 7 May 17, 2001

nodes lie on a vertical or horizontal line the bounding rectangle is infinitesimally thin in which case only

the x values (in the horizontal case) or the y values (in the vertical case) are compared.

 When an edge has been clicked on, the user is redirected to a URL for a Perl CGI script called

epiview.pl that takes the two nodes comprising the edge as arguments and displays an applet that can be

used for viewing the epipolar geometry of the two nodes. This applet is invoked in this way because

epipolar geometry is only meaningful if two images share common features, and nodes that are nearest

neighbors have the highest probability of sharing visible features.

HTML, CGI, and Java are Used for Data Presentation

 The URL of the online interface is http://city.lcs.mit.edu/data/. This takes the user to the

index.html document of the interface. This page displays some information about the dataset, its authors,

as well as a paper that describes the data in more detail. This page also contains links to two HTML

documents, feedback.html and browse.html, which are located in the same dir ectory as index.html.

feedback.html provides a form in which users can enter (optionally) their names, organizations, and email

addresses as well as a few comments about the web site (required for submission). When the user submits

this data a CGI Perl script called feedback.pl is invoked, which sends an email message to the City Group

containing the user's comments and contact information.

 The browse.html document is the real heart of the web interface. It contains links to the symbolic

link trees and an instance of the map viewer applet that displays all of the nodes in the dataset. The links to

the symbolic link trees do not actually point to the trees themselves but actually to a Perl CGI script called

dirlist.pl which formats the directories nicely by displaying them as HTML pages with a white

background. The subdirectories are shown as hyperlinks which are arranged into rows and columns. These

hyperlinks actually call dirlist.pl recursively so that the entire symbolic link tree can be given a uniform

appearance. I created dirlist.pl for two reasons. The first was to keep the appearance of the website

uniform without having to create HTML documents for each branch of the symbolic link trees. The second

was to format the data in each of the directories in such a way as to be both natural and informative to the

user by suppressing files that are necessary for the operation of the web interface, but need not be made

visible to the user, such as nodelocs.txt. dirlist.pl also makes it possible to navigate around the site using

hyperlinks with informative names, rather than literal copies of the directory names. dirlist.pl takes two

arguments, a root directory and a target directory. The root directory is the path to the parent of the target

directory. The target directory is the actual directory to be displayed. These two arguments make it

possible to call dirlist.pl recursively by forming a new root directory by appending the current target dir to

the current root dir and then setting the new target dir to the selected subdirectory.

 The nodeXXXX directories are handled with a special Perl CGI script, called fmtnode.pl. This

script formats the data contained within the node directory into an HTML document that is meant to convey

as much information possible about the data to the novice user. Text descriptions of each of the

subdirectories are listed, as well as information about the images, mosaics, features, and camera pose files,

Zachary Bodnar Page 8 May 17, 2001

such as when and how these files are generated and where they can be found. Hyperlinks to the image,

feature, and post processing subdirectories are embedded naturally in the text descriptions. The web page

generated by fmtnode.pl also contains an instance of the map viewer in adjacency mode with selected node

as the center node, and an instance of the mosaic viewer.

Additionally, the HTML document generated by fmtnode.pl contains an image of the spherical

mosaic viewed as a cylindrical projection as well as thumbnails of the raw images. These images are stored

in .jp g format in the symbolic link trees' nodeXXXX directories under the "img/thumbnails" and

"img/mosaic/sphere" subdirectories. The images of the actual repository are stored in the SGI .rgb format

which most web browsers are not capable of viewing. This is the reason the .jpg thumbnails are used

instead. The thumbnails are generated, prior to deployment of the website, by a Perl script called

genthumbs.pl, which traverses the symbolic link trees and populates the nodeXXXX directories with

copies of the raw images and the mosaics in .jpg format. genthumbs.pl performs the conversion from

RGB to .jpg by invoking the UNIX command convert.

The Mosaic Viewer Displays a Planar Projection of the Spherical
Texture

 The mosaic viewer is a java applet which loads the spherical moscaic .jpg and warps it onto a

planar projection. The image displayed is a view from inside the sphere looking out. The viewpoint can be

rotated by clicking on the mosaic viewer and dragging the image around, or by using the arrow keys of the

keyboard. The z and w keys can be used to zoom in and out respectively.

 The mosaic viewer also employs a gamma correcting class that improves the color saturation of

the mosaic. Images encoded with RGB values from 0-255 cannot capture the full dynamic range of the

luminance values that are present in a typical outdoor scene which might contain both a very bright object

like sun, and a very dark object, like a black sculpture. To overcome this problem the RGB files in the City

Scanning Dataset are actually encoded on a logarithmic scale, meaning the values from 0-255 are actually

logarithms of the true radiance values. When displayed using a linear scale from 0-255, as is done on the

web site, this causes some of the images with a high dynamic range to appear gray or solarized. This

artifact could be undone in the mosaic viewer simply by translating the linear values back to the

logarithmic scale, however, this would require an exponentiation on each pixel value which would slow the

mosaic viewer to the point of completely crippling its interactivity. For this reason I employed another

approach to boosting the color saturation of the image in the mosaic viewer. I created a java class, called

GammaCorrector, which is given a pointer to an image raster. This class then uses an algorithm developed

by Manish Jethwa, a PhD candidate in the City Group, that I adapted to inflate the color space of the image.

This algorithm works by computing the 3x3 covariance matrix of the RGB values of the visible

pixels. The covariance matrix is computed only for the visible pixels of the current view because the

mosaic is formed from the tessellation of many smaller images, each of which may have dramatically

different dynamic ranges. This means that some regions of the mosaic image may need more of a

Zachary Bodnar Page 9 May 17, 2001

saturation boost than others, therefore it is better to inflate only the color space in the region of interest.

Once the covariance matrix is formed it is factored into its eigenvector decomposition. This is done by

using a freeware java matrix library called Jama, developed by The MathWorks and NIST, which is

available online at http://math.nist.gov/javanumerics/jama/. The eigenvalues that are obtained from the

eigenvector decomposition are the lengths of the major and minor axes of an ellipsoid that defines the color

space of the visible image section. The eigenvalues are stretched so that ellipsoid fills as much of the RGB

cube as possible and then the decomposed matrices are recombined to form a new 3x3 matrix called the

reamp matrix. Each of the pixels, represented in the form of a 3D vector containing each of the RGB

components, is multiplied by the reamp matrix in order to increase its saturation. This matrix multiply is

hand coded in java floating point arithmetic rather than implemented using matrix functions from the Jama

package because these generic matrix functions are meant to work on matrices of arbitrary dimensions and

are very slow.

The Dual Node Vi ewer is Used to Visualize Epipolar Geometry

 An epipolar visualization of two neighboring nodes can be brought up by clicking on one of the

adjacencies displayed on the mini-map on the node view page. This sends the user to a web page generated

by the Perl CGI script epiview.pl which contains an instance of the Dual Node Viewer java applet. The

Dual Node Viewer is basically a two panel, multithreaded version of the Mosaic Viewer and displays a

view from the optical center of each of the two neighboring nodes. The mouse and the keyboard can be

used to rotate the viewpoint or zoom in and out of each of the two views in the same manner as in the

single view Mosaic Viewer. Figure 3 and Figure 4 (next two pages) are typical screenshots of the Dual

Node Viewer.

The animation loop of each of the two panels runs in a separate thread. This is necessary for the

components to be drawn correctly using Java's component model architecture. When one of the two panel

has the mouse focus the animation thread that renders the planar projection of the image runs at 24 frames

per second, but when the panel has lost the focus the animation thread sleeps for one tenth of a second

before checking to see if has regained the focus. If this is the case, the animation thread continues,

otherwise the sleep cycle repeats. This ensures that when the user rotates the viewpoint of one of the

projection panels the animation will not be slowed because the animation thread of the second stationary

image is being scheduled needlessly often.

 To display an epipole using the Dual Node Viewer a user first clicks on the "show epipole" button.

When the "show epipole" button is clicked the mouse cursor in each of the views changes to a crosshair,

signifying that the function of a mouse click has changed from rotating the sphere to projecting an epipole.

When the user clicks on a point in one of the views the point is marked with a red cross. In the other view

a line representing a ray originating at the optical center of the first node and passing through the point

selected in the first view, is displayed in the second. This line begins at the location of the first node

Zachary Bodnar Page 10 May 17, 2001

(which is marked by a blue cross circumscribed by a blue circle) and terminates at a vanishing point on the

opposite side of the sphere. The screenshots in Figure 3 and Figure 4 illustrate this more clearly.

 In Figure 3 the user has selected two points on the spires of the large black sculpture in the view

from node 347. These points are marked with red crosses. In the view from node 348 the rays projected

through the selected points are shown as green lines originating at the optical center of node 347. The

optical center of node 347 is marked by the blue cross circumscribed by the blue circle in the view from

node 348. The epipolar lines intersect with the same two spires of the black sculpture demonstrating that

the positions and orientations of the two cameras are well registered. The viewpoint from node 348 is in

the general direction of node 347 so the vanishing point of the epipolar lines is not visible.

 Figure 4 shows a different epipolar visualization. In Figure 4 the point of view from node 349 is

looking toward node 350, which is visible from node 349 as the blue cross inside the blue circle. In the

view from node 349 the user has selected points on the corners of two buildings and a third point near the

corner of one of the central building's windows. The view from node 350 is looking away from node 349.

For this reason the epipolar lines appear to pass overhead in the view from node 350 and converge at a

vanishing point in the lower right of the image. The location of this vanishing point is the point on the

sphere that is directly opposite the position of node 349. In other words, it is the mirror image of node

349's location projected onto the sphere.

The epipolar visualization is uses three coordinate transformations to change two dimensional

image coordinates to 3D vectors in the node's local coordinate system, rayToSphere, pointToRay, and

rayToPoint. The node's local coordinate system is a right handed coordinate system with the y axis

Figure 3: Epipolar Visualization Showing Node 347's Optical Center as Viewed from Node 348.
Points selected in node 347 (red crosses) are seen as rays originating from the optical center of node 347
(blue cross) viewed from the vantage point of node 348.

Zachary Bodnar Page 11 May 17, 2001

pointing down. pointToRay and rayToPoint are implemented as methods of the Java class PlanarMap

which encapsulates the transformations needed to project a vector in 3D space to a point on a planar image

oriented in the direction of the cur rent viewpoint. rayToPoint takes a 3D vector and returns the

corresponding x, y point in the planar projection of the current view. pointToRay is the inverse

transformation. It takes the (x, y) coordinates of a point in the planar projection of the current view and

returns a 3D vector in the direction of the ray that originates at the camera's optical center and intersects the

planar projection at (x, y). The third transformation, rayToSphere, takes a ray in 3D coordinates and

returns the (x, y) coordinates of the corresponding point in the cylindrical projection of the spherical mosaic

(this is the flat, unwrapped image of the spherical texture that is stored in the "img/mosaic/half/sphere"

directory).

rayToPoint, pointToRay, and rayToSphere transform coordinates between the 2D coordinates of

planar or cylindrical projections and the local 3D coordinate system of the node. In order for 3D rays in

one node to be projected in the other, the rays must first be transformed to world coordinates (coordinates

in the City Group's local tangent plane coordinate system) and then transformed into the local coordinates

of the second node. This transformation is done using information from the nodes' camera files. There is a

camera file for each of the 20 raw images that make up a node, a portion of which describes the image's

estimated position and rotation with respect to world coordinates:

TRANSLATION 136.9876810140612500 -392.9228685741972000 -40.6730981659422710
ROTATION -0.7053809944651622 -0.6998717346941172 -0.0816009954282809

0.0771912246871364

Figure 4: Epipolar Lines Originating from Node 3 49 Converge at a Vanishing Point in a View from
Node 350. The view on the left is from node 350 looking away from node 349. Since node 349 is behind
the viewer in this projection, the epipolar lines appear to pass overhead and converge at a distant
vanishing point.

Zachary Bodnar Page 12 May 17, 2001

The translation line gives the (x, y, z) Cartesian coordinates of the camera's optical center in the

City Group's local tangent plane coordinates. The rotation line is a quaternion of the form (t, x, y, z) which

describes the rotation used to rotate a vector in world coordinates to the orientation of the image's local

coordinate axes. A 3x3 matrix that will perform this rotation on any 3D vector that it multiplies is obtained

from the quaternion using the formula:

II
I
J

K
LL
L
M

N

−−+−+
+−−+−
−+−−+

=
2222

2222

2222

2222

2222

2222

zyxttxyztyxz

tzyzzyxttzxy

tyxztzxyzyxt

R

This rotation matrix is symmetric and orthogonal so the inverse rotation to world coordinates can be

obtained by taking its transpose.

 The quaternion listed in each of the camera files describes the rotation from world coordinates to

the coordinates of the raw image (a right handed coordinate system with z representing depth) not the local

coordinate system of the node, so the rotation will be different for each of the 20 images. The orientation

of the raw images with respect to the node's local coordinates, however, is the same for all nodes; i.e. the

azimuth and elevation of any raw image's viewpoint, taken with respect to its node's local coordinates, will

be the same for the corresponding image in any other node. This means that the relative rotation between

the local coordinate systems of two nodes is simply the product of the rotation from a single image in the

first node with the rotation to the coordinates of the corresponding image in the second node. In essence,

we can use a single image in each node to compute the transformation so long as we use the same base

image in each node. Image 0 is guaranteed to exist for every node so it is the best choice of base image.

 These transformations are applied in the following way to project an epipolar line: When the user

designates a point of projection in node A, by clicking somewhere in its planar projection, pointToRay is

called on the pixel coordinates of the selected point. This returns a ray, represented by a 3D vector, in the

node's local coordinates. To model this ray as a line we actually need two vectors in the direction of the ray

(i.e. two points that lie on the epipolar line). The first point can simply be the location of node A. The

second point is obtained by scaling the ray by a reasonably large number (10,000 meters) to get a point that

is very distant from node A. When these two vectors are transformed to B's coordinates the epipole can be

rendered by drawing the line that passes through the two points.

 Each of the two planar views contains a pointer to its neighbor (the reference counting mechanism

used by Java's garbage collector can handle such circular references safely, without causing memory leaks

or segmentation faults). The Java class which implements the planar projection, NodeVR, contains a

method called exportEpipoles. Every time a NodeVR is redrawn it calls its neighbor's exportEpipoles

method, which returns a vector of the rays projected from the neighboring node in world coordinates

(Though the discussion here involves only two nodes, NodeVR can actually handle references to multiple

neighbors so that in the future it will be possible to expand the epipolar visualization to support any number

of different views). Although each epipolar line is modeled as two points, this vector contains only the

coordinates of the distant points since the starting point of each epipolar line, the location of the

Zachary Bodnar Page 13 May 17, 2001

neighboring node from which it was projected, is implicit. It can be obtained by calling a separate method

of NodeVR called getLocation, which returns the node's position in world coordinates. exportEpipoles

transforms each of the distant points to world coordinates by first applying rotation between the coordinate

system of the base image and the world coordinate system. The rotated vector is then translated to world

coordinates by adding it to the 3D vector formed from the coordinates of the node's optical center. After

node B has obtained the rays projected from node A by calling exportEpipoles, it then transforms each of

the vectors into its own local coordinate system by first subtracting the node's location from each vector.

After the vectors have been translated this way they are rotated into node B's local coordinate system by

applying the rotation computed from the quaternion in the camera file of its own image 0.

In order to ensure that the planar projection that is displayed on the screen is in alignment with all

of these transformations I implemented the warp function that takes the pixel values from the cylindrical

texture file and maps them to image coordinates using the same functions used to transform the epipoles.

The warp function works by iterating over each pixel in the planar projection and calling pointToRay on its

(x, y) coordinates. This ray is then used to find the corresponding pixel in the cylindrical texture by calling

rayToSphere. Any rays that don’t intersect with the texture because they are outside of the node's field of

view are rendered in blue. The use of pointToRay in both the transformation of node coordinates and pixel

coordinates ensures that the epipoles rendered in each projection will line up properly with the projected

texture map.

The Planar Projections are Not Unique

 The projection from a ray in world coordinates to a point in the planar projection that is performed

by rayToPoint is not one-to-one. A single ray projects to two different points on the opposite side of the

sphere. Only one of these points is visible at any time, since they are in opposite hemispheres. To check

that only the correct projection is drawn, and not its mirror image, it is necessary to check whether the ray

to be projected corresponds to a point in front of the viewer. If it is a point behind the viewer, the mirror

image point will be projected. To check whether a vector is in front or behind the viewer the angle between

it and the current viewpoint is computed. If this angle is greater than 90° the ray to be projected is behind

the viewer and the projection should not be rendered.

 The situation is more complicated for epipolar lines, however, because the lines are represented by

two points. One of these points could be in front of the viewer while the other is behind. In order for the

line to be rendered correctly, though, two points in front of the viewer are needed. In this situation I use a

trick to find a second point on the epipolar line that is in front of the viewer. Suppose we define a plane

that is perpendicular to the current viewing direction and divides the sphere in half. The epipolar line must

pass through this plane. One could find the point of intersection and use it as the second point of projection

in rendering the epipolar line. In practice, however points that are on the boundary between the two

hemispheres could still result in mirror image problems. If the plane is moved forward a little bit in the

direction of the viewpoint, however (the actual value I used is one meter), the intersection between the

Zachary Bodnar Page 14 May 17, 2001

epipolar line and the plane will certainly be in front of the viewer and will project to the correct point in the

planar map. This is illustrated more clearly in Figure 5:

O

P

Q

R�SUTGVXWFY S[Z]\ Z*^`_ S Vba

c d e f g h i g j k l m l e n g

c n o p g m p q d e p i e r s m g t g d

Figure 5: Finding a Point on the Epipolar Line in Front of the Viewer By Intersection with a Plane

 In Figure 5 points A and C define an epipolar line. Point C is in front of the viewer but point A is

behind. The gray oval represents a portion of a plane that is perpendicular to the direction of the current

viewpoint and is one meter beyond the camera's optical center in the direction of the view point. Point B is

where the epipolar line intersects this plane and is in front of the viewer. Points B and C are used to project

the epipole, which is shown as it would appear if it were projected on the surface of the sphere.

CVS and Make are Used to Maintain Parallel Production
and Development Environments

 As with any software product that is to be made availabl e to the public, it was important to

maintain parallel production and development environments. The users expect a fully functional, bug-free

website, but it was also necessary, for me as a developer, to have a suitable test bed for new features and

extensions to the existing web site. By creating a completely parallel version of the site that was not

available on a publicly disclosed URL I could perform all of my development and testing without

disturbing the published site that was made available to users. When new components were ready to be

Zachary Bodnar Page 15 May 17, 2001

placed on the production website they could simply be copied from the development version to the

production site. Revisions to the website typically involve multiple files, however, so copying the

necessary changes by hand can be cumbersome and unreliable. For this reason, I created a makefile that

can generate two versions of the site from a common set of source files.

 The source code for the web site is maintained in a CVS repository with the hierarchy shown in

Figure 6. The source code is checked out to the web server using the command cvs –co –d city

citydata which checks out the citydata module shown in Figure 6 to the directory "city" on the web

server. make is then run in the "city" directory to build a working version of the web site. Figure 7 shows

the structure of the site that is generated on the City Group's web server.

uwvyxyz { |~}����w� ���|,�yx���� ��� � ���|���x�������� �����w�y� ���|w��x�� ��}(�	�,��� ���|,��� � vyuw��� �����}(��� { �����/�!��u,� ���

�,��� � �¡�¢¤£,¥ � ¦y§ ¢ ����uy�/u�|�|,¨���{ x�{ �©� �������uy�/u�|�{ ª�� { �)� �«�����uy�/¨w{ ��� { �!��� ���
����uy�(z ����¨,��¬�uy­ � �������uy�(z ��� x�v,¨w��� ���

£,®~� �,��vw¯°�!�,� ��� ��� �(����uz ���w¨���¬�u�­±� ��� ��� �/�!��u{ x�¨,�/²(� ��� ��� �/����u}(�!¬,|����[�©�y������� ��� ��� �[����u

³/§�´�� ¡[¢U¥ £ � ´]®,¢µ ¶y·(¶~¸���� ¹º ¶�´�¶ » ¨,|,�,� ¼�¬w½G¬¾ v�¨,��� ¼�¬w½G¬¿ �yu,� ��À°� ¼!¬,½G¬��¬���½U� � ¼�¬w½G¬����u��[��¬����y� |,{ z

´]¶)¦�·�¥
Á ¬w�	��¬�Â°vw�����wuw� vy� � ¼�¬w½G¬Ã ¬�� ��{ ²�Ä±²[Ä�� ¼�¬,½G¬Å � ¬,x�¬,� Ã ¬���� ¼�¬w½G¬Æ ¬w�!�©��� � ¼�¬w½G¬¿ �yu,� vy��Ä/À°� ¼�¬,½G¬
x�vw¨w� ¿[Æ � ¼!¬,½G¬

Ç ¶~¥ ¦�·�¥¢ ¥ £ w¶w§�¶, ,È�· Ã ¬�­U�,z { � ���¬�{ xy� ��­
£ � § É ¶ § ¶

Â°� { uw­ Ã vw¨w��� ¼�¬,½U¬À�}(¬,� ¾ vw¨w� ¿/Æ � ¼�¬,½G¬

¾ vw¨w� ¿[Æ � ¼�¬w½G¬
Å vy���w� ¼�¬w½G¬Ê }(¬�� ����x�{ vyx�� ¼�¬,½G¬

¢Ë¥ £�¡(È,¦,� ·�� È Ç�Ì ¦,�

Figure 6: CVS Source Tree for the Citydata Web Interface

Í Î Ï Ð Ñ Ò Ó ÐÔ ÎÕÒ�Ö�× Ô ÏØ�Ù©Ù Ú�Û-ÜÕÝ�Þ�ß à Ø�áãâ�ä åæØ�ä¤áãâ*ä ß�ä�ç
ÍèÎ]é
êbÒ�Ð	ëìÐ�í
î Ò Ö Î í Ò Ð ï

Íèð	ïyÎÕÒ�ñ
êbÒ�Ð	ëìÐ�í
î Ò Ö ò Î í Ò Ð ï

ó�ô(Íöõ
÷øÒ�Ó�Ð	ï

Ý
Ø�ù±Ø�Ý�Þ]â
çXú ù¤ûçÕü�ú ý�þ�ú©Û

Ý�Þ]â ÿ���� �����	�

 ú ù û � Þ þ � Þ ä â Þ ä

�
��
�`çXä�ú©á]ù�ß

Figure 7 Structure of the Website Deployed on the City Group's Web Server

 In Figure 7 the deployment directories, rel and dev, are shown in bold. The arrows in Figure 7

indicate production and development directories that are equivalent. The subdirectories of the production

directories are omitted in Figure 7 for clarity because their structure is identical to that of the development

directories, with the sole exception of the "src" directory. The "src" directory contained in the development

directory "datadev" is the common source of both environments, and is not duplicated to the production

directory "data".

Zachary Bodnar Page 16 May 17, 2001

The makefiles Makefile and main.mk contain the instructions to build both the development and

the production versions of the site. If make is invoked without any arguments, the site is built and deployed

to the development directories. If make is run with the parameter "release" (as in make release) the

site is built and deployed to the production directories. In this way the production site is updated with any

changes that have been made on the development site automatically. The production and development sites

are accessed via two different URLs. http://city.lcs.mit.edu/data points to the production site, and

http://city.lcs.mit.edu/datadev points to the development site.

 When the site is built using make, the build scripts gensymtree2.pl, genthumbs.pl, and getlocs.pl

are used to create and populate the symbolic link trees as described above. The CGI scripts are then copied

from their location in the "src" directory to the appropriate deployment directory on the web server (If you

look carefully at Figure 6 you will notice that the CGI Perl scripts' filenames are prefixed with src_ in the

source tree. This is because make cannot handle dependencies between source files and target files of the

same name). The HTML documents must then also be copied to the appropriate locations, however, there

is a small difficulty that arises from the fact that the CGI scripts and the HTML documents are deployed to

different locations on the web server. In accordance with good software development practice, I used

relative paths in the HTML wherever possible. However, because the "cgi-bin" directory of the web server

is not a subdirectory of the "datadev" or "data" directories where the HTML documents are located, relative

path names are not sufficient to distinguish between the CGI scripts of the development and production

environments. Conversely, CGI scripts must know the complete path to the HTML documents or java

binaries in order to reference the files which correspond to the appropriate environment. This problem is

addressed by two additional build scripts, configure.pl, and genhtml.pl.

configure.pl is invoked by main.mk with arguments that specify the target directory of the

HTML code base, which is either "datadev" or "data" depending on whether a development or production

version is being built, as well as the target directory for the CGI scripts. This script generates a file called

cggd.conf which is placed in the appropriate CGI directory (either "dev" or "rel"). This configuration file

tells the CGI scripts where the HTML and java classes are located.

The genhtml.pl script makes the corresponding path bindings in the HTML documents. This

done by performing a search and replace on the .html_src documents located in the "html_src" directory.

These .html_src files are special HTML documents with tags that I created that are meant to function as

unresolved variables to be bound by genhtml.pl at build time. These variables mainly consist of

references to CGI scripts which are replaced with the appropriate URLs for a given environment by the

genhtml.pl script. After the bindings are made, the resulting HTML documents are copied to their

appropriate locations on the web server.

The rest of the build process is straightforward. main.mk invokes the java compiler on the java

source files using the –d argument to specify the appropriate deployment directory. main.mk also copies

all of the images referenced in the HTML from the source tree to their appropriate locations. Sometimes, if

the site is being built on a clean web server, most of the deployment directories will not exist. In this case

Zachary Bodnar Page 17 May 17, 2001

the deployment directories are first created by the main.mk and then assigned the necessary world readable

permissions. The build process then proceeds as described above.

Opportunities for Further Work

 The system that I have developed thus far provides a great deal of new functionality but it is only

the first step in what could be a very powerful and versatile interface. Some possibilities for future work on

this project include:

• Improving the abstraction between the physical data and the navigable hierarchy presented

to the user The symbolic link trees provide an excellent re-mapping of the physical directory to a

more intuitive organization, but any small changes require re-construction of the trees so they will

not be very utilitarian when the dataset begins to grow or change more rapidly

• Developing more advanced visualization tools One could envision applets that allow the user to

view a re-projection of the image data onto crude proxy geometry. Another useful visualization

would be one that shows the boundaries of the current planar projection in the mosaic viewer in

the cylindrical projection of the sphere to illustrate the action of the coordinate transformations.

The sphereToRay transformation could also be used to create a better way to change the viewpoint

of the Mosaic Viewer and the Dual Node Viewer. Instead of dragging the viewpoint around using

the mouse, the user could simply select a point of view from the cylindrical projection.

• Adding features to the epipolar visualization The epipolar visualization could be made to place

a metric scale of tick marks on each epipolar line to give an indication of distance. In addition all

of transformations are in place to display the edge and point features extracted from the raw

images in the planar projection of the sphere; it's just a matter of writing code to put this feature in

place. Once the features are displayed, they could then be used to select points of projection that

would better illustrate the quality of the rotation and position estimates because the edge and point

feature data has better than sub pixel accuracy. Finally, since camera files are available for each

stage of post processing, one ought to be able to view the epipolar geometry at each of the

different stages to see how the rotation and position estimates improve.

• Registering the clickable map (and any future map -based visualizations) with a more

universal coordinate system. The map should be registered with some standard system such as

NSR522 State Plane Coordinates. This would not only make the maps easier to work with for

members of the City Group, but would also provide useful information about node and feature

positions to people outside the City Group who are browsing the data over the web.

• Improving th e quality of the displayed images. Currently only the node viewer applets provide

gamma correction. The raw images and the sphere images are still displayed without re-mapping

the radiance values. Also, since most browsers cannot display .rgb files, it should be made

possible to view the .rgb image files over the web using a java applet or some other means.

Zachary Bodnar Page 18 May 17, 2001

• Integration of the navigation interface with a transactional database. This could allow users

to find nodes based on other criteria besides the current navigable features of node number, time

of acquisition, and node location. For example, the user could query the database for all nodes in

a certain region, or all nodes acquired using a lens with a particular coefficient of radial distortion.

Contrib utions

 The City Scanning Dataset WWW interface is still very much a work in progress, but in the short

time span of one semester, I have made important headway in the following areas:

 I have

• Created a informative layout with useful applications that user's who may be unfamiliar with the

data can use to browse the dataset, and learn about the data

• Set up separate production and development environments with a clean mechanism for

maintaining the two parallel, concurrent versions of the site

• Developed applications that can be used to view the locations of the nodes, information about their

adjacencies, the spherical textures generated by the mosaic stage, and the epipolar geometry of

neighboring nodes.

• Formed an abstraction between the physical data and the way that it appears to be laid out to the

remote user.

• Improved the quality of the viewable images using the GammaCorrector

• Written CGI and java applications, such as the clickable map, to make navigation of the web site

as intuitive as possible

• Created a CGI form for users to provide anonymous feedback back to the City Group about the

site.

• Created an epipolar visualization tool that can be used to demonstrate the quality of the image

registration.

Zachary Bodnar Page 19 May 17, 2001

Appendix A: Summary of Script Names and Functions

Build Scripts

 Table 2 lists the makefiles used to build either a production or development version of the website:

main.mk primary makefile that is used by Makefile to build either a production or a

development snapshot of the web site.
Makefile makefile that initiates the build process by providing the arguments to main.mk

that will build either a development or a production site

Table 2: Summary of Makefile Names and Functions

 Table 3 lists the Perl scripts which are used by make in building the website:

configure.pl generates cggd.conf, the configuration file describes the path to the html and

CGI deployment directories

genhtml.pl parses .html_src files and completes variable bindings
gensymtree2.pl generates a symbolic link tree to the nodeXXXX directories organized by node

number
gensymtree_by_date.pl generates a symbolic link tree to the nodeXXXX directories organized by date

and time of acquisition
genthumbs.pl traverses symbolic link tree and creates .jpg thumbnails of the raw images and

mosaics
getlocs.pl generates nodelocs.txt, a file which describes the position of each node used by

the map viewer
publish_src.pl copies any source code to be made publicly available to an appropriate location

on the website

Table 3: Summary of Perl Build Script Names and Functions

CGI Scripts

 Table 4 summarizes the Perl CGI scripts used by the web interface:

cggd_init.pl library routines used by the CGI scripts for parsing the configuration file

cggd.conf
cgi-lib.pl open source library of Perl CGI routines
dirlist.pl CGI script that generates an html page with links to the directory contents and

subdirectories formatted in a nice tabular structure
epiview.pl generates an HTML document to display the epipolar visualization applet
feedback.pl handles submissions from the HTML feedback form in feedback.html by

sending an email message to the City Group
fmtnode.pl displays the contents of a nodeXXXX directory using HTML and Java applets

Table 4: Summary of CGI Perl Script Names and Functions

Zachary Bodnar Page 20 May 17, 2001

Appendix B: Summary of Java Classes and Their Uses

Map Viewer Classes

 Table 5 summarizes the Java classes used by the Map Viewer applet and their functions:

Edge.java represents a clickable adjacency between two nodes
mapvr.java main applet class for the Map Viewer
Node.java storage class for node's location and other information; provides a hit test for

detecting mouse clicks
Vect2D represents a two dimensional vector and provides vector manipulation functions

Table 5: Summary of Map Viewer Java Classes and their Uses

Mosaic Viewer and Dual Node Viewer Classes

 Table 6 summarizes the Java classes used by the Mosaic Viewer and Dual Node Viewer applets

and their purposes:

ClickMode.java shared variable used by the two different view panels that describes the current

function of a mouse click
DualNodeVR.java main applet class for the Dual Node Viewer
GammaCorrector.java boosts the color saturation of an image map
Matrix3x3.java 3x3 matrix representation with matrix manipulation functions
PlanarMap.java performs the projection from rays in space to a plane
Raster.java image raster class that holds an array of pixels in memory
Vector3D 3D vector representation with vector manipulation routines
NodeVR.java animation panel used by the Dual Node Viewer that contains one planar

projection of a node which can be rotated, scaled and used to display epipolar
lines

nodeVR.java main applet class for the Mosaic Viewer
Pose.java storage class for a node's location and orientation with methods for transforming

to and from world coordinates.
Quaternion.java simple quaternion class with methods for producing rotation matrices

Table 6: Summary of the Mosaic Veiwer Java Classes and their Functions

	Text1: MIT - AUP Report, May 2001

