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ABSTRACT: Transportation systems are becoming more andThese have advanced considerably in recent yeaatiolw
more advanced due to progress made in computationafaster and more accurate processing of receiveal Thiey

techniques used in transportation. Autonomous naafipn of
vehicles is not only useful in robotics but also town planning
and management. In this paper, use of artificial vigation
techniques used in navigation of autonomous vehglas
discussed. The methods are based on machine vigéchniques
which extract feature points in images captured bwnteras
mounted on vehicles. These images are fed to aitfi
intelligence algorithms to estimate self-positionf aehicles.
Knowing the self-position of vehicles, autonomous igation of
vehicles is made feasible. The methods work effedyi and
vehicles are navigated in cluttered environments.
Index Terms—feature detectors, artificial
navigation, localization, 3D transformation.

intelligee,

l. INTRODUCTION

Transportation systems are being developed wittnéhe of
advanced computational techniques. Such systemssack
in daily life these days because of their drivesigtance
services. Localization of intelligent vehicles i atmost
priority because for effective and efficient traoggation of
such vehicles, their self-position needs to be kmofpart
from localization of intelligent vehicles, servicebots
needto know their self-position before such rolpmsform
their next task. In case of intelligent vehicles, dtay in
aspecific lane, the vehicle must know its curreosifion.
The position must be known in centimetre accurazy
follow road lane. GPS alone is not sufficient toetnéhe
requirements of such a precise localization. Matiyeio
techniques are used along with GPS for the purpimse
odometry, IMU. In this paper, artificial intelligea based
methods are discussed for estimating self-positafn
transportation systems.

. SELF-POSITION ESTIMATION

Self-position estimation is needed prior to autonom

navigation of transportation systems. GPS is used f

localization of intelligent vehicles. GPS consigif 24
satellites which send signals to estimate positi@me
satellite needs to be received for each dimensiothe
user’s position that needs to be calculated. Thiggssts
three satellites are necessary for position estinmfat
general user (for the x, y, and z dimensions ofrdueiver's
position) however, the user rarely knows the exauoe
which they are receiving at, hence four satelligeyulo-
ranges are required to calculate these four unksowhe
satellite data is monitored and is controlled bg BPS
ground segment - stations positioned globally tsuem the
correct operation of the system. The user segnmithe
GPS user and the GPS reception equipment.
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typically contain pre-amplification, an analogue dmital
converter and DSP processors etc. [3].

Outdoor localization is a task which experienceany
problems. Many sensors like laser range finder<hyiay
an important role in indoor localization are nottale for
outdoor localization because of the cluttered and
unstructured environment. Global positioning sys{@RS)
discussed in Section can give valuable positioarmétion,
but often the GPS satellites are occluded by Ingjslior
trees. Because of these problems, vision has bedbhee
most widely used technique for outdoor localizatigh
serious problem with vision based systems is
illumination change because the illumination in dmdr
environments is highly dependent on the weatheditions
and on the time. In [2], the authors address tladlpm of
long term mobile robot localization in largeurban
environments where the environment changes dynénica
In their work, the authors use vision system tosemppnt
GPS and odometry [17] and provide accurate
localization.The computations involved in vision sbd
localization can be divided into the following fosteps [14]:

» Environment sensing: For vision based navigatits
means acquiring and digitizing camera images.

» Detect landmarks: Usually this means extractidges,
tsmoothing, filtering, and segmenting regions orihsis of
differences in grey levels, color, depth or motion.

» Landmark Identification: In this step, the systémes to
identify the observed landmarks by searching intiimbase
for possible matches according to some measurement
criterion.

« Calculate position: Once a match (or a set ofcime) is
obtained, the system needs to calculate itsposiéisna
function of the observed landmarks and their posgiin the
database.

In order for a vehicle to localize itself atw navigate
autonomously in an environment, a model of that
environment is needed which associates cameraiqusit
and observations. Provided that such a model (taiiap)
has been built, a localization task can be caroat by
means of ordinary statistical operations viz. regien or
interpolation. Among the several sensor devicesl use
localization, vision provides the richest source of
information, traditionally being restricted to these of
standard CCD cameras. Lately, omnidirectional wisio
systems are becoming increasingly popular in théilmo
robots field for tasks like environment modellinghile
research is active in understanding the propedfesuch
sensors on a theoretical level. The main advantigen
omnidirectional camera compared to a traditiona its
large field of view which for localization applican, allows
many landmarks to be simultaneously present insttene
leading to more accurate localization. [13] The rapph

the
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computed on omnidirectional images and showingrthei
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interest in context of mobile robot localization.their work  current position. Such methods are useful for retidg of
the complex transformations induced by the geomaftthe transportation systems.

sensor are taken into account and integrate theiavir

moments of the robot to evaluate invariant distiikai 11, 3D MODELING OF ENVIRONMENT
features. After introducing the theoretical fourdias of the
integral invariant features construction, the argho
presented their approach dealing simultaneouslyh Wi{n
models of omnidirectional sensor and of the effedtshe '©

robot movements on the transformed images. T . ) .
; ; y Jesse Levinson et al [18]. This approach integr&PS,
experimental results presented show an improvewiethte IMU, wheel odometry and LIDAR data acquired by an

invariance of these features compared to the clalssi. . . ;
histograms, and so of the robot qualitative loedion. mstrumented vehicle to generate h|gh resolution
The integral method used to build invariant hase environment maps. The |dea} of their wprk IS to aegm
advantage of being more direct than differential o|per_t|al navt|gat|c(>jnthby tlearmng ahQ?té'leﬂDESp <br:‘et
geometricalmethods. The integral method requirathere environment, and then 1o use a venicie s oens

image segmentation as in geometrical methods n@pal;]ze d|ts§If relaft“{ﬁ to tg's r‘?ap. -lt—hlf mapfm éﬁj
derivativecomputation as in differential methodsheT overnead views of the road surface, taken in trea

starting point of the invariant building is the Hartegral. It spectrum. Such maps capture a multltuc_ie (.)f texturése
consistsof a course through the space of the tremstion environment that may be useful for localizationtsas lane

: : markings, tire marks, pavement and vegetating tiearoad
group parameters. It is typically expressed as (e.0. grass). The maps are acquired by a vehiakipperi

1 with a state-of-the-art inertial navigation systémith GPS)
Tnarr =Ef0 f-g(x)dg 1) and multiple SICK laser range finders. Such fusioin
sensors is useful in many cases but suffers fromyma

Where G is the transformation group, and g(x) ttioa of ~drawbacks in some applications.

g, an element of G, on vector x. This invariant basn used
in image query in case of Euclidean motion andnfobile V- SELF-POSITION USING PATHWAY MAP

robot localization although the Harr integral wast n an autonomous navigation of a vehicle on a pathigy
explicily ~used. The authors interest concerngchieved by estimating its self-position on a pawrhe
transformations of the image obtained with an uetional \chicle transitions through a sequence of poseariran
camera. The type of transformations is due to ®ior apping, poses are five dimensional vectors, caimyithe
movements and to the projection process. In tht_ankv\/che x — y coordinates of the vehicle, along with itsatimg
study of the robot movements is limited to traneh'ﬂ on  direction (yaw), roll and pitch angle of the vekic{the
the floor. Nevertheless, other transformations s@ ejevation z is irrelevant for this problem). Lettx denote
rotations or illumination changes could have beethe pose at time t. Poses are linked together gfiroelative

considered but have not been presented in theierpapggometry data, acquired from the vehicle’s inemgiaidance
Translations transform 3D point x (expressed inotob gystem,

reference frame) into point x + t with t = (t1, t@) a

translation in the (Ox, Oy) plane. The camera idosved X, = g(uUp Xi_q +€;) )
with an omnidirectional sensor, generating tramsfdions
that can be divided into a projection on its palabmirror
and an orthopaedic projection on to the image plang8], i put a pose xt-1 and a motion vector u (t), and

authors  propose an omnidirectional camerabas tputs a projected new pose x (t). The variatilds a
localization system that does not involve the ude @sayssian noise variable with zero mean and covaaarin
historical position estimates. A modified hue peofis log-likelihood form, each motion step induces a -finaar
generated for each of the incoming omnidirectiam&ges. gy adratic constraint. These constraints can begtitoof as
The extracted hue regions are matched with thathef edges in a sparse Markov graph. For any pose bager
reference image to find corresponding region botied@s  5ngle relative to the vehicle coordinate frame the
the reference image, exact position of the ref@epoint  oynected infrared reflectivity can easily be cadted. Let
and the map of the workspace are available, theemur j ;1 3 pe this function, which calculates the expected
position of the robot can be determined by triaagoh. |55er reflectivity for a given map m, a robot pasg) and a

The method was tested by placing the camera sal# djzser anglea. The observation process is modelled as
number of different random positions in a 11.0m.%M ¢4 0ws

room. The average localization error was 0.45m. No
mismatch of features between the reference andmimgp
image ~ was found.  In  [9], agthprs make use Oltlerec?ti is a Gaussian noise variable with mean zero and
omnidirectional camera for map building and locaian of . . . . .

a robot. The image sequences of theomnidirecticamiera noise covarianag; _.In Iog—I_lkeI|hood form, this provides a
are transformed into virtual top-view ones and etklinto new set of constraints, which are of the form.

the global dynamic map. After learning the envir@emmn ; . i .

from training images, a current image is compaedhe _ (Zt —hi(m x))" = Q¢ (zc — hi(m, x¢)) (4)
trainingset by appearance based matching. AppnepriaThe unknowns in this function are the poses x I} ¢he

classification strategies yield an estimate of togot's Map M. The next state of the system is estimaiena its
current state.

Urban cities are occupied with tall canyons of dinigjs. In
any urban navigation applications, high accuracy
calization of moving vehicles is achieved usingp® of
ban environments. One such technique has be@ogrd

Here g is the non-linear kinematic function whidtepts as

zi = hy(m,x,) + 81) ®3)
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V. KNOWLEDGE ABOUT SURRONDINGS In [24], amobile robot localization system whichess
passive visual landmarks to enhance the recognition
capabilities of theon-board camera has been disduaad

the focus is on the evaluation of the spatial liaadion
uncertainty withtheoretical analysis and preseatatof
experimental results. In case of illumination chesygobust
features need to be calculated for matching images.

Surroundings around the vehicles are stored irgiéatimap
to estimate the self-position of vehicle. The |omat
estimation of a vehicle with respect to a 3D womddel
finds applications which include automaticnavigatio
automatic integration of new information into a rabishg
system, the automatic generation of modelto imagelays.
All of these will become increasingly important as
modelling systems, such as Google Earth,prograsarts VI VISION BASED METHOD

more accurate 3D representations [23]. The 3D nsoded Navigation of vehicle is made autonomous by esiimat
constructed from automatically aligned 3D scansumed self-position of vehicle using machine vision based
using a Leica HDS 3000 LIDARscanner, which alsaechniques. In this approach, the appearance obgtt is
produces the model image seiM}, acquired using a used for comparing images. Here, an appearancevisna
calibrated camera [2]. Model imagesare pre-prockdee of anobject from a certain position and directiorhis
extract SIFT keypoints[5], filtering the resultsasiplly to  approach consists of two steps:

reduce the keypoint set. Keypoint locations arekbac(l) Storing images and corresponding positions in a
projected onto the model surfaces. Each of thesadain database.

keypoint'’ has an associated 3D location,scale afd 32) Finding an image having a similar appearancehto
surface normal. In addition a plameis fit to the LIDAR input image from the database and obtaining its
points in a reasonably large surface area(80s x\8@sre s corresponding position.

is the LIDAR sample spacing on the surface) surdaum Compared to landmark based approach, the appeara
the keypoint using a M-estimator. Many other clfessi are  based approach does not require geometrical oljgititm.
also used to learn from past navigation. SURF [2&iure However these methods cannot estimate a vehicéesal

points are also used for image matching. position since they assume that the trajectoryef sblf-
positions is the same as the trajectory when tkabdae was

VI. MEMORY BASED SELF-POSITION constructed. In [4], authors use local feature detrs and
ESTIMATION its experimental evaluation in a large, dynamicpyated

environment where the time interval between thdectdd
set is upto two months. The overview of the propose
method has been shown in the following diagram. inpet
information which is identical for the position af sensor I.?htehe dg?;[ggeo?;ggg gifaggstgse (&Jg;g} ?ggnzji\tajba?s.e
and invariant against the rotation of the sensogéw_}eratlng images together with the extracted ’fea'tures. Ouipuhe
E,réazgfcg;retlr?:ogelnrgggeisfr(;?ﬁrﬁgte%bss rvi?/allrl?:t?:e Ilgurrent estimate of the robot position based onwbeght
AR L y 8 ' and distribution of particles.In [6], the authoddeessed the
§|m|lar|ty among the autocorrelauon image of t”m‘te’."ed issues of outdoor appearance based topologicaiZatian
image and stored auto correlated images. The sityilaf for a mobile robotover different lighting condit®rusing

auto correlated images IS evaluated in low d|marn_1§|o omnidirectional vision. Their databases, each bimg of
eigenspaces generated with stored auto correlatedes. large number ofomnidirectional images, have beeuiaed

They conducted experiments with real images anthaed over different day times in dynamic outdoor enviramts.

:/Zehiggfg;;nggcscﬁggﬂri fThee;[?é)(ijs. rﬁ)(fccrlrﬁi(:tﬁ ;lejltft'gmsmf Two differenttypes of feature extractor algorithr8& T and
the more recent SURF [20, 21], have been usednpare

the images, and the two different approaches, WTHA a

vil. USING FEATURE VECTOR MCL [22] have been used to evaluate performancégerG
Features are used to calculate distance betweeimtages. the challenges of highly dynamic and large envirents,
Natural landmarks are features extracted from thage general performances of localization system ariefaatory.
sequences without any changes made to the case of false matching, RANSAC is used to remove
environmentalmodel. The use of natural landmarks iputliers.
localization is limited because of appreciable exro
encountered due tochange in illumination, camecdusion IX. POSITIONING AND MAPPING

andA?{;ﬁgnggﬁgcrﬁark localization approach makese of Many times, map of the environment is not ready for
PP estimating the self-position or there is need tddbmap

landmarks which are inserted purposely in the . A L .
. along with estimating self-position. The simultango
environmentalmodel and these landmarks could beesom

visual patterns of different shapes and sizes. figigl localization and mapping (SLAM) problem asks ifist

. S possible for a robotic vehicle to be placedat aknomwn

landmarksovercome the problem of illumination chemg . . : .
. . environment and for the vehicle to incrementallyildbwa
which occurs in natural landmark methods. The

disadvantage ofusing artificial landmarks is thdte t consistent map of this environment whilesimultarspu

environment has to be enaineered. what in turntdirtiie determining its location within this map. A solutido the
flexibilty andadaptabilty 1o different operationasites, S-AM Problem has been one of thenotable succesheto

y . P y . P . ~'_robotics community. A two part tutorial of SLAM a@nto
However, this problem can be avoided by using smpl

. . rovide a broad introduction toSLAM [15, 16].The ima
cheap andunobtrusive landmarks, which can be eas : .
o . . eps in SLAM are:
attached to walls of buildings in most of the eamiments.

In order to move a vehicle autonomously, its presio
positions need to be stored in memory. In [12] 9], the
authors propose a self-localization method thatraeis$
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» Define robot initial position as the root of theorld
coordinate space or start with some pre-existirrguiesin
the map with high uncertainty of the robot position
* Prediction: When the robot moves, motion modeljates
new estimates of its new position and also theudaicgy of
its location positional uncertainty always increase
* Measurement: (a) Add new features to map. (b) Re-
measure previously added features.
» Repeat steps 2 and 3 as appropriate. 9.
In [1], a system for Monocular Simultaneous
Localization and Mapping (Mono-SLAM) relying solebn 1
videoinput. The method makes it possible to prégise
estimate the camera trajectory without relying omy a
motionmodel. The estimation is completely increraénat

7.

a given time frame, only the current location is
estimatedwhile the previous camera positions areeme
modified. In particular, simultaneous iterative iopzation 12

of thecamera positions is not performed and theyeha
estimated 3D structure (local bundle adjustmentle kKey
aspectof the system is a fast and simple pose a&im
algorithm that uses information not only from trstimated
3Dmap, but also from the epipolar constraint [7]ary
hybrid methods are also developed to estimatepsalition
of vehicle and build map of the environment.

13.

14.

X. SUMMARY

Transportation systems use artificial intelligemeehniques

to autonomously navigate vehicles in an environmienese ¢
techniques use many unsupervisory machine learning
methods to estimate self-position of vehicles.lis fraper,
techniques which use 3D environment map, featuiatpo 17-
and pathway map has been discussed. Each of these
methods has its benefits and also suffers from lolaaks.
Many hybrid methods are used to estimate self-joosibf
vehicle accurately.
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