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Abstract

This paper introduces a new method of registering point sets. The registration
error is directly minimized using general-purpose nonlinear optimization (the
Levenberg-Marquardt algorithm). The surprising conclusion of the paper is that
this technique is comparable in speed to the special-purpose ICP algorithm which
is most commonly used for this task. Because the routine directly minimizes an
energy function, it is easy to extend it to incorporate robust estimation via a Hu-
ber kernel, yielding a basin of convergence that is many times wider than existing
techniques. Finally we introduce a data structure for the minimization based on
the chamfer distance transform which yields an algorithm which is both faster
and more robust than previously described methods.

1 Introduction

A common problem in computer vision is the registration of 2D and 3D point sets [1, 4, 6,
7, 19, 26]. Applications include the integration of range datasets [12, 23], and alignment of
MRI/CAT scans[8, 20]. Typically, a cloud of point samples from the surface of an object is ob-
tained from two or more points of view, in different reference frames. The task ofregistration
is to place the data into a common reference frame by estimating the transformations between
the datasets. What makes the problem difficult is that correspondences between the point sets
are unknowna-priori. A popular approach to solving the problem is the class of algorithms
based on the Iterated Closest Point (ICP) technique introduced in [1, 26]. ICP is attractive
because of its simplicity and its performance. Although the initial estimate does need to be
reasonably good, the algorithm converges relatively quickly.

This paper abandons one of the basic characteristics of ICP—its closed-form inner loop—
and employs instead a standard iterative nonlinear optimizer, the Levenberg-Marquardt algo-
rithm [17]. This approach, perhaps surprisingly, incurs no significant loss of speed, but allows
the extension of ICP to use truly robust statistics, with a concomitant reduction of dependence
on the initial estimate. In contrast, existing ways of introducing robustness [3, 22, 26] are
often many times slower than our proposal.

The paper is in several sections. Section 2 defines the problem and the notation used in
the rest of the paper. In section 3 we review existing work on point set registration, ICP
and otherwise, and also summarize the key ideas in nonlinear optimization that will be re-
quired. Section 4 redefines registration as a nonlinear optimization problem. This approach
is compared with traditional ICP in 2D and 3D experiments. The second half of the paper,
beginning in Section 5 exploits the simplicity of the new approach to develop a robust error
function which greatly increases the radius of convergence on supplied examples, again with
no significant loss in speed.



n-D Transformation p
2D Euclidean 3
2D Affine 6
2D Projective 8
3D Euclidean 6
3D Similarity 7
3D Affine 12
3D Projective 15

Notation summary:
Nm model pointsmj

Nd data pointsdj

Data point←→ closest model point:i←→ φ(i).
TransformationT (a;x), parametersa ∈ Rp

Error∆i(a) = mφ(i) − T (a;di)
Residualse ∈ RNd , elementsEi = ε2

(∣∣ ∆i(a)
∣∣)

JacobianJ , sizeNd × p, ijth element =∂ei

∂aj

Table 1: (a) Transformations commonly occurring in registration problems. (b) Notation sum-
mary for the paper.

In all the above examples, closest-point computations are based on explicit Delaunay sim-
plicization of the point set, allowingO(log n) closest-point computations. In section 6, we
show how both the new and traditional procedures can be modified to use a fast lookup based
on the distance transform. This speeds up both algorithms significantly, but the proposed
technique benefits more, resulting in an algorithm which is faster and more accurate than
traditional ICP, with a wider basin of convergence.

More generally, the message of the paper is that specialized “home-grown” strategies for
function minimization (of which ICP is one example) do not necessarily outperform more
general—but more sophisticated—nonlinear optimization algorithms.

2 Problem statement and definitions

The paper deals exclusively with the two-frame case, although multiple-frame approaches [7,
19] should immediately benefit. We are given two sets of points inRn, which for conve-
nience we shall denote bymodelanddata, with their elements being denoted by{mi}Nm

i=1 and
{di}Nd

i=1. The task of registration is to determine the parameters of a transformationT which,
when applied to the data points, best aligns model and data. The parameters ofT are repre-
sented by ap-vectora. Common transformations and corresponding values ofp are listed in
table 1.

For 2D registration (see figure 1),p = 3 and the parameters ofT are rotation angleθ and
translation vector(tx, ty). Collecting the parameters into a parameter vectora = [θ, tx, ty],
we define

T2D(a;x) = T (θ, tx, ty;x) =
(

cos θ sin θ
− sin θ cos θ

)
x +

(
tx
ty

)
for x ∈ R2

Alignment is measured by an error functionε2
(∣∣ x

∣∣), and a typical choice is to define

ε2
(∣∣ x

∣∣) = ‖x‖2

In order to measure alignment, we require that correspondence between the model and data
points is specified. This correspondence is denoted by the functionφ(i) which selects, for
each data point, the corresponding model point. In order to cope with data points for which
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Figure 1: (a) 2D curves to be registered. The curves are a subset of the ouput of an edge
detector applied to the image. Synthetic rotations and translations of the lower-right ‘C’ are
registered to the upper left one. (b) Convergence of LMICP with Lorentzian kernelε(r) =
log(1 + r2) from a40◦ rotation.

no correspondent is found, we also introduceweightswi, which are set to zero for points with
no match, and one otherwise. Thus, the error to be minimized is

E(a, φ) =
Nd∑
i=1

wi ε2
(∣∣ mφ(i) − T (a;di)

∣∣) (1)

In general, the functionφ is considered part of the minimization process: in ICP-like algo-
rithms φ(i) is chosen as the point which minimizes the distance between model and data,
yielding the error function

E(a) =
Nd∑
i=1

wi min
j

ε2
(∣∣ mj − T (a;di)

∣∣) (2)

and finally the estimate of the optimal registration is given by minimizing overa:

â = argmin
a

Nd∑
i=1

wi min
j

ε2
(∣∣ mj − T (a;di)

∣∣)
2.1 The ICP algorithm

In its simplest form, the ICP algorithm iterates two steps. Beginning with an initial estimate
of the registration parameters,a0, the algorithm forms a sequence of estimatesak which
progressively reduce the errorE(a). Each iteration of the algorithm comprises the following
two steps, labelledC andT :

C. Computecorrespondences, φ: Set
φ(i) = argmin

j∈{1...Nm}
ε2

(∣∣ mj − T (ak;di)
∣∣) i = 1 . . . Nd



so thatmφ(i) is the closest model point to the datumdi transformed by the current
estimateak.

T . Updatetransformation, a: Setak+1 = argmina

∑Nd

i=1 ε2
(∣∣ mφ(i) − T (a;di)

∣∣) In
many common cases, stepT can be performed in closed form, or via well understood,
numerically stable, procedures such as singular value decomposition.

It is easy to see that both steps must reduce the error, and that the error is bounded below. Thus
convergence to a local minimum is guaranteed. Furthermore, it is straightforward to discern
a termination criterion: when the set of correspondences does not change in stepC, the value
of ak+1 will be set equal toak in theT step, so no further change is possible.

2.2 The Levenberg-Marquardt algorithm

The proposal of this paper is to directly minimize the model-data fitting error (2) via nonlinear
minimization. The Levenberg-Marquardt (LM) algorithm is an optimization procedure which
is particularly suited to functions such asE which are expressed as a sum of squaredresiduals,
but alternative procedures such as conjugate gradients or even a pure Gauss-Newton algorithm
could be used, and similar results would be expected. In this paper, only LM was tested.

The question that will immediately arise regarding the application of LM to the ICP prob-
lem is how the derivatives ofE may be computed. Indeed the requirement for first derivatives
might be seen as immediately disqualifyingE from LM optimization, given the discrete min-
imization overj within the summation. However, it will be seen in section 6 that in fact the
derivatives ofE may be easily and efficiently obtained, and that they are—or can be made—
smooth. For the moment, we shall assume they behave smoothly, and compute them via finite
differencing [17, 11], at a cost ofp extra function evaluations per inner loop. This means that
each iteration’s cost is increased by a factor of1 + p, for the simplest form of LM-ICP. How-
ever, in typical cases, where LM requires fewer iterations to achieve a certain accuracy, this
factor is an upper bound. In many cases, the reduction in number of iterations will exceed the
increase in per-iteration cost. Finally, it must be emphasised that an implementer concerned
with speed should read section 6.

There now follows a derivation of the Levenberg-Marquardt algorithm. Readers who are
familiar with its operation may wish to skim this description in order to synchronize notation,
and proceed to the next section. The error functionE(a) can be written as the sum ofNd

residuals as follows:

E(a) =
Nd∑
i=1

E2
i (a), Ei(a) =

√
wi min

j
ε
(∣∣ mj − T (a;di)

∣∣)
An important concept in the derivation of LM will be the vector of residualse(a) = {Ei(a)}Nd

i=1

so thatE(a) = ‖e(a)‖2.
The Levenberg-Marquardt algorithm combines the gradient descent and Gauss-Newton

approaches to function minimization. Using the notation above, the goal at each iteration is to
choose an update to the current estimateak, sayx, so that settingak+1 = ak + x reduces the
errorE(a). ExpandingE(a + x) arounda, we obtain

E(a + x) = E(a) + (∇E(a) · x) +
1
2!

((∇2E(a) · x) · x) + h.o.t.



Expressing this in terms ofe, we have

E(a) = e>e

∇E(a) = 2(∇e)>e

∇2E(a) = 2(∇2e)e + 2(∇e)>∇e

We shall denote theNd × p Jacobianmatrix∇e by J , with ijth entryJij = ∂Ei

∂aj
. Introducing

the Gauss-Newton approximation [17], i.e. neglecting(∇2e)e, we arrive at

E(a + x) ≈ e>e + x>J>e + x>J>Jx

The task at each iteration is to determine a stepx which will minimize E(a + x). Using the
approximation toE which we have just derived, we differentiate with respect tox and equate
with zero, yielding

∇xE(a + x) = J>e + J>Jx = 0

solving this equation forx yields the Gauss-Newton update, and gives the algorithm for one
iteration of Gauss-Newton ICP:

1. Compute the vector of residualse(ak), and itsNd × p matrix of derivativesJ with re-
spect to the components ofa. (For a 2D rigid-body transformation,a has 3 components,
andJ is Nd × 3).

2. Compute the updatex = −(J>J)−1J>e.

3. Setak+1 = ak + x.

Of course, the above strategy does not guarantee that the step taken will result in a reduced
error atE(ak+1). Whether or not it does so depends on the accuracy of the second-order Tay-
lor series expansion atak, and on the validity of the Gauss-Newton approximation. However,
it can be shown that when these approximations are good, as they tend to be when near the
minimum, convergence is rapid and reliable.

By comparison, an accelerated gradient descent approach as used by some previous regis-
tration algorithms [1, 7, 18] is obtained by replacing step 2 with

2. Compute the updatex = −λ−1J>e.

where the value ofλ controls the distance travelled along the gradient direction. For small
λ, the iteration moves a long way along the downhill direction; largeλ implies a short step.
In contrast to Gauss-Newton, gradient descent does guarantee to reduceE, providing λ is
sufficiently large. However, its convergence near the optimum is dismally slow.

The Levenberg-Marquardt algorithm combines both updates in a relatively simple way in
order to achieve good performance in all regions. Step 2 is replaced by

2. Compute the updatex = −(J>J + λI )−1J>e.

Now largeλ corresponds to small, safe, gradient-descent steps, while smallλ allows fast
convergence near the minimum. The art of a good Levenberg-Marquardt implementation
is in tuning λ after each iteration to ensure rapid progress even where the Gauss-Newton
approximations are poor. Details of such strategies may be found in [14, 17].

We have therefore derived this paper’s first proposal, the LM-ICP algorithm, summarised
in Figure 2.



functiona = lmicp ( {mj}Nm
j=1, {di}Nd

i=1, a0 )
Setλ to an initial value —see Press[17], p.684
Seta = a0

repeat
Computeek = e(a) —One closest-point computation
ComputeJ —p closest-point computations
Modify λ until ak = a− (J>J + λI )−1J>ek reduces the error‖e(ak)‖2.

—One or more closest-point computations
Seta = ak

until λ is large —So only a small gradient descent step reduced the error.

Figure 2: The basic LM-ICP algorithm. No data structure is implied for the closest point
computations, see§6 for a fast LM-ICP.

3 Previous work

Having defined the problem and thus introduced our notation, we are in a position to compare
existing work on point-set registration. Besl [1] introduced the name ICP, and provided enough
examples of the performance of the basic algorithm to ensure its enduring popularity.

Zhang [26] enhanced the basic technique by replacing the error functionε2
(∣∣ x

∣∣) = x2

by a robust kernel [10, 17]. Chen and Medioni [4] assume the model pointsmi can be supplied
with surface normalsni, which allows the point-to-point distance to be replaced by a point-to-
tangent plane. Both of these extensions confer improved convergence properties on the basic
algorithm without a significant increase in computational cost.

The problem of mulitple local minima has been addressed by using colour [13] and cur-
vature [8] properties to improve the correspondence step—points are allowed to match based
not just on proximity, but also on similarity of surface shape or texture. These extensions are
as easily included in this paper’s algorithm as in the original, but are not investigated here as
they would be expected to favour both old and new approaches equally. Extensions to non-
Euclidean and non-rigid registration [8, 20], replace the rigid-body computation in theT step
with more general parametrized transformations. Again, the modifications to LMICP which
would incorporate these extensions are straightforward.

The extensions to multiple-view reconstructions [7, 19] necessitated the introduction of
nonlinear optimization strategies, although these were essentially limited to variations on gra-
dient descent. Grimson [9] explicitly minimizesE(a) again using a nonlinear optimizer. How-
ever, the important distinction between these efforts and the current work is that they retain
lock-step: the separation of the correspondence and update steps, and the concomitant sluggish
convergence near the minimum.

The separation of correspondence and update remains true of EM-based approaches [15,
25, 5]. Although the correspondence is “soft”, it is still computed in a separate step, meaning
that there is no opportunity to simultaneously adjust correspondence and transform parame-
ters. In medical imaging problems [20, 25, 24], particularly the registration of MRI or CT
scans, explicit minimization over registration parameters is commonplace, as the problems
solved there (maximization of mutual information for example), do not admit a closed-form
optimization step. However, there the problems do not generally allow for the computation of
derivatives, so simple adaptation to 3D point-set registration would not yield the improvements
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Figure 3: (a) 2D Basins of convergence. Algorithms are initialised at one-degree intervals
between±120◦ of the true solution, and the value of the minimum is plotted as a function
of initial guess. LM-Huber is significantly wider than all others, at a cost of a factor of 2 in
number of iterations. (b) 3D Example. Top: Initial alignment for 3D registration. Bottom:
LM-Huber optimum.

shown in this paper.
The closest work to that reported here is the paper of Champlebouxet. al. [3], who use

Levenberg-Marquardt and the distance transform. However, the work assumes no outliers in
the data, reverting to an explicit lock-step in order to reject gross errors. However, for the
non-robust case, part of this paper’s contribution is the comparison of the Champleboux and
Besl approaches with the result that the former is found to be significantly faster and more
accurate.

4 Experiments: LM-ICP

In this section we compare the simplest case of point registration: minimizing the distance
between two pointsets where the data are almost entirely a subset of the model. This is the
case to which the simplest forms of ICP and LM-ICP apply. In this simple case, LM derivatives
are computed using finite differences, which means each LM iteration is a factor ofp more
expensive than the ICP iteration. However, in§6, this cost will disappear, so that iteration
counts are indeed the correct abscissae in this section.

The first experiment investigates the registration of 2D curves under Euclidean transfor-
mations. Figure 1 shows a section of an image of a book cover, with overlaid edge-detected
curves. The task is to register two curves. The curves to be registered were chosen from
different parts of the image in order to obtain a realistic variation in arc-length and sampling
artefacts. The curves were subjected to synthetic rotations in order to test the algorithms over
a range of initial conditions. Results are displayed graphically in figure 3. The summary of
these results is that LM-ICP has a slightly larger basin of convergence, and can find an op-



timum with slightly reduced error. The Levenberg-Marquardt algorithm requires 50% fewer
iterations on average, but unless speedups such as those in§6 are employed, this advantage
will be lost in the computation of finite-difference derivatives. Even in this case, it might
be thought surprising that the general-purpose Levenberg-Marquardt approach is even com-
parable with ICP’s closed-form inner optimization, and this is really the key message of this
paper.

The extension of the algorithm to 3D is extremely straightforward, and an example is
shown in figure 3b. Framesbun000 andbun090 of the Stanford “bunny” dataset [23] were
presented to LM-Huber (see§5), with the identity transformation as initial guess. ICP failed
to converge, while LM-Huber produced the visually correct solution in the figure.

5 Robust estimation

Many attempts have been made to widen the basin of convergence of the ICP algorithm, and
these largely amount to introducing robust estimation. This is difficult with standard ICP, as
no closed-form robust estimate of theT step is known, so authors have used either a nonlinear
or RANSAC-based estimator [26, 18, 22], or exclude (Winsorise) points with large errors at
the C step [3]. With LM-ICP, it is trivial to modify the error function to include a robust
kernel. One must take a little care to ensure that the Levenberg-Marquardt algorithm behaves
well if the kernel chosen is not smooth, but without going into the details, the examples here
use either of the following kernels

Lorentzian: ε(r) = log(1 +
r

σ

2
) or Huber: ε(r) =

{
r2 r < σ

2σ|r| − σ2 otherwise

LM-ICP using these kernels is compared against ICP with Winsorised residuals [3], as this is
the most common way of robustifying ICP. Figure 3 shows that LMICP with the Huber kernel
has a basin of convergence twice as large as that of Winsorised ICP.

6 Fast ICP using the distance transform

The distance transform [2] of a set of pointsM = {mj}Nm
j=1 is defined asD(x) = minj ‖mj − x‖

Algorithms exist for its computation on a discrete grid [2], which are extremely efficient, tak-
ing time which is a small constant number of machine instructions times the number of points
plus the resolution of the grid. In 3D, the signed distance transform is the preeminent data
structure for merging 3D models [12], meaning that it is readily available for the registration
step.

We can analogously define theε-distance transformDε by

Dε(x) = min
j

ε2
(∣∣ mj − x

∣∣) (3)

and if the mapping‖x‖ 7→ ε2
(∣∣ x

∣∣) is monotonic, we obtain thatDε(x) = ε2
(∣∣ D(x)

∣∣),
so that existing algorithms to computeD may be used to computeDε, without requiring
knowledge of the form ofε.
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Figure 4: Distance transformD(x, y) and derivatives. PrecomputingD and∇xD allows
fast computation of the errorE(a) and its derivatives∇aE within the Levenberg-Marquardt
iteration.

Now, the relationship between the distance transform and the registration problem is easily
noted. Combining equations (3) and (2) we obtain

E(a) =
Nd∑
i=1

wiDε(T (a;di))

Furthermore, we are now in a position to compute derivatives ofE. We compute a dis-
cretization ofD (see illustration, Figure 4a), from which we can immediately compute fi-
nite difference derivatives (figure 4a,b). Thus, we have ready access to∇xD, which re-
mains constant throughout the minimization. Application of the chain rule yields∇aE(a) =∑Nd

i=1 wi∇xDε(T (a;di))∇aT (a;di).
Implementation of 2D LMICP bilinearly interpolating a discrete distance transform re-

duced the elapsed time for registration (average in fig 3) from 13 seconds to 0.37 seconds
(MATLAB on a 650Mhz Pentium III). Traditional ICP can benefit from the distance trans-
form by storing, at each point, the integer label of the closest point rather than the point itself.
This makes each iteration of ICP almost exactly the same cost as those of LM-ICP—the time
taken to computeT is similar to the cost of the Levenberg-Marquardt update. However, in this
case, the Levenberg-Marquardt algorithm’s superior convergence means the overall runtime is
reduced.

7 Discussion

We propose that point-set registration is better performed using a general-purpose nonlinear
optimization procedure than via the popular ICP algorithm. The general-purpose routine is
faster, and much simpler to program. Because it is simpler to program, it may be enhanced
to incorporate robust estimation, without loss in speed. In contrast, standard ICP suffers a
significant speed penalty when robust metrics are introduced [22]. In fact, standard ICP cannot
minimize a robust kernel unless an iterative approach is used in theT step. This paper shows
that pulling the iteration outside bothC andT steps leads to a faster algorithm.

It can be shown, although it is omitted here, that LM-ICP must require, at worst,p times
as many function evaluations as regular ICP. In practice this limit was never met.

The more general conclusion of this work is that specialized algorithms such as ICP are
not always to be preferred to general-purpose techniques. This is true in this paper, and con-
curs with similar observations which have been made in neural network learning [16] and
photogrammetry [21]. MATLAB source code for the algorithm is available from [27].
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