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Abstract

This paper provides the best bounds to date on the number of randomly sampled entries required to reconstruct
an unknown low rank matrix. These results improve on prior work by Candès and Recht [4], Candès and Tao [7],
and Keshavan, Montanari, and Oh [18]. The reconstruction is accomplished by minimizing the nuclear norm, or
sum of the singular values, of the hidden matrix subject to agreement with the provided entries. If the underlying
matrix satisfies a certain incoherence condition, then the number of entries required is equal to a quadratic logarithmic
factor times the number of parameters in the singular value decomposition. The proof of this assertion is short, self
contained, and uses very elementary analysis. The novel techniques herein are based on recent work in quantum
information theory.

Keywords. Matrix completion, low-rank matrices, convex optimization, nuclear norm minimization, random
matrices, operator Chernoff bound, compressed sensing.

1 Introduction
Recovering a low rank matrix from a given subset of its entries is a recurring problem in collaborative filtering [25],
dimensionality reduction [20, 28], and multi-class learning [2, 22]. While a variety of heuristics have been devel-
oped across many disciplines, the general problem of finding the lowest rank matrix satisfying equality constraints
is NP-hard. All known algorithms which can compute the lowest rank solution for all instances require time at least
exponential in the dimensions of the matrix in both theory and practice [9].

In sharp contrast to such worst case pessimism, Candès and Recht showed that most low rank matrices could be
recovered from most sufficiently large sets of entries by computing the matrix of minimum nuclear norm that agreed
with the provided entries [4], and furthermore the revealed set of entries could comprise a vanishing fraction of the
entire matrix. The nuclear norm is equal to the sum of the singular values of a matrix and is the best convex lower
bound of the rank function on the set of matrices whose singular values are all bounded by 1. The intuition behind
this heuristic is that whereas the rank function counts the number of nonvanishing singular values, the nuclear norm
sums their amplitude, much like how the `1 norm is a useful surrogate for counting the number of nonzeros in a vector.
Moreover, the nuclear norm can be minimized subject to equality constraints via semidefinite programming.

Nuclear norm minimization had long been observed to produce very low-rank solutions in practice (see, for exam-
ple [3, 11, 12, 21, 26]), but only very recently was there any theoretical basis for when it produced the minimum rank
solution. The first paper to provide such foundations was [24], where Recht, Fazel, and Parrilo developed probabilistic
techniques to study average case behavior and showed that the nuclear norm heuristic could solve most instances of
the rank minimization problem assuming the number of linear constraints was sufficiently large. The results in [24] in-
spired a groundswell of interest in theoretical guarantees for rank minimization, and these results lay the foundation
for [4]. Candès and Recht’s bounds were subsequently improved by Candès and Tao [7] and Keshavan, Montanari,
and Oh [18] to show that one could, in special cases, reconstruct a low-rank matrix by observing a set of entries of size
at most a polylogarithmic factor larger than the intrinsic dimension of the variety of rank r matrices.
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This paper sharpens the results in [7,18] to provide a bound on the number of entries required to reconstruct a low
rank matrix which is optimal up to a small numerical constant and one logarithmic factor. The main theorem makes
minimal assumptions about the low rank matrix of interest. Moreover, the proof is very short and relies on mostly
elementary analysis.

In order to precisely state the main result, we need one definition. Candès and Recht observed that it is impossible
to recover a matrix which is equal to zero in nearly all of its entries unless all of the entries of the matrix are observed
(consider, for example, the rank one matrix which is equal to 1 in one entry and zeros everywhere else). In other
words, the matrix cannot be mostly equal to zero on the observed entries. This motivated the following definition

Definition 1.1 Let U be a subspace of Rn of dimension r and PU be the orthogonal projection onto U . Then the
coherence of U (vis-à-vis the standard basis (ei)) is defined to be

µ(U) ≡ n

r
max

1≤i≤n
‖PUei‖2. (1.1)

Note that for any subspace, the smallest µ(U) can be is 1, achieved, for example, if U is spanned by vectors whose
entries all have magnitude 1/

√
n. The largest possible value for µ(U) is n/r which would correspond to any subspace

that contains a standard basis element. If a matrix has row and column spaces with low coherence, then each entry can
be expected to provide about the same amount of information.

Recall that the nuclear norm of an n1×n2 matrix X is the sum of the singular values of X , ‖X‖∗ =
∑min{n1,n2}
k=1 σk(X),

where, here and below, σk(X) denotes the kth largest singular value of X . The main result of this paper is the fol-
lowing

Theorem 1.1 Let M be an n1 × n2 matrix of rank r with singular value decomposition UΣV ∗. Without loss of
generality, impose the conventions n1 ≤ n2, Σ is r × r, U is n1 × r and V is n2 × r. Assume that

A0 The row and column spaces have coherences bounded above by some positive µ0.

A1 The matrix UV ∗ has a maximum entry bounded by µ1

√
r/(n1n2) in absolute value for some positive µ1.

Suppose m entries of M are observed with locations sampled uniformly at random. Then if

m ≥ 32 max{µ2
1, µ0} r(n1 + n2) β log2(2n2) (1.2)

for some β > 1, the minimizer to the problem

minimize ‖X‖∗
subject to Xij = Mij (i, j) ∈ Ω. (1.3)

is unique and equal to M with probability at least 1− 6 log(n2)(n1 + n2)2−2β − n2−2β1/2

2 .

The assumptions A0 and A1 were introduced in [4]. Both µ0 and µ1 may depend on r, n1, or n2. Moreover,
note that µ1 ≤ µ0

√
r by the Cauchy-Schwarz inequality. As shown in [4], both subspaces selected from the uniform

distribution and spaces constructed as the span of singular vectors with bounded entries are not only incoherent with
the standard basis, but also obey A1 with high probability for values of µ1 at most logarithmic in n1 and/or n2.
Applying this theorem to the models studied in Section 2 of [4], we find that there is a numerical constant cu such
that cur(n1 + n2) log5(n2) entries are sufficient to reconstruct a rank r matrix whose row and column spaces are
sampled from the Haar measure on the Grassmann manifold. If r > log(n2), the number of entries can be reduced
to cur(n1 + n2) log4(n2). Similarly, there is a numerical constant ci such that ciµ2

0r(n1 + n2) log3(n2) entries are
sufficient to recover a matrix of arbitrary rank r whose singular vectors have entries with magnitudes bounded by√
µ0/n1.

Theorem 1.1 greatly improves upon prior results. First of all, it has the weakest assumptions on the matrix to be
recovered. In addition to assumption A1, Candès and Tao require a “strong incoherence condition” (see [7]) which is
considerably more restrictive than the assumption A0 in Theorem 1.1. Many of their results also require restrictions
on the rank of M , and their bounds depend superlinearly on µ0. Keshavan et al require the matrix rank to be no more
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than log(n2), and require bounds on the maximum magnitude of the entries in M and the ratios σ1(M)/σr(M) and
n2/n1. Theorem 1.1 makes no such assumptions about the rank, aspect ratio, nor condition number of M . Moreover,
(1.2) has a smaller log factor than [7], and features numerical constants that are both explicit and small.

Also note that there is not much room for improvement in the bound for m. It is a consequence of the coupon
collector’s problem that at least n2 log n2 uniformly sampled entries are necessary just to guarantee that at least one
entry in every row and column is observed with high probability. In addition, rank r matrices have r(n1 + n2 − r)
parameters, a fact that can be verified by counting the number of degrees of freedom in the singular value decompo-
sition. Interestingly, Candès and Tao showed that Cµ0n2r log(n2) entries were necessary for completion when the
entries are sampled uniformly at random [7]. Hence, (1.2) is optimal up to a small numerical constant times log(n2).

Most importantly, the proof of Theorem 1.1 is short and straightforward. Candès and Recht employed sophisti-
cated tools from the study of random variables on Banach spaces including decoupling tools and powerful moment
inequalities for the norms of random matrices. Candès and Tao rely on intricate moment calculations spanning over 30
pages. The present work only uses basic matrix analysis, elementary large deviation bounds, and a noncommutative
version of Bernstein’s Inequality proven here in the Appendix.

The proof of Theorem 1.1 is inspired by a recent paper in quanutm information which considered the problem
of reconstructing the density matrix of a quantum ensemble using as few measurements as possible [16]. Their work
adapted results from [4] and [5] to the quantum regime by using special algebraic properties of quantum measurements.
Their proof followed a methodology analogous to the approach of Candès and Recht but had two main differences:
they used a sampling with replacement model as a proxy for uniform sampling, and they deployed a powerful non-
commutative Chernoff bound developed by Ahlswede and Winter for use in quantum information theory [1]. In this
paper, I adapt these two strategies from [16] to the matrix completion problem. In section 3 I show how the sampling
with replacement model bounds probabilities in the uniform sampling model, and present very short proofs of some
of the main results in [4]. Surprisingly, this yields a simple proof of Theorem 1.1, provided in Section 4, which has
the least restrictive assumptions of any assertion proven thus far.

2 Preliminaries and notation
Before continuing, let us survey the notations used throughout the paper. I closely follow the conventions established
in [4], and invite the reader to consult this reference for a more thorough discussion of the matrix completion problem
and the associated convex geometry. A thorough introduction to the necessary matrix analysis used in this paper can
be found in [24].

Matrices are bold capital, vectors are bold lowercase and scalars or entries are not bold. For example, X is a
matrix, and Xij its (i, j)th entry. Likewise x is a vector, and xi its ith component. If uk ∈ Rn for 1 ≤ k ≤ d is
a collection of vectors, [u1, . . . ,ud] will denote the n × d matrix whose kth column is uk. ek will denote the kth
standard basis vector in Rd, equal to 1 in component k and 0 everywhere else. The dimension of ek will always be
clear from context. X∗ and x∗ denote the transpose of matrices X and vectors x respectively.

A variety of norms on matrices will be discussed. The spectral norm of a matrix is denoted by ‖X‖. The Euclidean
inner product between two matrices is 〈X,Y 〉 = Tr(X∗Y ), and the corresponding Euclidean norm, called the
Frobenius or Hilbert-Schmidt norm, is denoted ‖X‖F . That is, ‖X‖F = 〈X,X〉1/2. The nuclear norm of a matrix
X is ‖X‖∗. The maximum entry of X (in absolute value) is denoted by ‖X‖∞ ≡ maxij |Xij |. For vectors, the only
norm applied is the usual Euclidean `2 norm, simply denoted as ‖x‖.

Linear transformations that act on matrices will be denoted by calligraphic letters. In particular, the identity
operator will be denoted by I. The spectral norm (the top singular value) of such an operator will be denoted by
‖A‖ = supX:‖X‖F≤1 ‖A(X)‖F .

Fix once and for all a matrix M obeying the assumptions of Theorem 1.1. Let uk (respectively vk) denote the kth
column of U (respectively V ). Set U ≡ span (u1, . . . ,ur), and V ≡ span (v1, . . . ,vr). Also assume, without loss
of generality, that n1 ≤ n2. It is convenient to introduce the orthogonal decomposition Rn1×n2 = T ⊕ T⊥ where T
is the linear space spanned by elements of the form uky

∗ and xv∗k, 1 ≤ k ≤ r, where x and y are arbitrary, and T⊥

is its orthogonal complement. T⊥ is the subspace of matrices spanned by the family (xy∗), where x (respectively y)
is any vector orthogonal to U (respectively V ).
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The orthogonal projection PT onto T is given by

PT (Z) = PUZ + ZPV − PUZPV , (2.1)

where PU and PV are the orthogonal projections onto U and V respectively. Note here that while PU and PV are
matrices, PT is a linear operator mapping matrices to matrices. The orthogonal projection onto T⊥ is given by

PT⊥(Z) = (I − PT )(Z) = (In1 − PU )Z(In2 − PV )

where Id denotes the d× d identity matrix. It follows from the definition (2.1) of PT that

PT (eae∗b) = (PUea)e∗b + ea(PV eb)∗ − (PUea)(PV eb)∗.

This gives
‖PT (eae∗b)‖2F = 〈PT (eae∗b), eae

∗
b〉 = ‖PUea‖2 + ‖PV eb‖2 − ‖PUea‖2 ‖PV eb‖2 .

Since ‖PUea‖2 ≤ µ(U)r/n1 and ‖PV eb‖2 ≤ µ(V )r/n2,

‖PT (eae∗b)‖2F ≤ max{µ(U), µ(V )}rn1 + n2

n1n2
≤ µ0r

n1 + n2

n1n2
(2.2)

I will make frequent use of this calculation throughout the sequel.

3 Sampling with Replacement
As discussed above, the main contribution of this work is an analysis of uniformly sampled sets of entries via the study
of a sampling with replacement model. All of the previous work [4, 7, 18] studied a Bernoulli sampling model as a
proxy for uniform sampling. There, each entry was revealed independently with probability equal to p. In all of these
results, the theorem statements concerned sampling sets of m entries uniformly, but it was shown that probability
of failure under Bernoulli sampling with p = m

n1n2
closely approximated the probability of failure under uniform

sampling. The present work will analyze the situation where each entry index is sampled independently from the
uniform distribution on {1, . . . , n1} × {1, . . . , n2}. This modification of the sampling model gives rise to all of the
simplifications below.

It would appear that sampling with replacement is not suitable for analyzing matrix completion as one might
encounter duplicate entries. However, just as is the case with Bernoulli sampling, bounding the likelihood of error
when sampling with replacement allows us to bound the probability of the nuclear norm heuristic failing under uniform
sampling.

Proposition 3.1 The probability that the nuclear norm heuristic fails when the set of observed entries is sampled
uniformly from the collection of sets of size m is less than or equal to the probability that the heuristic fails when m
entries are sampled independently with replacement.

Proof The proof follows the argument in Section II.C of [6]. Let Ω′ be a collection of m entries, each sampled
independently from the uniform distribution on {1, . . . , n1} × {1, . . . , n2}. Let Ωk denote a set of entries of size k
sampled uniformly from all collections of entries of size k. It follows that

P(Failure(Ω′)) =
m∑
k=0

P (Failure(Ω′) | |Ω′| = k)P (|Ω′| = k)

=
m∑
k=0

P (Failure(Ωk))P (|Ω′| = k)

≥ P (Failure(Ωm))
m∑
k=0

P (|Ω′| = k) = P (Failure(Ωm)) .
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Where the inequality follows because P (Failure(Ωm)) ≥ P (Failure(Ωm′)) if m ≤ m′. That is, the probability
decreases as the number of entries revealed is increased.

Surprisingly, changing the sampling model makes most of the theorems from [4] simple consequences of a non-
commutative variant of Bernstein’s Inequality.

Theorem 3.2 (Noncommutative Bernstein Inequality) Let X1, . . . ,XL be independent zero-mean random matri-
ces of dimension d1 × d2. Suppose ρ2

k = max{‖E[XkX
∗
k ]‖, ‖E[X∗kXk]‖} and ‖Xk‖ ≤ M almost surely for all k.

Then for any τ > 0,

P

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥ > τ

]
≤ (d1 + d2) exp

(
−τ2/2∑L

k=1 ρ
2
k +Mτ/3

)
.

Note that in the case that d1 = d2 = 1, this is precisely the two sided version of the standard Bernstein In-
equality. When the Xk are diagonal, this bound is the same as applying the standard Bernstein Inequality and a
union bound to the diagonal of the matrix summation. Furthermore, observe that the right hand side is less than
(d1 + d2) exp(− 3

8τ
2/(
∑L
k=1 ρ

2
k)) as long as τ ≤ 1

M

∑L
k=1 ρ

2
k. This condensed form of the inequality will be used

exclusively throughout. Theorem 3.2 is a corollary of an Chernoff bound for finite dimensional operators developed
by Ahlswede and Winter [1]. A similar inequality for symmetric i.i.d. matrices is proposed in [16]. The proof is
provided in the Appendix.

Let us now record two theorems, proven for the Bernoulli model in [4], that admit very simple proofs in the
sampling with replacement model. The theorem statements requires some additional notation. Let Ω = {(ak, bk)}lk=1

be a collection of indices sampled uniformly with replacement. SetRΩ to be the operator

RΩ(Z) =
|Ω|∑
k=1

〈eak
e∗bk

,Z〉eak
e∗bk

.

Note that the (i, j)th component of RΩ(X) is zero unless (i, j) ∈ Ω. For (i, j) ∈ Ω, RΩ(X) is equal to Xij times
the multiplicity of (i, j) ∈ Ω. Unlike in previous work on matrix completion, RΩ is not a projection operator if there
are duplicates in Ω. Nonetheless, this does not adversely affect the argument, andRΩ(X) = 0 if and only if Xab = 0
for all (a, b) ∈ Ω. Moreover, we can show that the maximum duplication of any entry is always less than 8

3 log(n2)
with very high probability.

Proposition 3.3 With probability at least 1−n2−2β
2 , the maximum number of repetitions of any entry in Ω is less than

8
3β log(n2) for n2 ≥ 9 and β > 1.

Proof This assertion can be proven by applying a standard Chernoff bound for the Bernoulli distribution. Note that for
a fixed entry, the probability it is sampled more than t times is equal to the probability of more than t heads occurring
in a sequence of m tosses where the probability of a head is 1

n1n2
. This probability can be upper bounded by

P[more than t heads in m trials] ≤
(

m

n1n2t

)t
exp

(
t− m

n1n2

)
(see [17], for example). Applying the union bound over all of the n1n2 entries and the fact that m

n1n2
< 1, we have

P[any entry is selected more than 8
3β log(n2) times] ≤ n1n2

(
8
3β log(n2)

)− 8
3β log(n2) exp

(
8
3β log(n2)

)
≤ n2−2β

2

when n2 ≥ 9.

This application of the Chernoff bound is very crude, and much tighter bounds can be derived using more careful
analysis. For example in [15], the maximum oversampling is shown to be bounded byO( log(n2)

log log(n2) ). For our purposes
here, the loose upper bound provided by Proposition 3.3 will be more than sufficient.

In addition to this bound on the norm of RΩ, the following theorem asserts that the operator PTRΩPT is also
very close to an isometry on T if the number of sampled entries is sufficiently large. This result is analgous to the
Theorem 4.1 in [4] for the Bernoulli model, whose proof uses several powerful theorems from the study of probability
in Banach spaces. Here, one only needs to compute a few low order moments and then apply Theorem 3.2.
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Theorem 3.4 Suppose Ω is a set of entries of size m sampled independently and uniformly with replacement. Then
for all β > 1,

n1n2

m

∥∥∥∥PTRΩPT −
m

n1n2
PT
∥∥∥∥ ≤

√
16µ0r(n1 + n2)β log(n2)

3m

with probability at least 1− 2n2−2β
2 provided that m > 16

3 µ0r(n1 + n2)β log(n2).

Proof Decompose any matrix Z as Z =
∑
ab〈Z, eae∗b〉eae∗b so that

PT (Z) =
∑
ab

〈PT (Z), eae∗b〉eae∗b =
∑
ab

〈Z,PT (eae∗b)〉eae∗b . (3.1)

For k = 1, . . . ,m sample (ak, bk) from {1, . . . , n1} × {1, . . . , n2} uniformly with replacement. Then RΩPT (Z) =∑m
k=1 〈Z,PT (eak

e∗bk
)〉 eak

e∗bk
which gives

(PTRΩPT )(Z) =
m∑
k=1

〈Z,PT (eak
e∗bk

)〉 PT (eak
e∗bk

).

Now the fact that the operator PTRΩPT does not deviate from its expected value

E(PTRΩPT ) = PT (ERΩ)PT = PT (
m

n1n2
I)PT =

m

n1n2
PT

in the spectral norm can be proven using the Noncommutative Bernstein Inequality.
To proceed, define the operator Tab which maps Z to 〈PT (eae∗b),Z〉PT (eae∗b). This operator is rank one, has

operator norm ‖Tab‖ = ‖PT (eae∗b)‖2F , and we have PT =
∑
a,b Tab by (3.1). Hence, for k = 1, . . . ,m, E[Takbk

] =
1

n1n2
PT .

Observe that if A and B are positive semidefinite, we have ‖A −B‖ ≤ max{‖A‖, ‖B‖}. Using this fact, we
can compute the bound

‖Takbk
− 1

n1n2
PT ‖ ≤ max{‖PT (eak

e∗bk
)‖2F , 1

n1n2
} ≤ µ0r

n1 + n2

n1n2
,

where the final inequality follows from (2.2). We also have

‖E[(Takbk
− 1

n1n2
PT )2]‖ = ‖E[‖PT (eak

e∗bk
)‖2FTakbk

]− 1
n2

1n
2
2

PT ]‖

≤ max{‖E[‖PT (eak
e∗bk

)‖2FTakbk
]‖, 1

n2
1n

2
2

}

≤ max{‖E[Takbk
]‖µ0r

n1 + n2

n1n2
,

1
n2

1n
2
2

} ≤ µ0r
n1 + n2

n2
1n

2
2

The theorem now follows by applying the Noncommutative Bernstein Inequality.

The next theorem is an analog of Theorem 6.3 in [4] or Lemma 3.2 in [18]. This theorem asserts that for a fixed
matrix, if one sets all of the entries not in Ω to zero it remains close to a multiple of the original matrix in the operator
norm.

Theorem 3.5 Suppose Ω is a set of entries of size m sampled independently and uniformly with replacement and let
Z be a fixed n1 × n2 matrix. Assume without loss of generality that n1 ≤ n2, Then for all β > 1,

∥∥∥(n1n2

m
RΩ − I

)
(Z)

∥∥∥ ≤√8βn1n2
2 log(n1 + n2)

3m
‖Z‖∞

with probability at least 1− (n1 + n2)1−β provided that m > 6βn1 log(n1 + n2).
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Proof First observe that the operator norm can be upper bounded by a multiple of the matrix infinity norm

‖Z‖ = sup
‖x‖=1
‖y‖=1

∑
a,b

Zabyaxb ≤

∑
a,b

Z2
aby

2
a

1/2∑
a,b

x2
b

1/2

≤
√
n2 max

a

(∑
b

Z2
ab

)1/2

≤
√
n1n2‖Z‖∞

Note that n1n2
m RΩ(Z)−Z = 1

m

∑m
k=1 n1n2Zakbk

eak
e∗bk
−Z. This is a sum of zero-mean random matrices, and

‖n1n2Zakbk
eak

e∗bk
−Z‖ ≤ ‖n1n2Zakbk

eak
e∗bk
‖+ ‖Z‖ < 3

2n1n2‖Z‖∞ for n1 ≥ 2. We also have

∥∥E [(n1n2Zakbk
eak

e∗bk
−Z)∗(n1n2Zakbk

eak
e∗bk
−Z)

]∥∥ =

∥∥∥∥∥∥n1n2

∑
c,d

Z2
cdede

∗
d −Z∗Z

∥∥∥∥∥∥
≤ max


∥∥∥∥∥∥n1n2

∑
c,d

Z2
cdede

∗
d

∥∥∥∥∥∥ , ‖Z∗Z‖


≤ n1n
2
2‖Z‖2∞

where we again use the fact that ‖A−B‖ ≤ max{‖A‖, ‖B‖} for positive semidefinite A and B. A similar calcula-
tion holds for (n1n2Zakbk

eak
e∗bk
−Z)(n1n2Zakbk

eak
e∗bk
−Z)∗. The theorem now follows by the Noncommutative

Bernstein Inequality.

Finally, the following Lemma is required to prove Theorem 1.1. Succinctly, it says that for a fixed matrix in T , the
operator PTRΩ does not increase the matrix infinity norm.

Lemma 3.6 Suppose Ω is a set of entries of size m sampled independently and uniformly with replacement and let
Z ∈ T be a fixed n1 × n2 matrix. Assume without loss of generality that n1 ≤ n2. Then for all β > 2,∥∥∥n1n2

m
PTRΩ(Z)−Z

∥∥∥
∞
≤
√

8βµ0r(n1 + n2) log n2

3m
‖Z‖∞

with probability at least 1− 2n2−β
2 provided that m > 8

3βµ0r(n1 + n2) log n2.

Proof This lemma can be proven using the standard Bernstein Inequality. For each matrix index (c, d), sample (a, b)
uniformly at random to define the random variable ξcd = 〈ece∗d, n1n2〈eae∗b ,Z〉PT (eae∗b)−Z〉. We have E[ξcd] = 0,
|ξcd| ≤ µ0r(n1 + n2)‖Z‖∞, and

E[ξ2
cd] =

1
n1n2

∑
a,b

〈ece∗d, n1n2〈eae∗b ,Z〉PT (eae∗b)−Z〉2

= n1n2

∑
a,b

〈PT (ece∗d), eae
∗
b〉2〈eae∗b ,Z〉2 − Z2

cd

≤ n1n2‖PT (ece∗d)‖2F ‖Z‖2∞ ≤ µ0r(n1 + n2)‖Z‖2∞ .

Since the (c, d) entry of n1n2
m PTRΩ(Z)−Z is identically distributed to 1

m

∑m
k=1 ξ

(k)
cd , where ξ(k)

cd are i.i.d. copies of
ξcd, we have by Bernstein’s Inequality and the union bound:

Pr

[∥∥∥n1n2

m
PTRΩ(Z)−Z

∥∥∥
∞
>

√
8βµ0r(n1 + n2) log(n2)

3m
‖Z‖∞

]
≤ 2n1n2 exp(−β log(n2)) ≤ 2n2−β

2 .
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4 Proof of Theorem 1.1
The proof follows the program developed in [16] which itself adapted the strategy proposed in [4]. The main idea is
to approximate a dual feasible solution of (1.3) which certifies that M is the unique minimum nuclear norm solution.
In [4] such a certificate was constructed via an infinite series using a construction developed in the compressed sensing
literature [6, 13]. The terms in this series were then analyzed individually using the decoupling inequalities of de la
Peña and Montgomery-Smith [10]. Truncating the infinite series after 4 terms gave their result. In [7], the authors
bounded the contribution of O(log(n2)) terms in this series using intensive combinatorial analysis of each term. The
insight in [16] was that, when sampling observations with replacement, a dual feasible solution could be closely
approximated by a modified series where each term involved the product of independent random variables. This
change in the sampling model allows one to avoid decoupling inequalities and gives rise to the dramatic simplification
here.

To proceed, recall again that by Proposition 3.1 it suffices to consider the scenario when the entries are sampled
independently and uniformly with replacement. I will first develop the main argument of the proof assuming many
conditions hold with high probability. The proof is completed by subsequently bounding probability that all of these
events hold. Suppose that

n1n2

m

∥∥∥∥PTRΩPT −
m

n1n2
PT
∥∥∥∥ ≤ 1

2
, ‖RΩ‖ ≤ 8

3β
1/2 log(n2) . (4.1)

Also suppose there exists a Y in the range ofRΩ such that

‖PT (Y )−UV ∗‖F ≤
√

r

2n2
, ‖PT⊥(Y )‖ < 1

2
(4.2)

If (4.1) holds, then for any Z ∈ kerRΩ, PT (Z) cannot be too large. Indeed, we have

0 = ‖RΩ(Z)‖F ≥ ‖RΩPT (Z)‖F − ‖RΩPT⊥(Z)‖F .

Now observe that

‖RΩPT (Z)‖2F = 〈Z,PTR2
ΩPT (Z)〉 ≥ 〈Z,PTRΩPT (Z)〉 ≥ m

2n1n2
‖PT (Z)‖2F

and ‖RΩPT⊥(Z)‖F ≤ 8
3β

1/2 log(n2)‖PT⊥(Z)‖F . Collecting these facts gives that for any Z ∈ kerRΩ,

‖PT⊥(Z)‖F ≥
√

9m
128βn1n2 log2(n2)

‖PT (Z)‖F >
√

2r
n2
‖PT (Z)‖F .

Now recall that ‖A‖∗ = sup‖B‖≤1〈A,B〉. For Z ∈ kerRΩ, pick U⊥ and V⊥ such that [U ,U⊥] and [V ,V⊥] are
unitary matrices and that 〈U⊥V ∗⊥ ,PT⊥(Z)〉 = ‖PT⊥(Z)‖∗. Then it follows that

‖M + Z‖∗ ≥ 〈UV ∗ + U⊥V ∗⊥ ,M + Z〉
= ‖M‖∗ + 〈UV ∗ + U⊥V ∗⊥ ,Z〉
= ‖M‖∗ + 〈UV ∗ − PT (Y ),PT (Z)〉+ 〈U⊥V ∗⊥ − PT⊥(Y ),PT⊥(Z)〉

> ‖M‖∗ −
√

r

2n2
‖PT (Z)‖F +

1
2
‖PT⊥(Z)‖∗ ≥ ‖M‖∗ .

The first inequality holds from the variational characterization of the nuclear norm. We also used the fact that 〈Y ,Z〉 =
0 for all Z ∈ kerRΩ. Thus, if a Y exists obeying (4.2), we have that for any X obeying RΩ(X −M) = 0,
‖X‖∗ > ‖M‖∗. That is, any if X has Mab = Xab for all (a, b) ∈ Ω, X has strictly larger nuclear norm than M ,
and hence M is the unique minimizer of (1.3). The remainder of the proof shows that such a Y exists with high
probability.
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To this end, partition 1, . . . ,m into p partitions of size q. By assumption, we may choose

q ≥ 128
3

max{µ0, µ
2
1}r(n1 + n2)β log(n1 + n2) and p ≥ 3

4
log(2n2) .

Let Ωj denote the set of indices corresponding to the jth partition. Note that each of these partitions are independent
of one another when the indices are sampled with replacement. Assume that

n1n2

q

∥∥∥∥PTRΩk
PT −

q

n1n2
PT
∥∥∥∥ ≤ 1

2
(4.3)

for all k. Define W0 = UV ∗ and set Yk = n1n2
q

∑k
j=1RΩj

(Wj−1), Wk = UV ∗−PT (Yk) for k = 1, . . . , p. Then

‖Wk‖F =
∥∥∥∥Wk−1 −

n1n2

q
PTRΩk

(Wk−1)
∥∥∥∥
F

=
∥∥∥∥(PT −

n1n2

q
PTRΩk

PT )(Wk−1)
∥∥∥∥
F

≤ 1
2
‖Wk−1‖F ,

and it follows that ‖Wk‖F ≤ 2−k‖W0‖F = 2−k
√
r. Since p ≥ 3

4 log(2n2) ≥ 1
2 log2(2n2) = log2

√
2n2, then

Y = Yp will satisfy the first inequality of (4.2). Also suppose that∥∥∥∥Wk−1 −
n1n2

q
PTRΩk

(Wk−1)
∥∥∥∥
∞
≤ 1

2
‖Wk−1‖∞ (4.4)

∥∥∥∥(n1n2

q
RΩj

− I
)

(Wj−1)
∥∥∥∥ ≤

√
8n1n2

2β log(n1 + n2)
3q

‖Wj−1‖∞ (4.5)

for k = 1, . . . , p.
To see that ‖PT⊥(Yp)‖ ≤ 1

2 when (4.4) and (4.5) hold, observe ‖Wk‖∞ ≤ 2−k‖UV ∗‖∞, and it follows that

‖PT⊥Yp‖ ≤
p∑
j=1

‖n1n2
q PT⊥RΩj Wj−1‖

=
p∑
j=1

‖PT⊥(n1n2
q RΩj

Wj−1 −Wj−1)‖

≤
p∑
j=1

‖(n1n2
q RΩj − I)(Wj−1)‖

≤
p∑
j=1

√
8n1n2

2 β log(n1 + n2)
3q

‖Wj−1‖∞

= 2
p∑
j=1

2−j
√

8n1n2
2 β log(n1 + n2)

3q
‖UV ∗‖∞ <

√
32µ2

1rn2 β log(n1 + n2)
3q

< 1/2

since q > 128
3 µ2

1rn2β log(n1 + n2). The first inequality follows from the triangle inequality. The second line follows
because Wj−1 ∈ T for all j. The third line follows because, for any Z,

‖PT⊥(Z)‖ = ‖(In1 − PU )Z(In2 − PV )‖ ≤ ‖Z‖ .

The fourth line applies (4.5). The next line follows from (4.4). The final line follows from the assumption A1.
All that remains is to bound the probability that all of the invoked events hold. With m satisfying the bound in

the main theorem statement, the first inequality in (4.1) fails to hold with probability at most 2n2−2β
2 by Theorem 3.4,

and the second inequality fails to hold with probability at most n2−2β1/2

2 by Proposition 3.3. For all k, (4.3) fails to
hold with probability at most 2n2−2β

2 , (4.4) fails to hold with probability at most 2n2−2β
2 , and (4.5) fails to hold with

probability at most (n1 + n2)1−2β . Summing these all together, all of the events hold with probability at least

1− 6 log(n2)(n1 + n2)2−2β − n2−2β1/2

2

by the union bound. This completes the proof.
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5 Discussion and Conclusions
The results proven here are nearly optimal, but small improvements can possibly be made. The numerical constant
32 in the statement of the theorem may be reducible by more clever bookkeeping, and it may be possible to derive
a linear dependence on the logarithm of the matrix dimensions. But further reduction is not possible because of the
necessary conditions provided by Candès and Tao. One minor improvement that could be made would be to remove
the assumption A1. For instance, while µ1 is known to be small in most of the models of low rank matrices that have
been analyzed, no one has shown that an assumption of the form A1 is necessary for completion. Nonetheless, all
prior results on matrix completion have imposed an assumption like A1 [4, 7, 18], and it would be interesting to see if
it can be removed as a requirement, or if it is somehow necessary.

Surprisingly, the simplicity of the argument presented here mostly arises from the abandonment of Bernoulli
sampling in favor of sampling with replacement. It would be of interest to review results investigating noise robustness
of matrix completion [5, 19] or deconvolution of sparse and low rank matrices [8] to see if results can be improved
by appealing to sampling with replacement. Furthermore, since much of the work on rank minimization and matrix
completion borrows tools from the compressed sensing community, it is of interest to revisit this related body of work
and to see if proofs can be simplified or bounds can be improved there as well. The noncommutative versions of
Chernoff and Bernstein’ s Inequalities may be useful throughout machine learning and statistical signal processing,
and a fruitful line of inquiry would examine how to apply these tools from quantum information to the study of
classical signals and systems.
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A Operator Chernoff Bounds
In this section, I present a proof of 3.2, and also provide new proofs of some probability bounds from quantum
information theory. To review, a symmetric matrix A is positive semidefinite if all of its eigenvalues are nonnegative.
If A and B are positive semidefinite matrices, A � B means B −A is positive semidefinite. For square matrices A,
the matrix exponential will be denoted exp(A) and is given by the power series

exp(A) =
∞∑
k=0

Ak

k!

The following theorem is a generalization of Markov’s inequality originally proven in [1]. My proof closely
follows the standard proof of the traditional Markov inequality, and does not rely on discrete summations.

Theorem A.1 (Operator Markov Inequality [1]) Let X be a random positive semidefinite matrix and A a fixed
positive definite matrix. Then

P [X 6� A] ≤ Tr(E[X]A−1)
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Proof Note that if X 6� A, then A−1/2XA−1/2 6� I , and hence ‖A−1/2XA−1/2‖ > 1. Let IX 6�A denote the
indicator of the event X 6� A. Then IX 6�A ≤ Tr(A−1/2XA−1/2) as the right hand side is always nonnegative, and,
if the left hand side equals 1, the trace of the right hand side must exceed the norm of the right hand side which is
greater than 1. Thus we have

P[X 6� A] = E[IX 6�A] ≤ E[Tr(A−1/2XA−1/2)] = Tr(E[X]A−1) .

where the last equality follows from the linearity and cyclic properties of the trace.

Next I will derive a noncommutative version of the Chernoff bound. This was also proven in [1] for i.i.d. matrices.
The version stated here is more general in that the random matrices need not be identically distributed, but the proof
is essentially the same.

Theorem A.2 (Noncommutative Chernoff Bound) Let X1, . . . ,Xn be independent symmetric random matrices in
Rd×d. Let A be an arbitrary symmetric matrix. Then for any invertible d× d matrix T

P

[
n∑
k=1

Xk 6� nA

]
≤ d

n∏
k=1

‖E[exp(TXkT ∗ − TAT ∗)]‖

Proof The proof relies on an estimate from statistical physics which is stated here without proof.

Lemma A.3 (Golden-Thompson inequality [14, 27]) For any symmetric matrices A and B,

Tr(exp(A + B)) ≤ Tr((exp A)(exp B)) .

Much like the proof of the standard Chernoff bound, the theorem now follows from a long chain of inequalities.

P

[
n∑
k=1

Xk 6� nA

]
= P

[
n∑
k=1

(Xk −A) 6� 0

]

= P

[
n∑
k=1

T (Xk −A)T ∗ 6� 0

]

= P

[
exp

(
n∑
k=1

T (Xk −A)T ∗
)
6� Id

]

≤ Tr

(
E

[
exp

(
n∑
k=1

T (Xk −A)T ∗
)])

= E

[
Tr

(
exp

(
n∑
k=1

T (Xk −A)T ∗
))]

≤ E

[
Tr

(
exp

(
n−1∑
k=1

T (Xk −A)T ∗
)

exp (T (Xn −A)T ∗)

)]

≤ E1,...,n−1

[
Tr

(
exp

(
n−1∑
k=1

T (Xk −A)T ∗
)

E[exp (T (Xn −A)T ∗)]

)]

≤ ‖E[exp (T (Xn −A)T ∗)]‖E1,...,n−1

[
Tr

(
exp

(
n−1∑
k=1

T (Xk −A)T ∗
))]

≤
n∏
k=2

‖E[exp (T (Xk −A)T ∗)]‖E [Tr (exp (T (X1 −A)T ∗))]

≤ d
n∏
k=1

‖E[exp (T (Xk −A)T ∗)]‖

12



Here, the first three lines follow from standard properties of the semidefinite ordering. The fourth line invokes the
Operator Markov Inequality. The sixth line follows from the Golden-Thompson inequality. The seventh line follows
from independence of the Xk. The eighth line follows because for positive definite matrices Tr(AB) ≤ Tr(A)‖B‖.
This is just another statement of the duality between the nuclear and operator norms. The ninth line iteratively repeats
the previous two steps. The final line follows because for a positive definite matrix A, Tr(A) is the sum of the
eigenvalues of A, and all of the eigenvalues are at most ‖A‖.

Let us now turn to proving the Noncommutative Bernstein Inequality presented in Section 3. The authors in [16]
proposed a similar inequality for symmetric i.i.d. random matrices with a slightly worse constant. The proof here is
more general and follows the standard derivation of Bernstein’s inequality.
Proof [of Theorem 3.2] Set

Yk =
[

0 Xk

X∗k 0

]
Then Yk are symmetric random variables, and for all k

‖E[Y 2
k ]‖ =

∥∥∥∥E [[ XkX
∗
k 0

0 X∗kXk

]]∥∥∥∥ = max{‖E[XkX
∗
k ]‖, ‖E[X∗kXk]‖} = ρ2

k .

Moreover, the maximum singular value of
∑L
k=1 Xk is equal to the maximum eigenvalue of

∑L
k=1 Yk. By Theo-

rem A.2, we have for all λ > 0

P

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥ > Lt

]
= P

[
L∑
k=1

Yk 6� LtI

]
≤ (d1 + d2) exp(−Lλt)

L∏
k=1

‖E[exp(λYk)]‖ .

For each k, let Yk = UkΛkU
∗
k be an eigenvalue decomposition, where Λk is the diagonal matrix of the eigenvalues

of Yk. In turn, it follows that for s > 0

−MsY 2
k � −UkM

sΛ2
kU
∗
k � UkΛ2+s

k U∗k = Y 2+s
k � UkM

sΛ2
kU
∗
k �MsY 2

k ,

which then implies
‖E[Y s+2

k ]‖ ≤Ms‖E[Y 2
k ]‖ . (A.1)

For fixed k, we have

‖E[exp(λYk)]‖ ≤ ‖I‖+
∞∑
j=2

λj

j!
‖E[Y j

k ]‖

≤ 1 +
∞∑
j=2

λj

j!
‖E[Y 2

k ]‖M j−2

= 1 +
ρ2
k

M2

∞∑
j=2

λj

j!
M j = 1 +

ρ2
k

M2
(exp(λM)− 1− λM)

≤ exp
(
ρ2
k

M2
(exp(λM)− 1− λM)

)
.

The first inequality follows from the triangle inequality and the fact that E[Yk] = 0, the second inequality follows
from (A.1), and the final inequality follows from the fact that 1 + x ≤ exp(x) for all x. Putting this together gives

P

[∥∥∥∥∥
L∑
k=1

Xk

∥∥∥∥∥ > Lt

]
≤ (d1 + d2) exp

(
−λLt+

∑L
k=1 ρ

2
k

M2
(exp(λM)− 1− λM)

)
.

This final expression is now just a real number, and only has to be minimized as a function of λ. The theorem now
follows by algebraic manipulation: the right hand side is minimized by setting λ = 1

M log(1 + tLMPL
k=1 ρ

2
k

), then basic
approximations can be employed to complete the argument (see, for example [23], lectures 4 and 5).
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