
Real-Time SLAM Relocalisation

Brian Williams, Georg Klein and Ian Reid

Department of Engineering Science, University of Oxford, UK

{bpw,gk,ian}@robots.ox.ac.uk

Abstract

Monocular SLAM has the potential to turn inexpensive

cameras into powerful pose sensors for applications such

as robotics and augmented reality. However, current imple-

mentations lack the robustness required to be useful outside

laboratory conditions: blur, sudden motion and occlusion

all cause tracking to fail and corrupt the map. Here we

present a system which automatically detects and recovers

from tracking failure while preserving map integrity. By ex-

tending recent advances in keypoint recognition the system

can quickly resume tracking – i.e. within a single frame time

of 33ms – using any of the features previously stored in the

map. Extensive tests show that the system can reliably gen-

erate maps for long sequences even in the presence of fre-

quent tracking failure.

1. Introduction

Real-time visual tracking can be used to estimate the 6-

DOF pose of a camera relative to its surroundings. This

is attractive for applications such as mobile robotics and

Augmented Reality (AR) because cameras are small and

self-contained and therefore easy to attach to autonomous

robots or AR displays. Further, they are cheap, and are now

often pre-integrated into mobile computing devices such as

PDAs, phones and laptops.

Real-time camera pose tracking works best when some

form of map or model of the environment to be tracked is al-

ready available. However, it is also possible to generate this

map on the fly: in this context, the problem is known as Si-

multaneous Localisation and Mapping (SLAM) and a real-

time (30fps) monocular SLAM implementation was first de-

scribed by Davison (recently summarised in [3]).

The main problem with most existing monocular SLAM

implementations is a lack of robustness. Typically tracking

systems rely on a prior over current pose and this prior is

used to limit the search for visual feature correspondences,

yielding very rapid frame-to-frame localisation. However,

rapid camera motions, occlusion, and motion blur (phe-

nomena which are common in all but the most constrained

experimental settings) violate the assumptions in the prior

and therefore can often cause tracking to fail. While this

is inconvenient with any tracking system, tracking failure

is particularly problematic for SLAM systems: not only is

camera pose lost, but the estimated map could become cor-

rupted as well.

The alternative to “tracking” is repeated, data-driven de-

tection of pose, potentially requiring no prior on the pose.

This of course assumes that the map (or target structure)

has already been acquired. [10] demonstrated real-time re-

peated detection of pose via a forest of fast classifiers used

to establish correspondence between image and target fea-

tures. Their tracker is robust to many of the failure modes

of monoSLAM since pose is re-estimated from scratch at

every frame. Their system requires the structure of the tar-

get and its appearance (encoded as point features with asso-

ciated image patches) to be trained before localisation can

occur. This training process is automatic, nevertheless their

work falls short of being truly a simultaneous localisation

and mapping system. Furthermore the smoothness and ac-

curacy of tracking do not approach those of the state-of-the-

art visual SLAM systems.

Our work combines these two ideas, using a motion prior

when this is reliable, yielding smooth and very fast map-

ping, but resorting to data-driven localisation when track-

ing is detected to have failed. The SLAM system learns the

structure of the environment while a novel extension of Lep-

etit’s image patch classifier learns the appearance of image

patches, used for re-localisation when tracking fails.

Our system is characterised by:

• real-time, high-accuracy localisation and mapping dur-

ing tracking

• real-time (re-)localisation when when tracking fails

• on-line learning of image patch appearance so that no

prior training or map structure is required and features

are added and removed during operation.

resulting in a state-of-the-art SLAM system whose robust-

ness greatly exceeds that of others (eg, [3]). We demonstrate

this by operating the system reliably for significantly longer

1

periods and in larger environments than any previous work

in real-time monoSLAM.

In order to achieve these gains we do not simply repro-

duce [10] in conjunction with SLAM (though the difficulty

in doing so should not be underestimated). Rather we de-

scribe novel extensions to their approach to feature appear-

ance learning that are crucial in reducing the learning and

classification times, and the memory requirements without

compromising the frame-rate operation of the underlying

SLAM system or the ability of the classifier to differenti-

ate between features. Further we show the classifier more

closely integrated into the process of map-building, by us-

ing classification results to aid in the selection of new points

to add to the map. We provide extensive results demonstrat-

ing the efficacy and reliability of the new system.

2. Related Work

Recovery from tracking failure is important not only for

SLAM systems, and a number of different attempts at im-

proving robustness have recently been presented. These

range from very local methods which attempt to bridge

tracking failure during a few frames to methods which at-

tempt a global recovery.

Chekhlov et al. have built two systems which can bridge

short tracking failures in a monocular SLAM context. This

was first done by exploring multiple hypotheses with a par-

ticle filter [11] and later by using a rich feature descriptor

to provide robust data association [2]. Both of these meth-

ods are local in that they rely on the point of recovery being

close to the point of failure.

In a known-model-tracking context, Reitmayr [13] is

able to recover from tracking failure using keyframes gath-

ered previously during tracking. After failure, the current

camera view is compared to a store of previously gathered

key-frames and a close match provides an initial pose esti-

mate from which tracking can recommence. This approach

can recover from the proximity of a finite section of the pre-

viously traversed path, but also does not offer global relo-

calisation; by contrast, Rahimi [12] uses a larger number

of key frames to close loops and prevent drift in structure-

from-motion, but this technique is costly as the pose of each

key-frame must be maintained in the estimation.

We desire a more global approach to relocalisation us-

ing the map created rather than just key frames. The closest

approach to ours is [15] who achieves global relocalisation

for a robot moving in 2D. They find matches to image fea-

tures with map features using SIFT and find the pose using

RANSAC or a hough transform.

This paper builds on our previos work [16]. The main

improvement here is the feature recognition which is now

faster, more invariant and supports on-line learning.

3. SLAM Implementation

The underlying SLAM system we use is based on Davi-

son’s monocular SLAM implementation “SceneLib” [3]

with a number of improvements that make it close to the

state-of-the-art for such systems. At the core is a proba-

bilistic representation of the world map and the pose of the

camera maintained by an Extended Kalman Filter (the dis-

tributions are thus assumed to be Gaussian). Like [3] we in-

corporate rotational (and a degree of perspective) invariance

via local patch warping, but we make a more naive assump-

tion that the patch is fronto-parallel when first seen. This

gives sufficient invariance to all but extreme distortions.

It is vitally important to maintain the integrity of the map

if the system is to use it for tracking and relocalisation. Dur-

ing normal tracking operation we use active search to es-

tablish image-to-map correspondences: an association for

a map feature is only sought in the vicinity of where that

feature is predicted to lie. The region to search is given by

the innovation covariance of that feature; i.e. it takes into

account the uncertainties in the map, the camera pose and

the expected measurement uncertainty. Since our distribu-

tions are assumed Gaussian, a typical search window at 3σ

will be elliptical in the image. Like [4], we confine the ac-

tive search in the ellipses to the neighbourhood of corners

produced by the “FAST” corner detector [14].

Though the search regions are in fact strongly corre-

lated (through the camera pose uncertainty), each corre-

spondence is treated independently. This can lead to mutu-

ally incompatible matches being incorporated by the filter,

and consequent corruption of the map. To mitigate further

against this we employ the joint compatibility test proposed

by Neira and Tardós [8]. Given a set of putative matches be-

tween image observations and features in a correlated map,

this test determines the maximal set of pairwise compatible

matches using an interpretation tree search, thus allowing

straightforward exclusion of incorrect matches.

The whole procedure – image acquisition, filter predic-

tion, patch pre-warping, active search and joint compatibil-

ity, and filter update – typically takes 5ms (out of a total

budget of 33ms for frame-rate operation) on a Core 2 Duo

2.7GHz machine for a map of 30 features.

In Davison’s system, the remaining CPU cycles were

used to search for and initialise new features. A window is

placed in the image in a semi-random location (regions with

few current features and which are “coming into view” are

favoured). Corner locations are detected and the strongest

in the window selected for addition to the map. We insert

such features directly into our map parametrised by the vi-

sual direction and inverse depth, similar to [7] with a large

uncertainty on the latter. However we do not simply take the

strongest feature; rather we take advantage of the discrimi-

natory powers of the randomised lists classifier to choose a

feature unlike existing ones in the map (see Section 4.3).

12 Classes

Randomised Tree of Depth 3 8 Full Posteriors

Input Patch

Q
4

1

0

Q
1

1

0

1

0

Q

1

0

Q

Q
5

6

7

0

1

1

0

1

0

Q
2

Q
3

Figure 1: A Randomised Tree as described in [6]

The active search process is a major strength of this sys-

tem, enabling real-time mapping and localisation within a

probabilistic framework. However it is also a weakness,

since tracking will fail as soon as the map features are not

detected within the search regions. This regularly happens

when there are sudden motions, or if motion blur means the

image is temporarily unusable for point feature detection.

Indeed it is important to detect such moments so that in-

correct data associations are not inadvertently accepted and

filtered, thus corrupting the map. In our system, tracking

is deemed to have failed when all of the attempted obser-

vations in a frame have been unsuccessful, the camera pose

uncertainty has grown too large, or if the predicted camera

view does not contain any mapped features.

It is the recovery from such situations that is the main

focus of this paper. The system aims to relocalise relative

to the map it has created, but first it must detect some of

these mapped features in the image. Active search can no

longer be used since the camera pose is unknown. Instead,

we search the entire image, seeking matches between fea-

tures detected in the image and those stored in the map. To

make this process fast and effective we use the randomised

lists key-point recognition algorithm.

4. Feature Recognition with Randomised Lists

We now describe the algorithm for map feature recogni-

tion that is key to achieving rapid correspondence between

the current image and the map. We begin by reviewing the

work of [6], and then describe a number of modifications

that yield a classifier better suited to our needs.

4.1. The implementation of Lepetit & Fua

Lepetit and Fua employ randomised trees of simple im-

age tests rapidly to detect re-occurrences of previously

trained image patches in a new input image. The system

12 Classes

5 00 0001 00 1001
Input Patch

Randomised List of Length 3

0

1

2

3

4

6

7

1 1100 11 101

00 0010 10 100

01 0100 10 011

00 0010 11 010

01 1000 00 100

1010 00 101

1110 00 011

1

1

1

0

0

0

0 0

01

1

0

1 0 1 (=5)

8 Binary Score Lists

3
Q’

21
Q’Q’

Figure 2: The simplified classifier structure used here

can detect re-occurrences even in the presence of image

noise, changes in scale, rotations, aspect ratio and illumina-

tion changes. The novelty of the system is to treat real-time

feature recognition as a classification problem, where each

class is trained with (ideally) all the different appearances a

single feature can take due to aforementioned changes. The

classification approach allows the use of a simple classifier

which can be evaluated quickly; a disadvantage is the re-

quirement to train many instances of every class.

At the center of the system is a forest of N decision

trees. A single simplified tree of depth D=3 is illustrated

in Figure 1. Each tree maps an input image patch to one

of 2D posterior distributions (the leaves of the tree) which

describe the probability of the patch belonging to one of

C=12 previously trained feature classes.1 The mapping is

the result of a series of simple binary tests Q which make

the tree’s nodes: each test Q simply compares the patch’s

Gaussian-smoothed intensity values Iσ(·) at two pixel loca-

tions a and b, such that

Qi =

{

0 Iσ(ai) − Iσ(bi) >= 0
1 otherwise

. (1)

Once the patch’s posterior probability for every tree has

been estimated, the class whose sum of posteriors is great-

est forms the classification result (subject to a threshold.)

While each individual tree may itself be a rather poor clas-

sifier, the combination of N trees’ posteriors yields good

recognition results. The posterior distributions themselves

are built during a training phase; hundreds or thousands of

patches belonging to each known class are simply dropped

down each tree and the associated posterior is incremented.

Training patches are either synthetically generated by warp-

ing ([6]) or harvested from a carefully controlled training

video sequence ([10]) with the aim of teaching the trees all

possible views of a class.

One of the key results in [6] concerns the selection of the

locations {a, b}. During a training phase, these may be cho-

sen from a small random set so as to maximise each test’s

information gain (in accordance with [1]); alternatively they

can be chosen entirely randomly, which results in a small

1In an actual implementation, reasonable values for these parameters

might be N=40, D=15 and C=100-1000.

drop in classification performance but massively reduces the

time required for training.

4.2. Randomised Lists for SLAM recovery

Lepetit and Fua originally applied the classifier de-

scribed above to the recognition and localisation of known

textured objects (e.g., a book) for which the classifier could

be trained once with hundreds of optimally chosen classes

and then re-used many times. In our monocular SLAM

setting, in which the goal to the build a map and localise

simultaneously, a separate training phase would be a self-

defeating exercise. This means that the binary tests Qi must

be pre-selected at random.

If the tests are random, it is not necessary for the tests at

any one level of a tree to be different. Instead of a tree with

2D − 1 potential tests, a list of D sequential tests is suffi-

cient, and produces identical classification performance (In-

deed, Ozuysal et al. have independently developed this ap-

proach and further improvements in their most recent work

[9]). The results of these tests form a binary string which

indexes into the array of 2D posteriors. Using the list struc-

ture allows for significant improvements in run-time speed

(for example, we can replace patch rotation with a look-up-

table of pre-rotated tests.)

Besides this structural change, we also make changes to

the operating characteristics of the classifier; whereas the

systems of Lepetit and Fua operate with many dozens or

hundreds of keypoints visible per frame, our SLAM imple-

mentation uses a far sparser set of features: At any given

frame, only 10 − 20 might be visible. For this reason,

it is important to tune the classifier towards recall rather

than precision, and this motivates further changes. We also

propose some tweaks to boost efficiency and classification

rates. The modified classifier is illustrated in Figure 2 and

the changes are described below.

Multiple Hypotheses and Class Independence - For an

extended exploration, it is unrealistic to assume that all map

features will appear completely unique. Due to perspec-

tive and lighting changes - and self-similarities common in

man-made environments - some map features will resem-

ble one another. The method of Lepetit and Fua penalises

such cases: only the strongest match is returned, and since

posteriors are normalised, the presence of multiple simi-

lar features penalises the score of all of them, sometimes

to the extent that none is recognised. Here, we consider

each class’ score independently and the classifier returns all

classes scoring higher than a threshold. The independent

treatment of classes has the further benefit that the classifi-

cation rate of any one class is not affected by the later addi-

tion of other classes, which is very important for a system

which is continually trained on-line.

Binary Leaf Scores - Instead of storing full normalised

posterior distributions over the classes at each leaf, we store

a binary score string of one bit per class. A class’ score at

a leaf is either zero (if no training example from that class

ever found the leaf) or one (if at least one training example

did.) The benefit of this approach is a reduction in storage

requirements (2D ×C ×N bits for all scores) which allows

operation with higher values of D.

Intensity Offset Tests - In man-made environments, im-

age areas of uniform intensity are common. For regions of

uniform color, tests of the form “is this pixel brighter than

the other” only measure image noise. We replace tests Qi

with modified tests Q′

i
:

Q′

i
=

{

0 Iσ(ai) − Iσ(bi) >= zi

1 otherwise
(2)

where zi is a randomly chosen intensity offset in the range

0-20. These tests increase repeatability in areas of the patch

with uniform intensity. The slight reduction in illumination

invariance is in practice mitigated by feature harvesting.

Explicit noise handling during training - In [6], ran-

dom noise is added to training examples to make the clas-

sifier noise-resistant. This is not done here; instead, during

training, we explicitly check if each training test Q′

i
is close

to a noise threshold. If this is a case, the ith bit of the bi-

nary string being formed is set to a “don’t care” state. When

the full string is formed, the scores for all possible values

of the string are updated for the class (this is made possible

by using lists instead of trees.) This reduces the number of

training patches required to achieve noise tolerance, which

is important for real-time operation.

4.3. Training the Classifier

The classifier must be trained to recognise each new fea-

ture that is added to the map during “steady-state” SLAM

operation. When the feature is first observed we train the

classifier with 400 synthetically warped versions of the fea-

ture so that it can immediately be recognised under a vari-

ety of views. We use a GPU to perform the warps. Even

so this initial training is costly at around 30ms per new fea-

ture; so that this does not adversely affect the real-time per-

formance of the SLAM system, it is performed in a back-

ground thread. Further, we can in some cases reduce the

number of warps performed: with our binary posterior rep-

resentation, there is no benefit in incrementing a class pos-

terior more than once, so we can stop training once a large

fraction (95%) of warped examples re-visit previously seen

posterior nodes.

This relatively crude initial training stage is subsequently

reinforced using real data harvested [10] during normal

SLAM operation: when a map feature is successfully ob-

served by the SLAM system, the classifier is also trained

with this new view of the feature.

To improve the distinctiveness of the features in the map,

the classifier aids in the selection of new map features.

When the system is initialising a new map feature it is usu-

ally faced with a choice of potential features in the image.

Rather than simply take the one with the strongest corner

response as in [3], each candidate corner is instead first clas-

sified with the current randomised lists classifier. The sys-

tem then chooses to initialise the feature that scores lowest

against all other features already in the map. This leads to a

map of features which are more easily discriminated.

5. Relocalisation Using the Randomised Lists

Classifier

When the SLAM system has become lost, the ran-

domised lists classifier is used on each new frame to gen-

erate a list of feature correspondence hypotheses detected

in the image. We then apply the well-known method of Fis-

chler and Bolles to relocalise the camera relative to the map

using three feature correspondences and their three-point-

pose algorithm [5]. Consensus for each calculated pose is

evaluated by checking how well that pose predicts the lo-

cation of the image projection for the other map features.

When a good pose is found, it is optimized using the con-

sensus set before the SLAM system is reinitialised with it.

The consensus set is also used to derive an initial (artificially

inflated) camera pose uncertainty. If the pose estimate is in-

deed close enough to the true estimate then one or two iter-

ations of the EKF (with the map fixed to avoid corruption if

the pose is not correct) are sufficient to refine the pose and

to reduce the uncertainty dramatically.

To increase RANSAC performance, we make some effort

to select sets of three matches in a way which increases the

chances obtaining three inliers. This is done by assigning a

probability to each feature correspondence returned by the

classifier: these weights are determined by a combination

of a motion model and a set of match scoring heuristics.

The motion model considered when the camera is lost is

different from that used when tracking: instead of a constant

velocity model with white noise acceleration, we consider

a random walk with a maximal linear velocity of 1.5 m/s

(walking speed) and an arbitrarily high rotational velocity.

This predicts that the camera is within a steadily expand-

ing sphere centered about its last know position and that it

could be oriented in any direction. Feature correspondences

returned by the classifier are filtered by potential visibility:

features which could not be visible from any point in the

sphere are given zero weight. Thus, our system switches

seamlessly from an efficient local relocalisation immedi-

ately after tracking is lost, to a global kidnapped-robot relo-

calisation after a few seconds have elapsed.

We further apply a set of match scoring heuristics:

matches with low classification scores are penalised, as are

classes which occur many times in the image. We further re-

ject match triplets which are colinear or very close together

in the image as these produce poor pose estimates. We also

check match triplets against a co-visibility database main-

tained by the SLAM system: sets of matches which have

never been observed together in a single image are culled.

This check prevents attempting to calculate a pose using

three features from distant parts of the map which are un-

likely all be correct. Together, these measures help to re-

duce the number of RANSAC trials required for successful

re-initialisation.

6. Results

6.1. Classifier Implementation

This section describes the performance impact of the

classifier design choices described in Section 4.2. Two tests

were performed on a controlled 2300-frame SLAM run dur-

ing which a map of 70 features was built without tracking

failure. The tracked feature positions are considered ground

truth for classifier evaluations at every frame. Classes were

trained using synthetic warps only; no harvesting was per-

formed since this would inflate the classifiers’ performance

under the slow-moving conditions tested. We set the oper-

ating point of the classifier to 0.65 recall (65% of the known

features visible in the image are detected) and test how our

changes affect the classifier’s precision (the fraction of re-

turned matches which are actually inliers.)

Leaf node type Depth Memory Use Precision

Full Posterior 18 1321 MB .12

Full Posterior 15 164 MB .07

Binary Score 18 164 MB .09

Table 1: Binary vs. full posterior classifier performance

Table 1 demonstrates the effect of using a binary leaf

score list instead of a full posterior (with 8 bits per class

in our implementation.) As may be expected, simplyfing

the posterior to a binary score reduces classification per-

formance for equal tree depths; however the binary score

outperforms the full posterior when using the same mem-

ory footprint, since a larger depth can be used. Using the

binary score further reduces classification times and elimi-

nates an otherwise problematic tuning constant (the uniform

prior distribution density.)

Intensity Offset Test Don’t-care-bit Precision

No No .07

No Yes .03

Yes No .08

Yes Yes .09

Table 2: Performance impact of classifier modifications

Table 2 illustrates the effect of the other classifier adapta-

tions on classification rates. The use of intensity offsets to-

gether with the explicit training of all image noise permuta-

tions produce a noticeable increase in performance at a neg-

ligible increase in classification time. It is interesting to note

that the noise-aware training by itself (without the intensity-

offset tests) reduces classification performance: this is due

to the frequent occurrence of areas of uniform intensity in

many of the patches used; the use of don’t-care bits in these

areas causes them to match any input image patch.

It should be noted that the low precision scores in above

tables are are obtained without any feature harvesting. If

this is enabled, precision increases from 0.09 to 0.2, and

the actual value encountered during real-world relocalisa-

tion likely lies between these two. Finally, the heuristic

guided sampling criteria described in Section 5 help boost

inlier rates to a level normally manageable by RANSAC.

6.2. SLAM with Recovery

By recovering after tracking failure, our monoSLAM

system is able to complete sequences which would be very

challenging (or probably even impossible) for other similar

systems. The system is easily able to detect when tracking

fails and then stop the SLAM system to preserve map in-

tegrity. Tracking and mapping are only resumed when the

system relocalises again using previously mapped features.

Given the ability to re-initialise rapidly and often, we can

afford to tune our system to be much more cautious than

previous monoSLAM systems. Thus there are times when

tracking is stopped due to failed observations when dead

reckoning according to the motion model might otherwise

actually carry it through. However, the predicted camera

poses in such cases are not likely to be accurate and as likely

error grows, so do linearisation errors and the the possibility

of poor data association. Our system simply restarts track-

ing and avoids these potential sources of map corruption.

To demonstrate our system’s mapping and relocalisation

operation we include a video sequence tracked on a lap-

top in an art gallery. The camera moves along two walls

of paintings. Several times during this run, tracking is lost

when the camera is suddenly pointed at the floor. The sys-

tem is able to detect all of these occasions, correctly stops

mapping, and does not attempt to resume mapping until the

camera once again points at one of the walls which were

previously mapped, whereupon relocalisation occurs within

1-2 frames. Figure 3 shows the map of 80 features and tra-

jectory for the run. The first relocalisation is annotated in

the map, numbered to match the images on the right.

To evaluate the reliability of the system, it was run for

over an hour (>100,000 frames) in an open-plan office envi-

ronment. The map generated contained 70 features. Despite

erratic camera motion and hundreds of tracking failures, the

map was not corrupted and was still consistent enough 30

minutes into the sequence to enable a panning loop closure.

Although the volume of space traversed by the camera was

small compared to the size of the environment, this is purely

due to unresolved limitations in the underlying SLAM sys-

tem (no support for occlusions and N2 complexity in map

size for the EKF.) Relocalisation was consistently success-

ful until the arrival of co-workers changed the environment

(our current map management policies do not scale well to

sequences of this length.)

Corner detection (found 145 corners) 2 ms

Classification (found 42 matches) 12 ms

Selection of Match Triplets (chose 335) 0.3 ms

Evaluation of Poses (tried 14) 0.7 ms

Final Pose Optimisation 4 ms

Total 19 ms

Table 3: Typical relocalisation timings (map size 54)

Table 3 shows the time taken (on a Core 2 Duo 2.7GHz

processor) by the individual stages of a typical relocalisa-

tion with 54 features in the map. Here the classifier has

returned 42 matches of which 7 are inliers: RANSAC must

therefore find one of the 35 inlier triplets out of 11480 pos-

sible match triplets. In this run, 335 triplets were hypoth-

esised but most of these could be rejected before even at-

tempting three-point pose by testing for co-visibility and

image geometry; the three-point-pose algorithm was only

run on 14 hypotheses. In this case, a correct pose was pro-

duced in a total of 19ms.

Further system timings are shown in Figure 4; this plots

the processing time required per frame for another run of the

art gallery sequence. Each frame (including those during

which recovery is attempted) is processed in under 33ms;

this is possible for maps up to 80− 90 features, beyond this

the N2 EKF updates cause skipped frames. Black timing

values indicated frames during which the system was lost;

of these, those frames with low run-times are those in which

insufficient features were detected to attempt relocalisation.

Figure 5 investigates the volume of space in which relo-

calisation is possible. A small map was generated by mov-

ing the camera in a straight line away from an initialisation

sheet (top row of images). Mapping and harvesting were

then disabled, and the remaining images shows a range of

novel views from which the system can correctly relocalise.

Even with a significant range over which recovery should

be possible, there are still cases in which it can fail in prac-

tice. In order for the system to relocalise several conditions

must be met: Mapped features must be visible in the im-

age; the relative feature positions in 3D must be accurate;

the corner detector must detect a corner at the feature loca-

tion; finally, at least five correct matches to features must be

found by the classifier (three for the pose and two for con-

sensus). In practice, when recovery from a particular pose

is not possible, moving the camera a small distance in any

direction will often allow the system to succeed.

−4−3−2−10

−4

−3

−2

−1

0

1

2

1

3

Figure 3: The system relocalises when it is moved to another region of the map. On the left is an overhead view of the final

map (green 3σ ellipses) and trajectory estimate. Distances are in metres and the initialisation sheet is at the origin. The first

tracking failure (1b) and subsequent relocalisation (3) are numbered in the map and in the camera frames(right).

0 500 1000 1500

10

20

30

40

Frame Number

T
im

e
 (

m
s
)

0 500 1000 1500

20

40

60

80

M
a

p
 S

iz
e

 Map Size

Timing

Figure 4: Processing time for the art gallery sequence. The

system runs in real time as the map size increases to 80 fea-

tures. Frames where the system is lost are shown in black.

7. Discussion

7.1. Scalability

We have demonstrated relocalisation working well on

map sizes up to 80 features. Beyond this, the EKF update

time becomes the limiting factor in our SLAM implemen-

tation, both for tracking and for relocalisation. Although

there are good reasons for favouring EKF SLAM in many

applications, our relocalisation method is not tied to this ap-

proach and could be applied to other estimation algorithms

(e.g. FastSLAM 2.0) which can demonstrably support larger

map sizes in real time [4].

A larger number of map features inevitably results in a

larger number of candidate correspondences - and hence a

T
ra

ck
in

g
R

el
o

ca
li

si
n

g

Figure 5: Relocalisation from novel views. Here tracking

(and thus harvesting) was only performed along a short lin-

ear motion illustrated by the top row of images. This is

sufficient to allow relocalisation from the views shown in

the bottom row despite the difference in viewpoints.

smaller inlier fraction - for the relocaliser. Intelligent match

selection and fast rejection of sets of matches then become

increasingly important if the correct pose is to be found in

a reasonable time. To investigate how global relocalisation

scales with map size, we have run the system offline on a

pre-recorded outdoor sequence to generate a map with up to

200 features. Initial results indicate that although the num-

ber of hypothesised match triplets rejected by the early tests

(co-visibility, co-linearity) grows rapidly with map size, the

number of three-point-poses which need to be evaluated

grows only very slowly, and the mean time required for a

correct pose to be generated shows a linear growth with the

number of classifier matches. A more thorough evaluation

of the system’s scalability will become possible when we

can track large maps in real time.

7.2. Detection vs Tracking

Since the relocalisation method is able to recover the

camera pose at frame-rate with no prior information, one

may ask why one would bother with tracking. Timing alone

makes a persuasive case: for a map of 50 features, active

search typically takes only 0.5ms to establish correspon-

dences, while full relocalisation requires 19ms. Accuracy

is a second reason: in experiments comparing the position

estimates of localisation and tracking for every frame of

a sequence, we have consistently found SLAM poses to

be smoother and more accurate. To make the comparison

fairer, some form of pose refinement and filtering could be

introduced to smooth the results of the relocalisation algo-

rithm: but this is pretty much what the SLAM system does

anyway. Finally, we continually update the classifier with

new images of each patch being tracked; using this classi-

fier to track the patch in the next frame is the classic recipe

for feature drift! Here, the image patches used for tracking

are never modified and so feature drift is avoided, even with

continual training of the classifier.

8. Conclusion

This paper has presented a real-time monocular SLAM

system which can recover from the frame-to-frame tracking

failures which are inevitable in real-world operation. In-

stead of trying to avoid tracking failure altogether, the sys-

tem presented here automatically detects the failure, halts

the SLAM system, and begins relocalising instead. Map-

ping is only resumed when the camera pose has been rede-

termined, thus preserving map integrity.

Relocalisation is performed by first using a randomised

lists classifier to establish feature correspondences in the

image and then RANSAC to determine the pose robustly

from these correspondences. We have shown this method

to be reliable and fast for map sizes of up to 80 features, an

upper limit set by the SLAM system rather than the relocal-

isation algorithm. We have shown results from the system

running reliably in various scenarios, including for over an

hour during which time it has created a good map despite

frequent camera shake, sudden motion and occlusion.

While we would not claim that real-time monocular

SLAM is now ready for use outside the lab, the ability to

carry on mapping after a tracking glitch has dramatically

increased the usability of our experimental system: track-

ing failures for the most part just do not matter anymore

and the consequent ability to track long live sequences rou-

tinely will greatly facilitate investigations into a variety of

other SLAM problems.

9. Acknowledgements

This work was supported by the EPSRC through grants

GR/T24685, GR/S97774 and EP/D037077 and a stu-

dentship to BW. We are grateful for discussions with An-

drew Davison, David Murray and Tom Drummond, and to

the Ashmolean Museum for granting filming permission.

References

[1] Y. Amit and D. Geman. Shape quantization and recogni-

tion with randomized trees. Neural Computation, 9(7):1545–

1588, 1997.

[2] D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and A. Cal-

way. Real-time and robust monocular SLAM using predic-

tive multi-resolution descriptors. In Proc. 2nd International

Symposium on Visual Computing, November 2006.

[3] A. Davison, I. Reid, N. Molton, and O. Stasse. MonoSLAM:

Real-time single camera SLAM. IEEE Trans. Pattern Anal-

ysis and Machine Intelligence, 29(6):1052–1067, 2007.

[4] E. Eade and T. Drummond. Scalable monocular SLAM.

In Proc. IEEE Conference on Computer Vision and Pattern

Recognition, pages 469–476, 2006.

[5] M. A. Fischler and R. C. Bolles. RANdom SAmple Consen-

sus: A paradigm for model fitting with applications to image

analysis and automated cartography. Communications of the

ACM, 24(6):381–395, 1981.

[6] V. Lepetit and P. Fua. Keypoint recognition using random-

ized trees. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 28(9):1465–1479, 2006.

[7] J. M. M. Montiel, J. Civera, and A. J. Davison. Unified in-

verse depth parametrization for monocular SLAM. In Proc.

Robotics Science and Systems, 2006.

[8] J. Neira and J. D. Tardós. Data association in stochastic map-

ping using the joint compatibility test. In IEEE Transactions

on Robotics and Automation, pages 890–897, 2001.

[9] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition

in ten lines of code. In Proc. IEEE Conference on Computing

Vision and Pattern Recognition, 2007.

[10] M. Ozuysal, V. Lepetit, F. Fleuret, and P. Fua. Feature har-

vesting for tracking-by-detection. In Proc. European Con-

ference on Computer Vision, pages 592–605, 2006.

[11] M. Pupilli and A. Calway. Real-time camera tracking using

a particle filter. In Proc. British Machine Vision Conference,

pages 519–528, 2005.

[12] A. Rahimi, L. Morency, and T. Darrell. Reducing drift in

parametric motion tracking. In Proc. IEEE Conference on

Computer Vision, volume 1, pages 315–322, 2001.

[13] G. Reitmayr and T. Drummond. Going out: Robust model-

based tracking for outdoor augmented reality. In Proc. IEEE

International Symposium on Mixed and Augmented Reality,

pages 109–118, 2006.

[14] E. Rosten and T. Drummond. Fusing points and lines for high

performance tracking. In Proc. IEEE International Confer-

ence on Computer Vision, pages 1508–1511, 2005.

[15] S. Se, D. Lowe, and J. Little. Vision-based global localiza-

tion and mapping for mobile robots. IEEE Transactions on

Robotics, 21(3):364–375, 2005.

[16] B. Williams, P. Smith, and I. Reid. Automatic relocalisation

for a single-camera simultaneous localisation and mapping

system. In Proc. International Conference on Robotics and

Automation, 2007.

