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Abstract

This paper presents both the theory and the first
experimental results of a new method which allows
simultaneously estimating of the robot configura-
tion and the odometry error (both systematic and
non-systematic) during the mobile robot navigation.
The estimation of the non-systematic components
is carried out through an augmented Kalman filter
which estimates a state containing the robot config-
uration and the parameters characterizing the sys-
tematic component of the odometry error. It uses
encoder readings as inputs and the readings from a
laser range finder as observations. The estimation of
the non-systematic component is carried out through
another Kalman filter where the observations are ob-
tained by two subsequent robot configurations pro-
vided by the previous augmented Kalman filter.

Key Words: Robot Navigation, Kalman filter,
Odometry Learning

1 Introduction

Determining the odometry errors of a mobile robot
is very important both in order to reduce them, and
to know the accuracy of the state configuration esti-
mated by using encoder data.

Odometry errors can be both systematic and non-
systematic. In a series of papers Borenstein and col-
laborators [3, 4, 5, 6, 7, 8, 19] investigated on pos-
sible sources of both kind of errors. A review of all
the types of these sources is given in [8]. In the work
by Borenstein and Feng [7], a calibration technique
called UMBmark test has been developed to calibrate
for systematic errors of a mobile robot with a dif-
ferential drive. Larsen et al. [11, 12] suggested an
algorithm that uses the robot’s sensors to automati-
cally calibrate the robot as it operates. In particular,
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they introduced an augmented Kalman filter (AKF )
which simultaneously estimates the robot configura-
tion and the parameters characterizing the system-
atic odometry error. This filter uses encoder readings
as inputs and vision measurements as observations.
They referred to a mobile robot with a differential
drive system.

Many investigations have been carried out on the
odometry error from a theoretical point of view.
Wang [18] and Chong and Kleeman [9] analyzed the
non-systematic errors and computed the odometry
covariance matrix Q for special kind of the robot
trajectory. Kelly [10] presented the general solution
for linearized systematic error propagation for any
trajectory and any error model. Martinelli [14] de-
rived general formulas for the covariance matrix and
also suggested a strategy to estimate the model pa-
rameters for a mobile robot with a synchronous drive
system. This strategy is based on the evaluation of
the mean values of some quantities (called observ-
ables) which depend on the model parameters and
on the chosen robot motion.

In a recent work Martinelli and Siegwart [16] sug-
gested a method to estimate both systematic and
non-systematic odometry error of a mobile robot,
during navigation. Concerning the systematic com-
ponent, they adopted the same AKF introduced
by Larsen et al. [11, 12] by considering also the
case of a synchronous drive. Concerning the non-
systematic parameters, they introduced a new filter
(the Observable Filter, OF ) where the state to be es-
timated contains the parameters characterizing the
non-systematic error and the observations are pro-
vided by the observables as defined in [14] and which
can be evaluated by knowing two subsequent robot
configurations.

In this paper the new method [16] is empirically
validated by experimentation on a real differential
drive robot. In section 2 we introduce the model
here adopted to characterize the odometry error for
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a mobile robot with a differential drive. In section
3 we summarize the AKF introduced by Larsen et
al. [11, 12]. The OF is presented in section 4 and
discussed for the specific case implemented in the
experiments. In particular the influence on the ac-
curacy on the non-systematic parameter estimations
due to the error on the systematic error evaluation
is deeply investigated. In section 5 we show and dis-
cuss the experimental results obtained with the fully
autonomous robot Donald Duck. Finally, some con-
clusions are given in section 6

2 The odometry error model

A simple way to characterize the odometry error for
a mobile robot with a differential drive system is ob-
tained by modeling separately the error in the trans-
lation of each wheel [9]. The actual translation of
the right/left wheel related to the ith time step is
assumed to be a gaussian random variable satisfying
the following relation:

δρ
R/L
i = δρ

R/L

i + ν
R/L
i (1)

δρ
R/L

i = δρ
eR/L
i δR/L (2)

ν
R/L
i ∼ N(0, Kw|δρeR/L

i |) (3)

In other words, both δρR
i and δρL

i are assumed gaus-
sian random variables, whose mean values are given
by the encoder readings (respectively δρeR

i and δρeL
i )

corrected for the systematic errors (which are as-
sumed to increase linearly with the distance traveled
by each wheel), and whose variances also increase
linearly with the traveled distance. Moreover, it is
assumed that δρR

i and δρL
i are uncorrelated. With

respect to the Chong-Kleeman model, only one pa-
rameter (Kw) is here adopted to characterize both
the variances for the right and left wheel. The robot
translation and rotation are given by the following
relations:

δρi =
δρR

i + δρR
i

2
δθi =

δρR
i − δρL

i

dδd
(4)

where d is the estimated distance between the wheels
and δd characterizes the uncertainty on this estima-
tion. Clearly, the robot translation and rotation are
correlated accordingly to the equations (1-4). The
odometry error model here proposed is based on 4
parameters. Three ( δR, δL and δd) characterize the
systematic components whereas the last one (Kw)
characterizes the non-systematic components.

In section 3 and 4 we introduce the strategy to si-
multaneously estimate all these parameters during
the robot navigation.

3 Systematic Parameters Estimation
during Navigation

In order to estimate the parameters characterizing
the systematic error we adopt the same AKF in-
troduced by Larsen et al. [11, 12]. This filter esti-
mates a state (the augmented state) containing the
robot configuration and the systematic parameters,
through an extended Kalman filter (EKF ).

Let be X the robot configuration (X = [x, y, θ]T )
and Xa the augmented state. We have

Xa = [x, y, θ, δR, δL, δd]T (5)

The state X evolves accordingly to the dynamical
equation Xi+1 = f(Xi, Ui) where Ui = [δρR

i , δρL
i ]T .

The observation at the ith time step depends on the
current robot configuration and it is assumed to be
affected by an error wi with a gaussian distribution,
zero-mean and covariance matrix Ri =< wiw

T
i >

zi = h(Xi, wi) (6)

A simple example for this function is obtained by
define z as the vector containing all the distances
in several directions of observation from the robot
configuration towards the landmarks (e.g. straight
lines stored in a map a priori known). In this case the
function h characterizes the measurement prediction
of a laser range finder. In the experiments carried out
in our lab and discussed in section 5, this function
was not the previous one since, instead of using the
raw data, we extracted the straight lines from the
data (see also [1]).

The dynamical equation for the augmented state Xa

is given by the equation:

Xai+1 = fa(Xai, Ui) (7)

The function fa, restrictly to the first three compo-
nents, is obtained directly from the function f includ-
ing the dependence on the systematic parameters in
the input Ui; concerning the last three components
fa is the identity function since there is no evolution
in time for the error parameters.

In order to obtain the EKF equations for the aug-
mented state (i.e. the equations of the AKF ), it is
necessary to compute the Jacobian Fa of the func-
tion fa with respect to Xa and the Jacobian Ga of
the function fa with respect to the vector ν, which
is [νR, νL]T (eq. (3)):
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Fa = ∇Xafa|Xa(i|i),Ui
Ga = ∇νfa|Xa(i|i),Ui

where Xa(i|i) is the state estimated at the previous
time step and U i is the mean value of the vector Ui

previously defined. The computation of these matrix
can be found in [11, 12].

4 Non-Systematic Parameters Estima-
tion during navigation

The non-systematic parameter Kw cannot be evalu-
ated following the previous method. Indeed, by in-
cluding Kw in the augmented state, the Kalman gain
related to this parameter is null.

The OF suggested in [16] and here adopted is based
on the observables defined in [14]. The observables
are random variables related to a given robot motion
whose statistical properties (mean value and vari-
ance) depend on the parameters characterizing the
odometry error and on the robot trajectory in the
odometry reference frame. Moreover, it is possible
to evaluate the observable mean value only by know-
ing the actual initial and final configuration. These
actual configurations are directly estimated by the
AKF of above. The OF is an EKF whose esti-
mated state contains the non-systematic parameters
(in this case only the parameter Kw). Since the en-
vironment is assumed to be homogeneous and sta-
tionary the dynamical equation of this filter ([2, 13])
is the identity:

Kwi+j = fK(Kwi) = Kwi (8)

where we use i + j instead of i + 1 to remark that
the frequency of this second filter is not necessarily
the same of the previous one (AKF ).

The observational equation is the following:

zObs
i+j = mObs(Kwi+j) + wObs

i+j (9)

where zObs is the observable mean value as estimated
by the AKF , i.e. by knowing the robot configuration
at the time step ith and (i + j)th, mObs(Kw) is the
mean value of the observable analytically computed
by knowing the trajectory in the odometry frame,
and wObs is a zero-mean random variable whose co-
variance matrix contains both the covariance matrix
of the observable and the error on the robot config-
uration and on the systematic parameter estimation
(given by the matrix Pa(i|i) and Pa(i + j|i + j)),
since the observable mean value is estimated from
two subsequent robot configuration estimations ob-
tained from the AKF and these estimations are af-
fected by an error given by the matrix Pa. Observe

that zObs is an estimation of the observable mean
value obtained only through one realization of the
robot motion (since only one realization is obviously
available). For this reason it is very important to in-
clude in the covariance matrix of wObs the covariance
matrix of the observable.

Let ∆θa and ∆θo be the robot orientation change be-
tween the time i+ j and i, respectively estimated by
the AKF and the odometry corrected for the sys-
tematic errors by using the systematic parameters
estimated by the AKF at the (i + j)th. Finally, let
∆θ be the actual orientation change. The observable
we adopt here (which is the same adopted in [16] for
the differential drive) is:

zObs = (∆θa − ∆θo)
2 (10)

On the basis of the odometry error model introduced
in section 2 we obtain for the mean value and vari-
ance of this observable [17](we neglect the covariance
between the error on the robot orientation obtained
by the AKF and the error on the orientation ob-
tained with the odometry):

mObs(Kw) =
KwS

b2
+ σ2

θ + χ2 (11)

σ2
Obs = 2× (12)

×
[
σ4

θ +
K2

wS2

b4
+ 2χ2

(
σ2

θ +
KwS

b2

)
+ 2σ2

θ

KwS

b2

]

where:

• S = sR + sL, and sR and sL are the distances
traveled respectively by the right and left wheel,
between the time i and i+ j as estimated by the
odometry (i.e. sR/L =

∑i+j
k=i

∣∣∣δρeR/L
k

∣∣∣)
• b is the actual distance between the wheel,

namely b = δt
dd, where we denote with δt

R, δt
L

and δt
d the actual (unknown) values of the sys-

tematic parameters

• σ2
θ is the variance related to the robot ori-

entation estimated by the AKF , i.e. σ2
θ =

Pa(i|i)[3, 3] + Pa(i + j|i + j)[3, 3], since the ori-
entation is the third element in the augmented
state (eq.(5))

• χ takes into account the uncertainty on the sys-
tematic parameters and is explicitly given by the
following expression:

χ = χ(sR, sL) =

=
sR(δdδ

t
R − δt

dδR) − sL(δdδ
t
L − δt

dδL)
bδd

(13)
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In order to estimate Kw through the OF it is nec-
essary that the first term on the right side in the
equation (11) is larger than the other two. In partic-
ular, for the term χ2 we do not have any estimation
but we can only compute an over bound, obtaining:

χ2 ≤ ε2

(bδd)2
(|sR − sL| + S)2 = χ2

M (14)

where ε is the error on the systematic parameters
(nearly the same value for all of them). As we ex-
pected, the error on the systematic parameters (χ2)
affects the observable mean value with the square of
the traveled distance. On the other hand, the sec-
ond term on the right side of the equation (11) is
independent of the traveled distance. Finally, the
first term containing Kw, depends linearly on the
distance. Therefore, the best frequency for the OF
is fixed by requiring that the linear component is the
largest. Clearly, as showed in Fig 1b this requirement
could not be satisfied (e.g. when the value of Kw is
very small). The value of S0 showed in the figure
corresponds to the S where χ2

M = σ2
θ .

(a) (b)

Figure 1: The three components appearing in the
mean value expression (equation (11)) vs the distance
traveled by the robot between two subsequent OF up-
dates. In the case showed in (b) it is not possible to
estimate Kw for any S.

In the next section we show the experimental results
obtained by choosing the value of S0 in order to fix
the frequency of the OF .

5 Results

For the experiments, a fully autonomous mobile ve-
hicle has been used. Donald Duck (figure 2) is a
mobile robot with a differential drive. It is equipped
with wheel encoders, a 360 laser range finder and a
grey-level CCD camera (not used here). It is con-
nected via radio ethernet only for data visualization
via web and data logging for statistical purposes.

We performed two set of experiments. In each ex-
periment the robot moved along a distance of about
300m in our laboratory. The two set of experiments

Figure 2: The autonomous robot Donald Duck. Its
controller consists of a VME standard backplane with
a Motorola PowerPC 604 microprocessor clocked at
300 Mhz. Among its peripheral devices, the most
important are the wheel encoders, a 360 laser range
finder and a grey-level CCD camera (not used here).

differed because in one case we added on both the
robot wheels a small piece of tape in order to increase
slightly the wheel diameters and to test the accuracy
of the implemented AKF . In all the cases the OF
started to work only when the systematic parameter
errors, as estimated by the covariance matrix of the
AKF (Pa), were smaller than 5 10−4. This accuracy
was always achieved after about 100m.

Concerning the AKF , we set the initial covariance
matrix Pa as diagonal. Moreover, the variances cor-
responding to the systematic parameters were set
equal to (0.05)2 for all the three parameters. Fi-
nally, the initial values was fixed equal to 1.0 for all
of them.

Regarding the non-systematic parameter Kw, we set
in the most of the experiments, the initial value equal
to 0.01m. This value is very large. Indeed, it cor-
responds to have a non-systematic error whose stan-
dard deviation after 100m of navigation, is equal to
1m for each wheel. Therefore, the AKF at beginning
used nearly only the laser range finder to localize the
robot.

Figures 3, 4 and 5 concern the systematic parame-
ter results. Dotted line is adopted for the case with
the tape on the wheels. As expected, the values of
δR and δL increase with respect to the case without
tape. The variation is equal to about 0.01 corre-
sponding to a diameter change of 0.4mm, since the
wheel diameter is equal to 3.8cm. Fig. 5 shows also
a change in the wheels base distance due to the tape.
This change demonstrates that the point where the
wheel touches the terrain is pushed out by the tape.
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Figure 3: The δR parameter estimated by the AKF
vs the distance traveled by the robot (unity m). The
dotted line refers to the case with the tape on the
wheels
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Figure 4: The δL parameter estimated by the AKF
vs the distance traveled by the robot (unity m). The
dotted line refers to the case with the tape on the
wheels
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Figure 5: The δd parameter estimated by the AKF
vs the distance traveled by the robot (unity m). The
dotted line refers to the case with the tape on the
wheels
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Figure 6: The non-systematic parameter Kw as es-
timated by the OF vs the distance traveled by the
robot (unity m in both axis). The dotted line refers
to the case with the tape on the wheels

Fig. 6 concerns the non-systematic parameter re-
sults. Again, dotted line is adopted for the case with
the tape on the wheels. In this case the tape does
not produce variation. The frequency of the OF was
chosen accordingly to the considerations given in sec-
tion 4. In particular, by imposing that the second
and third term in the equation (11) are equal, we
obtain from equation (14):

S0 � σθb

ε
(15)

which corresponds in our case to a value S0 � 15m
(the error in the orientation as estimated by the
AKF , i.e. the second term in equation (11), is about
always σθ � 0.025rad, ε � 5 10−4 and b = 0.3m).
Observe that the frequency of the AKF is much
higher (� 10cm). For this value of S0 we obtain
a value of the first term in the equation (11) about
of ten times larger than the other two. This means
that we are in the situation showed in fig. 1a. Sim-
ilar results for the estimated Kw were obtained by
changing the value of S0. In particular, we did many
experiments in the range 10m ≤ S0 ≤ 30m obtaining
a variation in Kw within the 20%. We also did other
trials by changing the initial value of Kw (always in
the range 0.0001m ≤ Kw ≤ 0.1m) obtaining again
a slight variation in the results (within the 20%).
The final estimated Kw showed in the fig. 6 are
Kw = (4.7 ± 1.6)10−5 and Kw = (5.4 ± 1.8)10−5

respectively with and without tape. This value
of Kw corresponds to have a non-systematic error

1503



whose standard deviation after 100m of navigation,
is � 5cm for each wheel.

6 Conclusions

A new filter, the Observable filter, was implemented
for the estimation of the non-systematic odometry
error during the robot navigation. This filter is based
on the Observables (introduced in a previous work
[14]) which provide the observations for an extended
Kalman filter estimating a state containing the pa-
rameters characterizing the non-systematic odome-
try error. This new filter was used together with the
augmented Kalman filter (introduced by Larsen et
al. [11, 12]) enabling the simultaneous estimation of
the systematic and non-systematic odometry error
during the robot navigation.

The experimental results show that it is possible
to estimate the systematic error with high accuracy
(0.05% by moving the robot for 100m) and the non-
systematic error with an accuracy of 30%. Observe
that our experiments were carried out in an indoor
environment with a very smooth floor and therefore
the non-systematic component is very low and very
difficult to be evaluated.

We are performing some experiments showing the
usefulness of an odometry autocalibration in the
framework of the SLAM problem. We want to re-
mark that in the localization problem with a precise
map a priori known, and when a precise external
sensor is available, the localization error is very small
compared to the odometry error (calibrated or not),
since the localization task is nearly completely relied
to the external sensor. In the SLAM problem, how-
ever, the odometry could play a very important role
especially in solving the data association problem.
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