
Design and Evaluation
of a Resource Selection Framework

for Grid Applications

Chuang Liu* Lingyun Yang* Ian Foster*# Dave Angulo*1

Abstract

While distributed, heterogeneous collections of computers (“Grids”) can in principle be used as a computing
platform, in practice the problems of first discovering and then configuring resources to meet application
requirements are difficult problems. We present a general-purpose resource selection framework that addresses these
problems by defining a resource selection service for locating Grid resources that match application requirements.
At the heart of this framework is a simple but powerful declarative language based on a technique called set
matching, which extends the Condor matchmaking framework to support both single resource and multiple resource
selection. This framework also provides an open interface for loading application-specific mapping modules to
personalize the resource selector. We present results obtained when this framework is applied in the context of a
computational astrophysics application, Cactus. These results demonstrate the effectiveness of our technique.

1 Introduction

The development of high-speed networks (10 Gb/s Ethernet, optical networking) makes it feasible, in
principle, to execute even communication-intensive applications on distributed computation and storage
resources. However, the discovery and configuration of suitable resources for applications in
heterogeneous environment remain challenging problems. Like others [1-5], we postulate the existence of
a Resource Selector Service (RSS) responsible for selecting Grid resources appropriate for a particular
problem run based on that run’s characteristics; organizing those resources into a virtual machine with an
appropriate topology; and potentially also assisting with the mapping of the application workload to
virtual machine resources. These three steps� selection, configuration, and mapping� can be interrelated,
as it is only after a mapping has been determined that the selector can determine whether one selection is
better than another.

Many projects have addressed the resource selection problem. Systems such as NQE [6], PBS [7], LSF
[8], I-SOFT [9], and Load Leveler [10] process user-submitted jobs by finding resources that have been
identified either explicitly through a job control language or implicitly by submitting the job to a
particular queue that is associated with a set of resources. This manually configured queue hinders the
dynamic resource discovery. Globus [11] and Legion [12], on the other hand, present resource
management architectures that support resource discovery, dynamical resource status monitor, resource
allocation, and job control. These architectures make it easy to create a high-level scheduler. Legion also
provides a simple, generic default scheduler. But Dail et al. [13] show that this default scheduler can
easily be outperformed by a scheduler with special knowledge of the application.

The AppLeS framework [2] guides the implementation of application-specific scheduler logic, which
determines and actuates a schedule customized for the individual application and the target computational
Grid at execution time. Dongarra et al. developed a more modular resource selector for a ScaLAPACK
application [1]. Since they embed the application-specific detail in the resource selection module,
however, their tools cannot easily be used for other applications. Systems such as MARS [14], DOME
[15], and SEA [16] target particular classes of application (MARS and SEA target applications that can be

1 * Department of Computer Science, The University of Chicago, Chicago, IL 60637, USA.
 # Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439, USA.
 Email: { chliu, lyang, foster, dangulo} @cs.uchicago.edu

represented by dataflow-style program graph, and DOME targets SIMD applications). Furthermore,
neither the user nor the owner of resources can control the resource selection process in these systems.

Condor [3] provides a general resource selection mechanism based on the ClassAds language [17], which
allows users to describe arbitrary resource requests and resource owners to describe their resources. A
matchmaker [18] is used to match user requests with appropriate resources. When multiple resources
satisfy a request, a ranking mechanism sorts available resources based on user-supplied criteria and
selects the best match. Because the ClassAds language and the matchmaker were designed for selecting a
single machine on which to run a job, however, it has limited applicability in the situation where a job
requires multiple resources.

To address these problems, we define a set-extended ClassAds Language that allows users to specify
aggregate resource properties (e.g., total memory, minimum bandwidth). We also present an extended set
matching matchmaking algorithm that supports one-to-many matching of set-extended ClassAds with
resources. Based on this technique, we present a general-purpose resource selection framework that can
be used by different kinds of application. Within this framework, both application resource requirements
and application performance models are specified declaratively, in the ClassAds language, while mapping
strategies can be determined by user-supplied code. (An open interface is provided which allows users to
load the application specific mapping module to customize the resource selector.) The resource selector
locates sets of resources that meet user requirements, evaluates them based on specified performance
model and mapping strategies, and returns a suitable collection of resources, if any are available. We also
present results obtained when this technique was applied in the context of a nontrivial application, Cactus
[19, 20].

This paper is organized as follows: In Section 2, we present the set-extended ClassAds language and the
set matching mechanism. In Section 3, we describe the resource selector framework. In Section 4, we
describe a performance model and mapping strategy of the Cactus application used in our case study.
Experimental results are presented in Section 5. Finally, we summarize our work and briefly discuss
future activities.

2 Set-Extended ClassAds and Set Matching

We describe here our set-extended ClassAds language and set-matching algorithm.

2.1 An Overview of Condor ClassAds and Matchmaking

A ClassAd (Classified Advertisement) [17] is a mapping from attribute names to expressions. Attribute
expressions can be simple constants or a function of other attributes. A protocol is defined for evaluating
an attribute expression of one ClassAd with respect to another ClassAd. For example, the expression
“other.size > 3” in one ClassAd evaluates to true if the other ClassAd has an attribute named “size” and
the value of that attribute is an integer greater than three. ClassAds can be used to describe arbitrary
entities. In the current context, they are used to describe resources and user requests.

Conventional Condor matchmaking [18] takes two ClassAds and evaluates one with respect to the other.
Two ClassAds match if each ClassAd has an attribute named “ requirements” that evaluates to true in the
context of the other ClassAd. A ClassAd can also include an attribute named “ rank” that evaluates to a
numeric value representing the quality of the match. When matchmaking is used for resource selection,
the matchmaker evaluates a ClassAd request with every available resource ClassAd and then selects a
resource that both matches the request and returns the highest rank.

2.2 Set-Extended ClassAds Syntax and Set Request

In set matching, a successful match is defined as occurring between a single set request and a resource
set. The essential idea is as follows. The set request is expressed in set-extended ClassAds syntax, which

is identical to that of a normal ClassAd except that it can indicate both set expressions, which place
constraints on the collective properties of an entire resource ClassAd set (e.g., total memory size) and
individual expressions, which must apply individually to each resource in the set (e.g., individual per-
resource memory size). The set-matching algorithm attempts to construct a resource set that satisfies both
individual and set constraints. This set of resources is returned if the set match is successful.

2.2.1 Set-Extended ClassAds Syntax

The set-extended ClassAd language, as currently defined, extends ClassAds as follows:

• A Type specifier is supplied for identifying set-extended ClassAds: the expression Type=” Set ”
identifies a set-extended ClassAd.

• Three aggregation functions, Max , Mi n, and Sum, are provided to specify aggregate properties of
resource sets.

• A boolean function Post f i x(V, L) is defined that returns True if a member of list L is the
postfix of scalar value V.

• A function Set Si ze is defined that can be used to refer to the number of elements within the
current resource set.

Three aggregation functions are as follows.

• Max(expression) returns the maximum value returned by expression when applied to each
of the ClassAds in a set.

• Mi n(expression) returns the minimum value of expression in a set of ClassAds.

• Sum(expression) returns the sum of the values returned by expr essi on when it is applied to
each of the ClassAds in a set. For example, Sum(ot her . memor y) >5G means the total memory
of the set of resources selected should be greater than 5G.

Aggregation functions might be used as follows. If a job consists of several independent subtasks that run
in parallel on different machines, its execution time on a resources set is decided by the subtask that ends
last. Thus, we might specify the rank of the resource set to be Rank=1/ Max(execut i on- t i me) , which
means that the rank of the resource set is decided by the longest subtask execution time.

A user can use the Post f i x function to constrain the resources considered when performing set
matching, to those within particular domains. For example, Post f i x(H, { “ ucsd. edu” ,
“ ut k. edu” }) returns True for H=“ t or c1. cs. ut k. edu” because “ ut k. edu” is the postfix of
“ t or c1. cs. ut k. edu.”

2.3 Set-Matching Algorithm

The set-matching algorithm evaluates a set-extended ClassAd request against a set of resource ClassAds
and returns a resource set that has highest rank. It comprises two phases.

In the filtering phase, individual resources are removed from consideration based on individual
expressions in the request. For example, individual expressions " ot her . os==r edhat 6. 1 &&

ot her . memor y>=100M" would remove any machine with an OS other than Linux Redhat v6.1, and/or
with less than 100 Mb of memory. A Post f i x expression can also be used in this phase, as discussed
above. A set-matching implementation can index ClassAds to accelerate such filtering operations.

In the set construction phase, the algorithm seeks to identify a resource set that best meets application
requirements. As the number of possible resource sets is large (exponential in the number of resources

available), it is not typically feasible to evaluate all possible combinations. Instead, we use the following
greedy heuristic algorithm to construct a resource set from the resources remaining after Phase 1 filtering.

Candi dat eSet = NULL;

Best Set =NULL;

Last Rank = - 1; Rank = 0;

whi l e (Resour ceSet ! = NULL)

{

 Next = { X : X i n Resour ceSet && f or al l Y i n Resour ceSet ,

 r ank(X+Candi dat eSet) > r ank(Y+Candi dat eSet) ; }

 Resour ceSet = Resour ceSet - Next ;

 Candi dat eSet = Candi dat eSet + Next ;

 Rank = r ank(Candi dat eSet) ;

 I f (r equi r ement s(Candi dat eSet) ==t r ue && Rank > Last Rank)

Best Set =Candi dat eSet ;

Last Rank=Rank;

}

i f Best Set ==NULL r et ur n f ai l ur e

el se r et ur n Best Set

In narrative form, the algorithm repeatedly removes the “best” resource remaining in the resource pool
(with “best” being determined by the rank of the resulting resource set formed) and adds it to the
“candidate set.” If this “candidate set” has higher rank than the “best set” so far, the “candidate set”
become the new “best set” . This process stops when the set of resources in the resource pool is exhausted.
The algorithm returns the “best set” that satisfies the user’s request, or failure if no such resource set is
found.

As with other greedy algorithms, this set-matching algorithm is not guaranteed to find the best solution if
one exists. The set-matching problem can be modeled as an optimization problem under some constraints.
It is known that this problem is NP-hard under some situations. Hence it is difficult to find a general
algorithm to solve this problem efficiently, especially when the number of resources is large. Our work
provides an efficient algorithm with complexity O(N2) with rank computation as the basic operation.

3 Resource Selection Framework

We have implemented a general-purpose resource selection framework based on the set-matching
technique. It accepts user resource requests and finds a set of resources with highest rank based on the
resource information provided by Grid Information Service. It also provides an open interface for users to
specify the application-specific mapping module to customize the resource selector.

3.1 System Architecture

The architecture of our resource selection system is shown in Figure 1:

NWS

Resource
Monitor

Set Matcher

Mapper

RSS

App

Resource
Request

Result

GRISes

GIIS

MDS
Resource

Information

Figure 1: Architecture of Resource Selector

The Grid Information Service is provided by MDS [21] and NWS [22-24]. The Meta Directory Service
(MDS) is a component of Globus Toolkit [25]. It provides a uniform framework for discovering and
accessing system configuration and status information such as compute server configuration and CPU
load. The NWS (Network Weather Service) is a distributed system that periodically monitors and
dynamically forecasts the performance that various network and computational resources can deliver over
a given time interval.

The Resource Selector Service (RSS) comprises three modules. The resource monitor acts as a Grid
Index Service (GRIS) in the terminology of [21]; it is responsible for querying MDS and NWS to obtain
resource information and for caching this information in local memory, refreshing only when associated
time-to-live values expire. The set matcher uses the set-matching algorithm to match incoming
application requests with the best set of available resources. For some applications such as Cactus, their
performance is tightly related to the topology of resources and the workload allocation to machines. So it
is necessary to map the workload to resources before judging whether the resources are good or bad. The
mapper is responsible for deciding the topology of the resources and allocating the workload of
application to resources.

Because the mapping strategy is tightly related to a particular application, it is difficult to find an efficient
general mapping algorithm suitable for all applications. In our system, the mapper is designed and
implemented as a user-specified dynamic link library that can be loaded at run time.

3.2 Resource Request

The RSS accepts both synchronous and asynchronous requests described by set-extended ClassAds. It
responds to a synchronous request with the best available resource set that satisfies this ClassAd, or
“ failure” if no such resources are available. An asynchronous request specifies a request lifetime value;
the RSS responds if and only if a resource set that satisfies the specified ClassAd becomes available
during the specified lifetime.

A resource request may include six types of element:

• Owner: The sender of this request.

• Job description: The characteristics of the job to be run, for example, the performance model of
the job.

• Type of Service: Synchronous or asynchronous.

• Mapper: The kind of mapper algorithm to be used.

• Constraint: User resource requirements, for example, memory capability, type of operating
system, software packages installed, etc.

• Rank: The criteria to rank the matched resources.

We can use these six elements to describe various resource requests for different kinds of applications.
The following example is the request that we used for a Cactus application.

1. [

2. Ser vi ce = " I nst ant Ser vi ce" ;

3. Mat chType=" SET" ;

4. i t er =100; al pha=100; x=100; y=100; z=100;

5. cact us=370; cact usC=254; st ar t up=30;

6. comput et i me = x* y* al pha/ ot her . cpuspeed* cact us;

7. comt i me= (ot her . RLat ency+ y* x* cact usC/ ot her . RBandwi dt h

 +ot her . LLat ency+y* x* cact usC/ ot her . Lbandwi dt h) ;

8. exect i me=(comput et i me+comt i me) * i t er +st ar t up;

9. Mapper = [t ype =" dl l " ; l i br ar yname=" cact us" ; f unct i on=" mapper "] ;

10. r equi r ement s = Sum(ot her . Memor ySi ze) >= (1. 757 + 0. 0000138* z* x* y)

 && Post f i x(ot her . machi ne, domai ns) ;

11. domai ns={ cs. ut k. edu, ucsd. edu} ;

12. r ank=Mi n(1/ exect i me)

13.]

Line 2 specifies that this is a synchronous request. Lines 4–8 are the job description including the
problem size and the Cactus performance model (Section 4). Line 8 models the execution time of every
subtask on a machine. Line 9 gives the name and location of the mapping algorithm used for the
application. Line 10 is the resource constraints that say the total memory capability of the resource set
should be large enough to keep the computation in memory that is described by a formula of the problem
size, and resources should be selected from machines in “cs. ut k. edu” or “ucsd. edu” domain that is
described in Line 11. Line 12 denotes that the reciprocal of the execution time of the application is used
as the criterion to rank candidate resources. Because the execution time of the application is decided by
the subtask that finishes last, the rank of a resource set is equal to the minimum value of the reciprocal of
the execution time of subtasks as specified in Line 12. If multiple resource sets fulfill the requirements,
the resource set on which application gets smallest execution time has the highest rank.

3.3 Resource Selection Result

The result returned by Resource Selector (expressed in XML) indicates the selected resources and
mapping scheme. The following example is the result that we obtained for the Cactus application.

<vi r t ual Machi ne>

 <r esul t st at usCode=" 200" st at usMessage=" OK" / >

 <machi neLi st >

 <machi ne dns=" t or c2. cs. ut k. edu" pr ocessor = 2 x= 20>

 <machi ne dns=" t or c3. cs. ut k. edu" pr ocessor = 2 x= 15>

 <machi ne dns=" t or c6. cs. ut k. edu" pr ocessor = 2 x= 15>

 </ machi neLi st >

</ vi r t ual Machi ne>

This returned resource set includes three machines, each of which has two processors. These three
machines have one-dimensional topology, and the workload is allocated to the machines according to
ratio 20:15:15.

4 Cactus Application

We applied our prototype in the context of a Cactus application. The Cactus application we used is the
simulation of the 3D scalar field produced by two orbiting sources. The solution is found by finite
differencing a hyperbolic partial differential equation for the scalar field. This application decomposes the
3D scalar field over processors and places an overlap region on each processor. For each time step, each
processor updates its local grid point and then synchronizes the boundary value.

4.1 Performance Model

In this Cactus experiment, we use expected execution time as the criterion to rank all the sets of candidate
resources. For a 3D space of X*Y*Z grid points, the performance model is specified by the following
formulas, which describe the required memory and estimated execution time.

 Requested Memory(MB) > = (1.757 + 0.0000138*X*Y*Z)

 Execution time =(computation (0) + communication (0)) * slowdown(CPU load) +start-up-time

Function slowdown(CPU load) presents the contention effect on the execution time of the application.
CPU load is defined as the number of processes running on the machine. Silvia Figueira modeled the
effect of contention on a single-processor machine [26, 27]. Assuming that the CPU load is caused by
CPU-bounded processes and the machine uses round-robin scheduling method, we extended her work by
modeling the effect of contention on the dual-processor machine. We found that the execution time is
smaller if we divide a job into two small subtasks than if we run this job as one task on dual-processor
machines. We applied this allocation strategy to dual-processor machines and obtained the following
contention model, which we validate in Section 5.1:

 slowdown (CPU load)= (2* CPU Count – 1 +CPU load)/(2*CPU Count –1)

This formula is applicable when the CPU count is equal to one or two. We validate this formula in.

Computation (0) and communication (0), the computation time and communication time of the Cactus
application in the absence of contention, can be calculated by formulas described in [28]. We incur a
startup time when initiating computation on multiple processors in a Grid environment. In these
experiments, this time was measured to be around 40 seconds when machines are from different clusters
(sites) and 25 seconds when machines are in the same cluster.

4.2 Mapping Algorithm

We decompose the workload in the Z direction and decide the resource topology as follows:

1. Pick the machine with the highest CPU speed as the first machine of the line.

2. Find the machine that has the highest communication speed with the last machine in the line,
and add it to the end of the line.

3. Continue step 2 to extend the line until all machines are in the line.

We thus minimize WAN communications by putting machines from the same cluster or domain in
adjacent locations.

The mapper then allocates the workload to these resources. Our strategy is to allocate the workload to
each processor inversely proportional to the predicted execution time on that processor.

5 Experimental Results

To verify the validity of our RSS and the mapping algorithm of the Cactus application, we conducted
experiments in the context of the Cactus application on the GrADS [29] test bed, which comprises

workstation clusters at universities across the United States, including the University of Chicago, UIUC,
UTK, UCSD, Rice University, and USC/ISI. We tested the execution time prediction function, the Cactus
mapping strategy, and the set-matching algorithm, respectively.

5.1 Execution Time Prediction Test

From the above description, we can see that both the mapping strategy and the set-matching algorithm are
based on the predicted execution time of the Cactus application. The correction of the execution time
prediction function is the base of the validity of the mapping strategy and set-matching algorithm. We
tested the execution time prediction function both without communication time and with it.

5.1.1 Computation Time Prediction Test

When the Cactus application runs on only one machine, there is no communication cost. To validate the
computation time prediction function, we ran the Cactus application on one machine and compared the
predicted computation time with the measured computation time. We did the experiments with diverse
configurations, including (1) different problem sizes (20*20*20, 50*50*50, 100*100*100), (2) different
clusters (UTK cluster, UIUC cluster, and UCSD cluster), (3) different CPU speed (cmajor.cs.uiuc.edu
266MHz, mystere.ucsd.edu 400 MHz, torc.cs.utk.edu 547 MHz), (4) on machines with different number
of processor (UIUC and UCSD machines have 1 processor, UTK machines have 2 processors), and (5)
different CPU load.

 (1) Machine name: cmajor.cs.uiuc.edu
 CPU count =1
 CPU speed =266MHz
 Problem size 20*20*20

(2) Machine name: cmajor.cs.uiuc.edu
 CPU count =1
 CPU speed=266MHz
 Problem size=50*50*50

 (3) Machine name: mystere.ucsd.edu (4) Machine name: torc1.cs.utk.edu
 CPU count =1 CPU count=2
 CPU speed=400MHz CPU speed=547 MHz
 Problem size=50*50*50 Problem size=100*100*100

Figure 2: Predicted computation time and measured computation time of the Cactus application

Figure 2 illustrates the predicted computation time and the measured computation time of the
Cactus application with different CPU loads and various machine configurations. The figure
shows that the computation time prediction function gives acceptable prediction in all cases. The
error in this experiment was within 6.2% on average.

5.1.2 Computation Time and Communication Time prediction Test

Then we tested the execution time prediction function that includes both computation time and
communication time. In this experiment, we ran the Cactus application on various machine
combinations and compared the measured execution time with the predicted execution time. We
conducted experiments with various configurations, including (1) different problem sizes
(100*100*100, 120*120*240, 140*140*280, 160*160*320, 200*200*400 and 220*220*420),
(2) different clusters (UCSD cluster and UTK cluster), (3) different CPU speed (o.ucsd.edu 400
MHz, torx.cs.utk.edu 547 MHz), (4) different numbers of processors (UCSD machines have 1
processor, UTK machines have 2 processors), and (5) different machine combinations.

The predicted execution time and the measured execution time of the Cactus application running
with various configurations are shown in Figure 3. The error rate is 13.13% on average. We can
see that in most of the cases, the time prediction formula works well. But for the problem size
160*160*320, the predicted time is much greater than the execution time (the error rate is as high
as 59%). We monitored the CPU load of the machines on which the application had run during
experiments. We found that a competing application had been running on torc1 and torc5 when
the resource selector collected system information to predict the execution time and this
application terminated before our application run. We therefore believe that the reason for this
large error rate is that the CPU load information we used to predict the performance of
application does not reflect the real CPU load when the application ran.

 Machines: torc1.cs.utk.edu, torc3.cs.utk.edu, torc5.cs.utk.edu
 o.ucsd.edu

Figure 3: Predicted and real execution time when considering communication time

5.2 Mapping Strategy Test

In our mapping strategy experiment, we tested what benefit was gained from the mapping
strategy. As mentioned in Section 4.2, the mapping strategy put machines with high bandwidth
connection into adjacent positions in the topological arrangement. Clearly, this one-dimensional

arrangement minimizes the communication via WAN and thus reduces the total communication
cost. In this section, we focused on testing how well the workload allocation strategy works. In
particular, we tested whether the execution time of the Cactus application with allocation given
by the mapper is shorter than its execution time with any other allocation strategy.

We tested the workload allocation strategy on two machines (dralion.ucsd.edu and
cirque.ucsd.edu). One machine (dralion) has a CPU speed of 450 MHz and no CPU load during
the experiment. The other machine (cirque) has a CPU speed of 500 MHz and a CPU load of 2
during the experiment. We set up the Cactus application with a 3D space of 100*100*200 grid
points and one-dimensional decomposition. According to our workload allocation strategy, the
best performance was obtained when the workload was allocated on the two machines in the
proportion of 146:54 (dralion:cirque) in the Z direction. We ran the Cactus application with this
workload allocation and its variations (obtained by moving the division point to the right and
left), and compared the execution time of the application with other workload allocation
strategies.

The execution time for different workload allocations is shown in Figure 4. We can see that the
execution time with the allocation given by the mapper is very close to optimal (only 1.2% higher
than optimal). Moreover, the execution time increases when the deviation from our workload
allocation scheme increases. Thus we can say that the workload allocation strategy works well.

 Machines: dralion.ucsd.edu (450MHZ), cirque.ucsd.edu(500 MHZ)
 Problem size: 100*100*200

Figure 4: The execution time for different workload allocations.

5.3 Resource Selection Algorithm Test

To validate the resource selection algorithm, we asked the resource selector to select a set of
machines from a pool of candidates. We ran the Cactus application on all possible machine
combinations and then compared its execution time on these different combinations.

In our experiment, we limited the number of candidate machines to three. Hence, there were
seven possible machine combinations. We carried out the experiment both on machines from a
single cluster and on machines from different clusters.

 Machines candidates: mystere.ucsd.edu, o.ucsd.edu, saltimbanco.ucsd.edu
 Selected machine: mystere.ucsd.edu, o.ucsd.edu, saltimbanco.ucsd.edu

Figure 5: Execution time on all combinations and selected machines
(Candidate machines from one cluster)

When the three candidate machines were in a single cluster (UCSD cluster in our experiment), the
machines were connected via a high-bandwidth network (100 Mbps Ethernet for the UCSD
cluster). The communication cost between machines is relatively small, so more machines mean
shorter execution time. As we expected, the resource selector selected all three candidates into the
selected machine set. The execution time of the application on all of the machine combinations is
shown in Figure 5. We can see that the execution time of the application on the three selected
machines is shorter than on all other six combinations.

 Machine candidates: o.ucsd.edu, saltimbanco.ucsd.edu, torc6.cs.utk.edu
 Selected machine: torc6.cs.utk.edu

Figure 6: Execution time on all combinations and selected machines
(Candidate machines from different clusters)

When the three candidates were selected from two different clusters connected by WAN, the
resource selector selected one machine in the UTK cluster on which the application was expected
to run faster than on any other combination. In this configuration, the use of more machines does
not result in higher performance (as demonstrated in the previous experiment), because the high
inter-machine communication cost outweighs the benefits of greater processing power. The
measured execution time of application on all machine combinations is shown in Figure 6. We
can see that the selected machine has a shorter execution time than do all the other six
combinations.

6 Conclusion and Future Work

Grids enable the aggregation of computational resources to achieve higher performance, and/or
lower cost, than can be achieved on a single system. The heterogeneous and dynamic nature of
Grids, however, leads to numerous technical problems, of which resource selection is one of the
most challenging.

We have presented a general-purpose resource selection framework that provides a common
resource selection service (RSS) for different kinds of application. This framework combines
application characteristics and real-time status information to identify a suitable resource set. A
language called set-extended ClassAds is used to express resource requests, and a new technique
called set matching is used to identify suitable resources. We have used an application, Cactus, to
validate the design and implementation of the resource selection framework, with promising
results.

Our framework should adapt to different applications and computational environments. Further
experiments on other kinds of application are needed to validate and improve our work. We also
plan to provide more mapping algorithms for different kinds of application.

Acknowledgments

This work was supported by the Grid Application Development Software (GrADS) project of the
NSF Next Generation Software program, under Grant No. 9975020.

References

1. Petitet, A., S. Blackford, and J. Dngarra, Numerical Libraries And The Grid: The GrADS Experiments With
ScaLAPACK. 2001, University of Tennesse.

2. Berman, F. and R. Wolski. The AppLeS project: A Status Report. in Proceedings of the 8th NEC Research
Symposium. 1997. Berlin, Germany.

3. Litzkow, M., M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. in Proceedings of the 8th
International Conference of Distributed Computing Systems. 1998.

4. Abramson, D., J. Giddy, and L. Kotler. High Performance Modeling with Nimrod/G: Killer Application for
the Global Grid. in International Parallel and Distributed Processing Symposium. 2000.

5. Shao, G. and F. Berman. Master-slave computing on the Grid. in Proceedings of the 9th Heterogeneous
Computing Workshop. 2000.

6. Cray, R., Document number in-2153 2/97. 1997, Cray Research.

7. Henderson, R. and D. Tweten, Portable Batch System: External reference specification. 1996, Ames
Research Center.

8. Zhou, S. LSF: Load sharing in large-scale heterogenous distributed system. in Proc. Workshop on Cluster
Computing. 1992.

9. Foster, I., et al., Software Infrastructure for the I-WAY High-Performance Distributed Computing
Experiment. 1998.

10. I.B.M., C., IBM Load Leveler: User's Guide. 1993.

11. Czajkowski, K., et al. A Resource Management Architecture for Metacomputing Systems. in Proc.
IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel Processing. 1998.

12. Chapin, S.J., et al. Resource Management in Legion. in Proceedings of the 5th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP '99). 1999. San Juan, Puerto Rico.

13. Dail, H., G. Obertelli, and F. Berman. Application-Aware Scheduling of a Magnetohydrodynamics
Applications in the Legion Metasystem. in Proceedings of the 9th Heterogeneous Computing Workshop.
2000.

14. Gehring, J. and A. Reinefeld, MARS-A Framework for Minimizing the Job Execution Time in a
Metacomputing Environment. Future Generation Computer Systems, 1996. 12(1): p. 87-99.

15. Arabe, J.N.C., et al., DOME: Parallel programming in a heterogeneous multi-user environment. 1995, CMU.

16. Sirbu, M.G. and D.C. Marinescu. A scheduling expert advisor for heterogeneous environments. in
Proceedings of the 6th Heterogeneous Computing Workshop (HCW' 97). 1997.

17. Raman, R., ClassAds Programming Tutorial (C++). 2000.

18. Raman, R., M. Livny, and M. Solomon. Matchmaking Distributed Resource Management for High
Throughput Computing. in Proceedings of The Seventh IEEE International Symposium on High Performance
Distributed Computing. 1998. Chicago, IL.

19. Allen, G., et al., Cactus Tools for Grid Applications. Cluster Computing, 2001(4): p. 179-188.

20. Allen, G., et al., Solving Einstein's Equation on Supercomputers. IEEE Computer, 1999(32): p. 52-59.

21. Globus, MDS document: www.globus.org/mds.

22. Wolski, R., Dynamically Forecasting Network Performance Using the Network Weather Service. Journal of
Cluster Computing, 1998.

23. Wolski, R., N. Spring, and J. Hayes, The Network Weather Service: A Distributed Resource Performance
Forecasting Service for Metacomputing. Journal of Future Generation Computing Systems, 1999. 15(5-6): p.
757-768.

24. Wolski, R., N. Spring, and J. Hayes. Predicting the CPU Availability of Time-shared Unix Systems on the
Computational Grid. in Proceedings of the 8th High-Performance Distributed Computing Conference,
August, 1999. 1999.

25. Foster, I. and C. Kesselman, Globus: A Tookkit-Based Grid Architecture., in The Grid: Blueprint for a New
computing Infrastructure. 1999, Morgan Kaufmann. p. 259-278.

26. Figueira, S.M. and F. Berman. Modeling the Effects of contention on the Performance of Heterogeneous
Application. in HPDC. 1996.

27. Figueria, S.M. and F. Berman. Predicting slowdown for Networked Workstations. in HPDC. 1997.

28. Ripeanu, M., A. Iamnitchi, and I. Foster, Performance Predictions for a Numerical Relativity Package in
Grid Environments. International Journal of High Performance Computing Applications, 2001. 15.

29. Berman, F., A. Chien, and K. Cooper, The GrADS Project: Software support for High level Grid application
development. International Journal of Supercomputer Applications, 2001. 14(4): p. 327-344.

