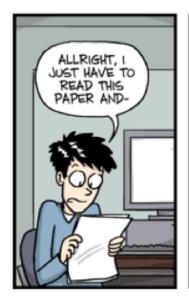
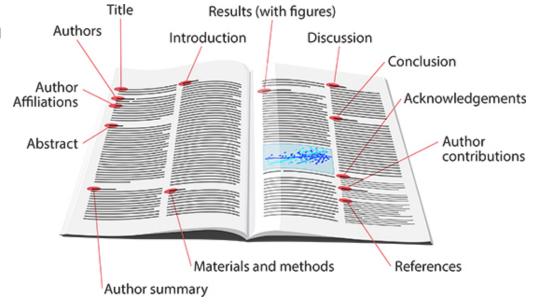


Reading a scientific paper


Eddie Schwieterman ---- 10/9/2014

This is a Guide – NOT a recipe!

- Everyone absorbs information a little differently
- You will not understand everything the first time
- Try things out and see what works for you



WWW.PHDCOMICS.COM

Paper Structure

- Abstract
- Introduction
- Methods
- Results
- Discussion
- Conclusion
- References

Questions to Ask

- **What** is the topic of the paper? What "big question" is being addressed? (*Abstract/Introduction*)
- **Why** is this specific topic important? (*Introduction*)
- **How** did the researchers investigate this question? (*Methods*)
- **What** did they find? (*Results*)
- **What** are the sources of uncertainty or error (*Discussion*)
- What are the implications or consequences? (Discussion and/or Conclusion)

The Most Important Questions

- What is the topic of the paper? What "big question" is being addressed? (Abstract/Introduction)
- **7** What did they find? (Results)
- What are the implications or consequences?
 (Discussion and/or Conclusion)

The Abstract

- A summary of the paper
- Includes a description of the problem, the experiment (or observation), and the conclusions or results
- Used as a means of deciding whether the paper is worth reading in more detail
- Information dense, but should be readable to a large audience

Introduction

- Background information: description of the problem (motivation) and previous work
- Summarizes steps taken in paper
- **What** is the topic of the paper? What "big question" is being addressed?
- **Why** is this specific topic important?

Methods

- Describes experiments or observations in detail
- Steps taken to transform data into a useable form
- Lots of technical details: these can be sometimes hard to understand
 - For measurements/observations mostly about minimizing and/or estimating uncertainty and error, though this might not be mentioned until the discussion
- **How** did the researchers investigate this question?

Results

- Presents findings of observation or experiment
- Critical information displayed in figures or sometimes in tables
- Justines here
- **Pay attention** to the figures
- **What** did they find?

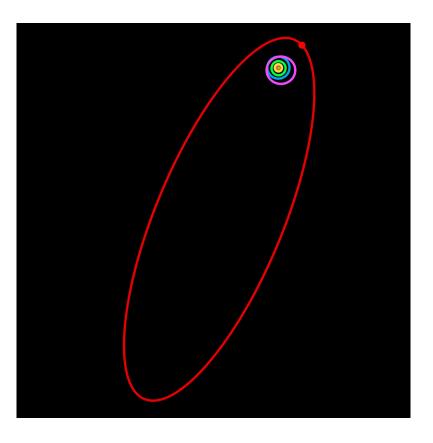
Discussion

- Authors' interpretation of results
- Authors' interpretation of the *implications* of the results (how is this different?)
- Caveats or reservations concerning error or uncertainty
- What are the implications or consequences?

Conclusions

- Usually summarizes work
- Presents results and implications succinctly
- **What** did they find?
- **What** are the implications or consequences?


Recommended Reading Sequence


- Read the abstract once or twice. Summarize what the topic of the paper is in your own words.
- 2. Read the abstract again. Then read the conclusions. Summarize the findings in your own words.
- 3. Start with the introduction and read the paper all the way through once. Underline words, phrases, and concepts you don't understand.
- 4. Look up the words, etc. from above. Read the paper again.
- 5. Rinse. Wash. Repeat.

On reading older papers

- Some of the assumptions and conclusions will be out of date
- This does not mean the paper is not worthwhile to read both for scientific and educational purposes
- Everyone has to start somewhere

Sedna

Sedna in Context

Assignment – Writing 3

- Read ""Discovery of a Candidate Inner Oort Cloud Planetoid"
- Answer guided questions
- Work with your fellow classmates
- Ask me questions in class, at office hour, or over email
- I expect you to have questions

Remaining Class Time

- Work on coding assignments OR
- Start reading paper