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ABSTRACT. We derive estimates for the error in a variational approximation of the lift
and drag coefficients of a body immersed into a viscous flow governed by the Navier-
Stokes equations. The variational approximation is based on computing a certain weighted
average of a finite element approximation to the solution of the Navier-Stokes equations.
Our main result is an a posteriori estimate that puts a bound on the error in the lift
and drag coefficients in terms of the local mesh size, a local residual quantity, and a local
weight describing the local stability properties of an associated linear dual problem. The
weight may be approximated by solving the dual problem numerically. The error bound is
thus computable and can be used for quantitative error estimation; we apply it to design
an adaptive finite element algorithm specifically for the approximation of the lift and drag
coefficients.

1. INTRODUCTION

Often, the purpose of numerical computations in mathematical modelling of physical
phenomena is to approximate a functional of the analytical solution to a differential equa-
tion, represented as an integral average of the solution, rather than to obtain accurate
pointwise values of the solution itself; in such instances solving the differential equation
considered is only an intermediate stage in the process of computing the primary quan-
tities of concern. For example, in fluid dynamics one may be concerned with calculating
the lift and drag coefficients of a body immersed into a viscous incompressible fluid whose
flow is governed by the Navier-Stokes equations. The lift and drag coefficients are defined
as integrals, over the boundary of the body, of the stress tensor components normal and
tangential to the flow, respectively. Similarly, in elasticity theory, the quantities of prime
interest, such as the stress intensity factor, or the moments of a shell or a plate, are derived
quantities.

The objective of this paper is to obtain a posteriori error bounds for finite element ap-
proximations of functionals that arise in fluid dynamics; specifically, we shall be concerned
with the construction and the a posteriori error analysis of finite element approximations
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to the lift and drag coefficients in a viscous incompressible flow, and the implementa-
tion of these bounds into an adaptive finite element algorithm, with reliable and efficient
quantitative control of the error.

It is frequently the case that the functional under consideration may be expressed in
various forms which are mutually equivalent at the continuous level but result in very
different approximations under discretisation. Thus it is important to select the appropriate
representation of the functional before formulating its discretisation. While this basic
idea has been widely exploited in structural mechanics, see [1, 2, 3] and [4], and heat
conduction, see [17], in post-processing finite element approximations, it does not seem to
have penetrated the field of computational fluid dynamics.

We approximate the solution 4 = (u,p) of the Navier-Stokes equations, where u rep-
resents the velocity of the fluid and p its pressure, by means of a finite element method
using piecewise polynomials of degree k for u and degree k£ —1 for p. Let Ny (a) denote the
boundary integral representing the lift or drag coefficient, depending on the choice of the
function 1 defined on the boundary of the computational domain; the precise definition of
Ny(u) will be given in Section 3. Using the differential equation we may express N, ()
in a variational form, involving test functions that are equal to 1) on the boundary of the
domain; this form will be the basis for constructing an accurate approximation N:j(@h) to
Ny(u). Provided the boundary is sufficiently smooth and there are no variational crimes,
the order of convergence of Nj (i) to Ny (i) is 2k, while for the naive direct approximation
Ny(uy) the order of convergence is typically only .

Our main result is a weighted a posteriori estimate for the error Ny () — Nj (i) of the
form

N () = NE(in)] < ¢ 3 B3R (it )eora
TET

where the sum is taken over the elements 7 in a triangulation 7, of the computational
domain, h, is the diameter of 7; given that « is a real number with 1 < o < k+1, R, (4y,) is
an element residual quantity, w; , is a local weight, and ¢ = ¢(1)) is a positive constant. The
element residual quantity R, () is a computable bound on the actual residual obtained
by inserting the approximate solution into the differential equation. The derivation of
the estimate is based on a representation formula for the error Ny (i) — N} (i) in terms
of the computed solution 7, and the solution to an associated linear dual equation with
homogeneous right-hand side and non-homogeneous boundary data . The weight w,,
describes the local size of derivatives of order a of the solution to the dual problem. The
data for the dual problem is known, and therefore the weight can be computed by solving
the dual problem numerically. Therefore, the right-hand side of the estimate is computable
and can be applied to design an adaptive finite element algorithm for approximating Ny (1),
and to ensure efficient quantitative control of the error Ny () — Nj(i). The fact, stated
above, that the order of convergence of N[Z (@) is 2k follows from the error representation
formula together with an a priori estimate of the global error @ — 1y in the finite element
method. Indeed, for a linear elliptic model problem, it can be shown, using results obtained
in [13], that the a posteriori estimate is sharp.
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In [6] a weighted a posteriori estimate is given for the error in the lift and the drag;
however, unlike our approach, it is based on a direct approximation using Ny(uy). For a
posteriori estimates of the error @ — 1y, in finite element approximations of the solution to
the Navier-Stokes equations in various norms, see [11], [12], [16], and references therein;
a general introduction to a posteriori error analysis is given in [8]. Finally we mention
that an a priori error analysis of the approximation method, employed here, for a linear
convection-diffusion equation, is presented in [5].

The remainder of this paper is organized as follows: in order to illustrate the key ideas,
in Section 2 we outline the theory for a linear elliptic model problem. In Section 3 we
consider the extension of this analysis to the Stokes system which models the flow of a
viscous incompressible fluid at low velocities; we derive an a posteriori estimate of the error
in a finite element approximation to the lift and drag coefficients. In Section 4 we further
extend our results to the Navier-Stokes equations and present numerical computations for
the drag coefficient of a cylinder in a channel; these illustrate the quality of the adaptive
error control based on the a posteriori error bound. Finally, in Section 5, we summarise
our results and draw some conclusions.

2. A MODEL PROBLEM

2.1. The model problem and the finite element method. We begin by introducing
some notation. Let © be a bounded domain in R?%, d = 2 or 3, with Lipschitz-continuous
boundary T. For an open set K in RY, let L?(K) signify the space of real-valued square-
integrable functions on K, with norm || - ||x; H*(K) will denote the Sobolev space of real
index s, equipped with the norm || - || s(x) and corresponding seminorm | - |y (x); with a
slight abuse of the notation, we shall frequently write || D*ul|x instead of |u|gs(xy, s > 0.
Given that ¢ is an element of H'/*(T'), we let H} = H} () denote the space of all v in
H' = H'(Q) which satisfy the Dirichlet boundary condition vjr = . Finally, we adopt
the following notational convention: generic constants that are independent of the problem
and the mesh size are denoted by ¢, while constants that depend on the problem but not
on the mesh size are labelled C, with a subscript when necessary.
As a first model problem we consider the boundary-value problem

(2.1) —V.o(u)y=f in Q, u=0 on T,

where f € L? = L[*(Q) and o(u) = AVu, with A a uniformly positive definite d x d
matrix, with continuous real-valued entries defined on . This problem has a unique
weak solution u € H¢. In order to define the corresponding finite element approximation,
we introduce a family of finite-dimensional spaces V" contained in H!, which consist of
continuous piecewise polynomials of degree k£ defined on a triangulation 7, of 2. We denote
the diameter of a triangle 7 € T, by h,. It will always be assumed that the triangulation is
shape-regular, i.e., there exists a positive constant ¢ such that vol(7) > ¢ h¢, where vol(7) is
the d—dimensional volume of 7. Further, for each function ¢» € H'/?(T') such that 1) = v|p
for some v € V", we let V$ C V" be the space of all w € V" with w|pr = +. In particular,

Vi is the space of all v € V" which vanish on the boundary T.
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The finite element approximation of (2.1) reads: find u;, € VJ* such that
(2.2) a(up,v) = (f,v)  forallve V.

Here and below (-,-) denotes the scalar product in L? and a(v,w) = (o(v),Vw) =
(Vv, ATVw), for v,w € H', where A" is the transpose of A.

2.2. Approximation of the boundary flux. In this section we shall construct a finite
element approximation to the boundary flux

where n denotes the unit outward normal vector to T'. In order to do so, for u € H,
denoting the weak solution to problem (2.1) and » € H'Y?(T), we consider the weighted
boundary flux, defined by

(2.3) Ny(u) = /Fn ~o(u)ds.

We note that since o(u) € [L?(2)]? and V - o(u) € L?(Q2), according to the trace theorem
(see Theorem 2.2 in [10]), n - o(u)|r is correctly defined as an element of H~'/%(T'), and
Ny(u) is meaningful, provided that the integral over I is interpreted as a duality pairing
between H~'/2(I') and H'/?(T"). Moreover, applying a generalisation of Green’s Identity
(see Theorem 2.2 in [10]), we deduce that, for any v € H,

(2.4) Ny(u) = (o(u), Vo) = (f,0) = a(u,v) = (f,v).

Clearly, the value of the expression a(u,v) — (f,v) on the right-hand side is independent of
the choice of v € H}b. From now on, for the sake of simplicity, we shall always assume that

¢ = v|p for some v € V" in other words, 1 will be supposed to be a continuous piecewice
polynomial of degree k defined on I'. This assumption will be satisfied in our applications.
Motivated by the identity (2.4), we define the approximation NJ}(us) to Ny(u) as follows:

(2.5) N (up) = aup,v) — (f,v), ve V]

We note that, because of (2.2), N}}(uy) is independent of the choice of v € V;}'. Furthermore,
we observe that, in general,

Niun) # [ - otun) wds = Ny(un).

in contrast with identity (2.4) satisfied by the analytical solution u. However, we shall
show below that N;(uy) is the appropriate approximation for Ny (u), rather than Ny (up).
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2.3. Error representation using duality. In order to derive a representation formula
for the error Ny (u) — N, (up,) in the boundary flux, we introduce the following dual problem
in variational form: find ¢ € Hy such that

(2.6) a(v,9) =0  forallv € Hy.
Consider the global error e = u — uy,. Setting v = e in (2.6) we obtain
0 = ale,8) = ale, d — 76) + ale, 76),

where we made use of the fact that the error e is zero on the boundary I'; here 7 : Hi — Vd’}
is a linear operator satisfying the approximation property (2.8) below. Since the definitions
of Ny(u) and Ng(uh) are independent of the choice of v € Hz}} and v € Vdﬁ‘, respectively,
we deduce that

a(eaﬂ-¢) = (a(ua 7T¢) - (fa 7T¢)) - (a(uhaﬂ-¢) - (fa 7T¢)) = Nw(“) - N«Z(Uh)

Thus, we arrive at the error representation formula
(2.7) Ny (u) = Nj(up) = a(e,n¢ — ¢) = a(up, ¢ —7¢) — (f, ¢ — 70)

where, to obtain the last equality, we exploited the fact that u is the weak solution of (2.1)
and that ¢ — m¢ belongs to H}.

2.4. The a posteriori and a priori error estimates. In this section we introduce
a residual quantity associated with the approximate solution u;, and derive a weighted
a posteriori estimate for the error in the approximation to the boundary flux. We then
investigate the order of convergence of the approximation through an a prior: error analysis.

Two basic hypotheses will be required. First, we assume the following local approxima-
tion property: there is a linear operator 7 : Hq}) — V$ such that

(2.8) lv — mv||> + b ||D(v — 70)||, < chl||D%v|,, 1<s<k+1,

for each 7 € T, and ¢ a positive constant, independent of 7, v and h. We note here
that, without altering the basic error analysis that will follow, the right-hand side in this
inequality can be replaced by chg,|[[D*v||s(r), where S(7) is the union of all elements in
the partition whose closure has non-empty intersection with the closure of 7, and
hS(T) N 0677111;13?5(7') ha,

an approximation property of this kind would arise if one took 7w to be the quasi-
interpolant of v (see, for example, [7]). For the sake of notational simplicity, we shall refrain
from doing this and assume (2.8) instead. Second, we make an assumption concerning the
regularity of the dual problem: there is a ¢ > 1 such that for every s, 1 < s < t, there
is a constant Cy such that the solution ¢ to the dual problem (2.6) satisfies the following
estimate:

(2.9) ID*¢lle < CllD*="2¢Ir,
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whenever 1) € H*~'/2(T"). For instance, this bound holds when T' € C*~"! and the entries
of A belong to CI*1(Q), see [10]. For each triangle 7 € 7j, and u;, denoting the solution to
(2.2) in V', we introduce the residual quantity R, (uy) by

(2.10) Re(un) = |V - o (un) + fll- + b2 ([0 o (un)]/2llonr,

where [w] is the jump in w across the faces of elements in the partition, and n is the unit
outward normal vector to O7.

Starting from the error representation (2.7), and estimating the right-hand side using the
Cauchy-Schwarz inequality element-by-element together with the approximation property
(2.8), we arrive the following theorem; its proof will be given in the next section.

Theorem 2.1. Let (2.8) and (2.9) hold, and suppose that p € H*~'/?(T'), a > 1; then we

have that
|Ny(u) — N (up)] < ¢ Z hER(up)wra, 1 <a<min(tk+1),
TET
where ¢ is a constant, the local weight w. o is defined by w,o = ||D*¢||,, and ¢ is the

weak solution of (2.6). Recall that the boundary fluz Ny(u) is defined in (2.3), the discrete
approzimation NJ:(uy) in (2.5), and the residual quantity R, (uy) in (2.10).

Note, in particular, that the power o of h = max;, h, is determined by the approximation
properties of the finite element space, the parameter ¢ in the regularity assumption (2.9),
and the smoothness of the dual solution ¢. To highlight the quality of the approximation
Ng(uh) to Ny(u), we state the following a priori error estimate; its proof is postponed
until the next section.

Theorem 2.2. Assume that (2.8) and (2.9) hold. Supposing that v € H*'/?(T"), a > 1,
andu € H?, 1 < 3 <k + 1, we have that

[Ny (u) = Ny (up)] < ch® 2Dl |D*¢llo, 1 < a < min(t,k+1),
where ¢ is the weak solution of (2.6), ¢ is a constant, and h = max,cr, h.

This estimate shows that, for sufficiently smooth data, the order of convergence of NZ; (up)
to Ny (u) is O(h*). In general, this high order of convergence is not achieved for the naive
approximation fr” - o(up)ds. At least on quasi-uniform meshes, the a posteriori bound

stated in Theorem 2.1 can be proved to be sharp by applying the a priori residual estimate
obtained in [13]; this shows that

and thus the right-hand side of the a posteriori estimate is O(h?%), in agreement with
Theorem 2.2. Furthermore, we observe that since the data ¢ for the dual problem (2.6) is
known, we may calculate the weight w; , by approximating the solution of the dual problem
numerically. The right-hand side of the a posteriori error estimate is thus computable and
can be used for direct quantitative error estimation.
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2.5. Proofs of Theorems 2.1 and 2.2. In this section we present the proofs of Theorems
2.1 and 2.2.

Proof of Theorem 2.1. Starting from the error representation (2.7), and integrating triangle-
by-triangle using Green’s identity, we have

(2.11) Ny(u) = Nji(up) = (o (un), V(¢ — 79)) = (f, ¢ — 7¢)
==Y [(V-ol(un) + )¢ — 7¢)dx

TETL YT

+ E n-o(uy, ¢ —mo)ds
e h/(97-\1"([ ( )]/2)( )
=I1+1I,

where we made use of the fact that ¢, the weak solution of the dual problem (2.6) is in
C%*(Q), for some « in (0,1) (see Theorem 5.24 in [9]), so that [¢ — m¢] = 0 across 7 \ T
for each element 7 in the partition. We now turn to estimating [ and I1. For I, we apply
the Cauchy-Schwarz inequality and use the approximation property (2.8) to obtain

1] < e BV -o(un) + flI 1D~
TET

Next we consider I7. Applying the multiplicative trace inequality, see [7], followed by

the approximation property (2.8) yields
I¢ = 7¢llar < chs™' || D¢,

Thus,
111 < ey Y- o(un)]llonrl D8l

TETH

Substituting the bounds on I and IT into (2.11) and recalling the definition of the
residual quantity (2.10), we deduce that

[No(u) = Njp(un)| < € Y BiRy (un) | D*l-,

TETH

which is the desired estimate. O
Proof of Theorem 2.2. 1t follows from the error representation formula (2.7) that
[Ny (u) = Ny (u")] < e[ Della]| D(¢ — 7)o
A standard energy norm error estimate gives
IDelle < ch”H|D%ullo, 1<B<k+1.

Further, using the approximation property (2.8), we obtain

[Ny (1) = Ny (up)| < ch® 07| DPullo]| D6 la,
for 1 <a < min(k + 1,¢). O
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3. THE STOKES PROBLEM

We now turn to the approximation of the lift and drag coefficients for a flow governed
by the stationary incompressible Navier-Stokes equations. First, we develop the theory
for the Stokes problem, which is a linear elliptic system that approximates the Navier-
Stokes equations at low velocities. In Section 4 we extend our results to the Navier-Stokes
equations.

3.1. The Stokes problem and its finite element approximation. The Stokes prob-
lem, describing the stationary motion of a fluid in a bounded domain Q ¢ R?, d = 2,3,
has the form: find u : @ — R?, and p: Q — R such that

-V O'(U,p) = f in Qa
(3.1) Viu=0 in €,
u=0 on T,

where the components of the stress tensor o(u, p) are defined by

(3.2) 0ij(u, p) = 2pe;;(u) — pdyj, i,7=1,...,d,
and €(u) is the strain tensor, with entries,
(33) eij(u) == (8]uz + 8lu])/2, i, ] = 1, ceey d.

Here and below 0; = 0/0x;. In these equations u denotes the velocity vector of the fluid,
p > 0 is the (constant) viscosity coefficient, p is the pressure, and f denotes the body

forces. Introducing the space Wy, = Wy x M, where Wy = [H{]? and M = L?/R, and the
bilinear forms

d
(34) CL(U, w) =2p Z (eij(v)v ei]'(w))v b(vv q) = _(V U, Q),
i,7=1
the variational form of the Stokes problem reads: find 4 = (u,p) € W, such that
(3.5) A(@,9) = a(u,v) + b(v, p) + b(u, ) = (f,v) forall &€ W,

Here we made use of the fact that (e;;(v), 0;w;) = (€;5(v), €;(w)), which follows from the

symmetry of the strain tensor. Clearly, A(-,-) is a bilinear form on Wy x W.
The finite element approximation of the Stokes problem has the form: find u;, =
(up,pp) € WP = W x M" such that

(3.6) Alap, 8) = (f,v) forall o€ Wh,
where W = [V{]¢ and M"* = V". In order to ensure that this problem has a unique

solution, it suffices to suppose that the spaces W and M" satisfy the inf-sup condition
[10]; we note, however, that the inf-sup condition does not enter explicitly into the a
posteriori error analysis that will be described below.
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3.2. Approximation of the lift and drag coefficients. The traction vector on the
boundary I' has components ijl oi;n;, where n is the unit outward normal to I', and

thus, given that » € [H'/?(T)]?, the force in the direction ¢ on T is given by

d
N¢(ﬂ) = Z /alj(ﬂ)n]zblds
ij=17T
If ¢ is a unit vector parallel with the direction of the flow Ny (%) is called the drag on T',
and if ¢ is a unit vector perpendicular to the direction of the flow Ny (u) is referred to
as the lift on I'. If only a part 'y of the boundary I' is of concern, then ¢ can be taken
to have its support in I'y. Indeed, in most problems of practical interest, I'y is a closed
surface, representing the boundary of an object immersed into the fluid, and T'\ T'y will
then denote the boundary of the container. In addition, in the rest of the paper we shall

assume that
d
E . /ni%‘dS:O,
=1 T

in order to ensure that 1 represents the trace on I' of a divergence-free function that is in
[H' ()"

In complete analogy with the derivation in Section 2.2, we note that upon multiplying
the first equation in (3.1) by v € Wy, = Hj x --- x H , integrating over €2, and using
Green’s identity, we obtain

Ny(a) = (o(a), Vo) = (f,v) = A(a, ) = (f,v),

where in the last equality we made use of the fact that b(u,q) = 0. Further, we note that

the right-hand side is independent of the choice of © € W,,. Motivated by this formula and
our analysis in Section 2, we define the following approximation to Ny (u):

Nl i) = (o(in), Vo) — (£,0) = Aliin, 8) — (f,v),

where o = (v,q) € /I/IZ’; =V x - x VP x M". Again the right-hand side is independent
of the choice of v € WJ}, and thus the definition is correct.

3.3. Error representation using duality. For the representation of the error Ny (i) —

N (i) we introduce the following dual problem in variational form: find é=(p,x) € /Ww
such that

~

(3.7) A(6,¢) =0 forall e W

This problem has a unique weak solution, provided that ¢ € [H'/?(I')]%. Setting o = @ — iy,
in (3.7), we obtain

~

0= At — tp, @) = A( — tp, ¢ — 7G) + Al — iy, ),
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where we added and subtracted ¢ = (m19, M) € /I/IZZ, with 7; and my denoting two
bounded linear operators, to be defined below. Next we observe that

Al — tin, 76) = Ny(@2) — Nj (i)
Thus we obtain the following error representation formula:
(3.8)  Ny() — Nji(i) = A(it — ip, 76 — @) = Aliwn, 6 — 70) — (f, ¢ — m19),
where, in the last equality, we used the fact that @ is the weak solution of (3.5) and that

¢ — g € [Hi(Q)]%

3.4. The a posterior: estimate. In order to derive an a posterior: error estimate, we
shall make two assumptlons First, we adopt the following approximation property: there

exists a linear operator 7 : W¢ — Ww, with 70 = (mv, maq), such that, for each 7 € Ty,
we have

(3.9) lv — mo||- + h||D(v — mo)||- < chi||Dv||,, 1<s<k+1,
(3.10) \lg — maql|, < chi||D%qll,, 1<s<k.

Next we make the following assumption concerning the regularity of the dual problem
(3.7): there exists ¢ > 1 such that for every s, 1 < s < t, there is a constant C; such that
the solution ¢ of the dual problem (3.7) satisfies the following bound:

(3.11) ID*¢llo +1ID*""xllo < CillD*~*9]Ir,

whenever ¢y € H*~'/2(T'). For instance, this estimate is valid when T' € C*~"!, see [10],
[15]. Starting from the error representation formula (3.8) and estimating the right-hand
side using the same technique as in Theorem 2.1, we arrive at the following result.

Theorem 3.1. Let 4 and uy, be the solutions of (3.1) and (3.6) respectively, and suppose
that ¢ € [H*Y2(I))¢, a > 1, and that (3.9), (3.10) and (3.11) hold with t = o then,

[Ny (i) — Np(ii)] < ¢ Z hR.(lp)wre, o <min(t,k+ 1),
TET

where, for each triangle T € T, the residual quantity R,(uy) is defined by
(3.12) R (in) = |V - o (in) + fllr + b7 IV - unll + b7 2 ([0 - o (@n))/2]lor,
and the local weight w, , is given by

wra = 1Dl + 11D,

where ¢ is the solution to (3.7).
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Proof. By considering the error representation formula (3.8), and integrating triangle-by-
triangle using Green’s identity, we have

Ny (u) = N (un) Z/V o(in) + F)(6 — m@)ds

TETH
+Z/ V uh —7T2X)d
T€TH
. ) 2 _ d
DN IRCRINETRERE
(3.13) — [+ IT+1II,

where we made use of the fact that ¢, the weak velocity-solution of the dual problem (3.7)
is in C%%(Q), for some « in (0,1), so that [¢p — m ¢] = 0 across 97 \ T for each element T
in the partition. Now let us estimate I, I] and I11. For I, we apply the Cauchy-Schwarz
inequality and use the approximation property (3.9) to obtain

1] < e BV -o(im) + fl 1Dl
TE€ETH
Similarly,
1) < ey h IV - unll | D7 X
TE€ETH

To deal with 11, we argue in the same manner as for Term II in the proof of Theorem 2.1
to arrive at the following bound:

[11) < ey b2l o(@n)llonel D8l -

TET
Substituting the bounds on I, IT and IIT into (3.13) and recalling the definition of the
residual quantity (3.12), we deduce the desired a posteriori error bound. O

3.5. The a prior: estimate. Proceeding in the same manner as in the case of the scalar
elliptic equation discussed in the previous section, it is also possible to derive an a priori
estimate for the error in the lift and drag coefficients. Indeed, it follows from the error
representation formula (3.8) that

Ny(@) = Nj(in) = a(u — up, m1¢ — @) + b(m16 — ¢, p — pp) + b(u — up, m2x — X),

where (¢, x) is the dual velocity-pressure solution pair. Thus, by the Cauchy-Schwarz
inequality,

[Ny (i) = Ny (i)l < 2p)|D(u = up)lla [|D(6 — m16) |
+ID(¢ = mo)lle llp — palle + [[D(w — un)lla lIx — m2x]lo-
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Assuming that the pair of finite element spaces (WQ, M") satisfies the inf-sup condition
(see, [10]) and that the solution to the Stokes problem and its dual are in [H*1(Q)]¢ x
H*(Q), it follows from this inequality and the approximation properties (3.9), (3.10) that
the error between Ny(u) and NJ(uy) is of size O(h**).

4. THE INCOMPRESSIBLE NAVIER STOKES EQUATION

4.1. Analysis. The stationary incompressible Navier Stokes equations have the form: find
u:Q— R, d=23, and p: Q — R such that

=V-o(u,p) +p(u-Viju=f in Q

(4.1) Veu=0 in €,
u=0 on T,
where ((u-V)v); = Z;l:l u;0;v;, and p is the density of the fluid. The corresponding weak
form reads: find @ € W, such that
(4.2) A(u;u,0) = (f,v) forall o€ W,
where

A(w, @,0) = a(u,v) + b(v,p) + c(w; u,v) + b(u, q).
Here the bilinear forms a(-,-) and b(-,-) are defined in (3.4) and the trilinear form ¢(-; -, -)
is given by
c(w;u,v) = p((w - V)u,v).

We now discretize this problem analogously to the Stokes problem. The convection term
may be dealt with through the use of the streamline diffusion method, for example, [8];
indeed, in our numerical experiments we employ the streamline diffusion finite element
method. However, for simplicity of presentation, we neglect the stabilizing terms in our
analysis and consider the standard Galerkin finite element method, instead.

The approximation of the lift and drag coefficients follows in exactly the same way as
for the Stokes problem. To be precise, the approximation of Ny(4) = A(w; 4, 0) — (f,v),

v E ﬁZp, is defined by
N (i) = Alup; g, ) — (f,0),

with 0 € /I/IZ’;, where 1) is as in Section 3.
For the sake of representing the error Ny (i) — Nj(i), we introduce the following lin-

earized dual problem in variational form: find ¢ = (P, x) € /I/IZ/, such that
(4.3) L(u,up;9,0) =0 forall o= (v,q) € Wo,
where

L(u, up; 0, 0) = a(v, @) + b(b, q) + (u, up; v, ¢) + (v, X),
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and
E(Ua Up; U, ¢) =p ((—’U, ’ V)¢ + (¢ ’ VUh), U) )

with (¢ - Vuy); = Z?Zl ¢;0;u;. This definition of the linearized dual problem is motivated
by the following identity

~

L(u, up; @t — Gn, @) = A(u; ity ¢) — Alun; i, @)

Choosing v = 4 — 1y, in (4.3) we thus obtain

where, as above, we added and subtracted 7ArqA5 € Ww. Next, observing that
Aluy i, 7) — Alup; i, 7d) = Ny(it) — NP (i),
we finally arrive at the error representation formula
(4.4) Ny (@) = Nj(in) = Alug; i, & — 76) — A(us i, ¢ — )
= Alup, iy, & — 79) — (f, ¢ — m0)
where, in the last transition, we made use of the fact that ¢3 — frqAS € /Wg and that « is the
weak solution of (4.2).

Estimating the right-hand side in a similar fashion as in Theorem 2.1, we obtain the
following a posteriori estimate.

Theorem 4.1. Let @ and uy, be the solutions of (4.1) and (4.2), and assume that (3.9),
(8.10) and (3.11) hold for the solution ¢ of (4.3). Supposing that 1 € [H*/2(T)]?, a > 1,

we have that

Ny (i) — N ()| < ¢ Z hOR(tip)wray o < min(t, k + 1),

TET
where, for each triangle T € Ty, the residual quantity R, (uy) is defined by
Re(tn) = |V - o(tn) — plun - V)u, + fl|+
+h IV -l + B2 [0 o (@n))/2]lor,
and the weight w- . is defined by
wra = |D°¢ll; + ID°~ x|l
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4.2. A numerical example. In this section we present a numerical example illustrating
the practical use of our estimates. We consider the computation of the drag coefficient
for a cylinder immersed into a two-dimensional viscous incompressible fluid in a channel,
whose flow is governed by the incompressible Navier-Stokes equations (4.1) with prescribed
inflow velocity, no-slip conditions on the walls of the channel and the cylinder, and free
flow conditions at the outflow. This problem is one of the benchmark problems presented
in [14], and the value, 5.57, of the drag coefficient is determined experimentally.

We approximate the exact flow in the channel by means of the streamline diffusion finite
element method using stabilised piecewise linear approximation for both the velocity v and
the pressure p, see for instance [8]. The discrete equations are solved using a multigrid
method, and the adaptive algorithm is designed so that approximately 40% of the triangles
are refined in each step, depending on the size of h*R(u;)w, 4. In order to compute the
quantities h*R(u;)wy,q, for each triangle 7 € 7T}, we solve the dual problem numerically and
approximate the weight w;, using difference quotients. In this case, ignoring variational
crimes, we expect o = 2, since the boundary data for the dual problem is smooth. In
Figure 1 we present the computed error bound given in Theorem 4.1 and the error in
the drag coefficient as functions of the number of degrees of freedom. The constant ¢ in
Theorem 4.1 is chosen equal to 1/10. The wiggles in the curves arise from the refinement
of the triangles and cancellation phenomena in the computation of Ny ().

In Figure 2 we show the final grid. Note that the refinement is located close to the
cylinder, which is what we expect. Furthermore, in Figures 3 and 4 we present the level
curves of the velocity parallel to the channel of the flow and the dual flow, respectively.
Note that the dual solution is large close to the cylinder indicating that it is important
that the residual is small in this area. For simplicity, we have neglected the influence of
approximating the curved boundary and boundary conditions in the computations.

10° b

107

-
10 . .
10° 10"

FIGURE 1. The error in the drag coefficient and the a posteriori bound in
Theorem 4.1 as functions of the number of degrees of freedom.
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FIGURE 2. The final mesh.

FiGURE 3. The first component of velocity of the flow.

o

FI1GURE 4. The first component of the velocity of the dual flow.
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