
ADAPTIVE ERROR CONTROL FOR FINITE ELEMENTAPPROXIMATIONS OF THE LIFT AND DRAG COEFFICIENTS INVISCOUS FLOWMICHAEL GILES, MATS G. LARSON, J. M�ARTEN LEVENSTAM, AND ENDRE S�ULIAbstract. We derive estimates for the error in a variational approximation of the liftand drag coe�cients of a body immersed into a viscous 
ow governed by the Navier-Stokes equations. The variational approximation is based on computing a certain weightedaverage of a �nite element approximation to the solution of the Navier-Stokes equations.Our main result is an a posteriori estimate that puts a bound on the error in the liftand drag coe�cients in terms of the local mesh size, a local residual quantity, and a localweight describing the local stability properties of an associated linear dual problem. Theweight may be approximated by solving the dual problem numerically. The error bound isthus computable and can be used for quantitative error estimation; we apply it to designan adaptive �nite element algorithm speci�cally for the approximation of the lift and dragcoe�cients.
1. IntroductionOften, the purpose of numerical computations in mathematical modelling of physicalphenomena is to approximate a functional of the analytical solution to a di�erential equa-tion, represented as an integral average of the solution, rather than to obtain accuratepointwise values of the solution itself; in such instances solving the di�erential equationconsidered is only an intermediate stage in the process of computing the primary quan-tities of concern. For example, in 
uid dynamics one may be concerned with calculatingthe lift and drag coe�cients of a body immersed into a viscous incompressible 
uid whose
ow is governed by the Navier-Stokes equations. The lift and drag coe�cients are de�nedas integrals, over the boundary of the body, of the stress tensor components normal andtangential to the 
ow, respectively. Similarly, in elasticity theory, the quantities of primeinterest, such as the stress intensity factor, or the moments of a shell or a plate, are derivedquantities.The objective of this paper is to obtain a posteriori error bounds for �nite element ap-proximations of functionals that arise in 
uid dynamics; speci�cally, we shall be concernedwith the construction and the a posteriori error analysis of �nite element approximations1991 Mathematics Subject Classi�cation. 65N30, 65N15, 65N50.Key words and phrases. Navier-Stokes equations, lift and drag coe�cients, adaptive �nite elementmethod, a posteriori error estimates, mesh re�nement.Submitted to SIAM. J. Num. Anal. 1



2 M. GILES, M. LARSON, M. LEVENSTAM, AND E. S�ULIto the lift and drag coe�cients in a viscous incompressible 
ow, and the implementa-tion of these bounds into an adaptive �nite element algorithm, with reliable and e�cientquantitative control of the error.It is frequently the case that the functional under consideration may be expressed invarious forms which are mutually equivalent at the continuous level but result in verydi�erent approximations under discretisation. Thus it is important to select the appropriaterepresentation of the functional before formulating its discretisation. While this basicidea has been widely exploited in structural mechanics, see [1, 2, 3] and [4], and heatconduction, see [17], in post-processing �nite element approximations, it does not seem tohave penetrated the �eld of computational 
uid dynamics.We approximate the solution û = (u; p) of the Navier-Stokes equations, where u rep-resents the velocity of the 
uid and p its pressure, by means of a �nite element methodusing piecewise polynomials of degree k for u and degree k� 1 for p. Let N (û) denote theboundary integral representing the lift or drag coe�cient, depending on the choice of thefunction  de�ned on the boundary of the computational domain; the precise de�nition ofN (û) will be given in Section 3. Using the di�erential equation we may express N (û)in a variational form, involving test functions that are equal to  on the boundary of thedomain; this form will be the basis for constructing an accurate approximation Nh (ûh) toN (û). Provided the boundary is su�ciently smooth and there are no variational crimes,the order of convergence of Nh (ûh) to N (û) is 2k, while for the naive direct approximationN (ûh) the order of convergence is typically only k.Our main result is a weighted a posteriori estimate for the error N (û)�Nh (ûh) of theform jN (û)�Nh (ûh)j � cX�2Th h��R� (ûh)!�;�;where the sum is taken over the elements � in a triangulation Th of the computationaldomain, h� is the diameter of � ; given that � is a real number with 1 � � � k+1, R� (ûh) isan element residual quantity, !�;� is a local weight, and c = c( ) is a positive constant. Theelement residual quantity R� (ûh) is a computable bound on the actual residual obtainedby inserting the approximate solution into the di�erential equation. The derivation ofthe estimate is based on a representation formula for the error N (û) � Nh (ûh) in termsof the computed solution ûh and the solution to an associated linear dual equation withhomogeneous right-hand side and non-homogeneous boundary data  . The weight !�;�describes the local size of derivatives of order � of the solution to the dual problem. Thedata for the dual problem is known, and therefore the weight can be computed by solvingthe dual problem numerically. Therefore, the right-hand side of the estimate is computableand can be applied to design an adaptive �nite element algorithm for approximatingN (û),and to ensure e�cient quantitative control of the error N (û)� Nh (ûh). The fact, statedabove, that the order of convergence of Nh (ûh) is 2k follows from the error representationformula together with an a priori estimate of the global error û� ûh in the �nite elementmethod. Indeed, for a linear elliptic model problem, it can be shown, using results obtainedin [13], that the a posteriori estimate is sharp.



ERROR CONTROL FOR THE LIFT AND DRAG COEFFICIENTS 3In [6] a weighted a posteriori estimate is given for the error in the lift and the drag;however, unlike our approach, it is based on a direct approximation using N (ûh). For aposteriori estimates of the error û� ûh in �nite element approximations of the solution tothe Navier-Stokes equations in various norms, see [11], [12], [16], and references therein;a general introduction to a posteriori error analysis is given in [8]. Finally we mentionthat an a priori error analysis of the approximation method, employed here, for a linearconvection-di�usion equation, is presented in [5].The remainder of this paper is organized as follows: in order to illustrate the key ideas,in Section 2 we outline the theory for a linear elliptic model problem. In Section 3 weconsider the extension of this analysis to the Stokes system which models the 
ow of aviscous incompressible 
uid at low velocities; we derive an a posteriori estimate of the errorin a �nite element approximation to the lift and drag coe�cients. In Section 4 we furtherextend our results to the Navier-Stokes equations and present numerical computations forthe drag coe�cient of a cylinder in a channel; these illustrate the quality of the adaptiveerror control based on the a posteriori error bound. Finally, in Section 5, we summariseour results and draw some conclusions.2. A model problem2.1. The model problem and the �nite element method. We begin by introducingsome notation. Let 
 be a bounded domain in Rd, d = 2 or 3; with Lipschitz-continuousboundary �. For an open set K in Rd, let L2(K) signify the space of real-valued square-integrable functions on K, with norm k � kK; Hs(K) will denote the Sobolev space of realindex s, equipped with the norm k � kHs(K) and corresponding seminorm j � jHs(K); with aslight abuse of the notation, we shall frequently write kDsukK instead of jujHs(K), s > 0.Given that  is an element of H1=2(�), we let H1 = H1 (
) denote the space of all v inH1 = H1(
) which satisfy the Dirichlet boundary condition vj� =  . Finally, we adoptthe following notational convention: generic constants that are independent of the problemand the mesh size are denoted by c, while constants that depend on the problem but noton the mesh size are labelled C, with a subscript when necessary.As a �rst model problem we consider the boundary-value problem�r � �(u) = f in 
; u = 0 on �;(2.1)where f 2 L2 = L2(
) and �(u) = Aru, with A a uniformly positive de�nite d � dmatrix, with continuous real-valued entries de�ned on 
. This problem has a uniqueweak solution u 2 H10 . In order to de�ne the corresponding �nite element approximation,we introduce a family of �nite-dimensional spaces V h contained in H1, which consist ofcontinuous piecewise polynomials of degree k de�ned on a triangulation Th of 
. We denotethe diameter of a triangle � 2 Th by h� . It will always be assumed that the triangulation isshape-regular, i.e., there exists a positive constant c such that vol(�) � c hd� ; where vol(�) isthe d�dimensional volume of � . Further, for each function  2 H1=2(�) such that  = vj�for some v 2 V h, we let V h � V h be the space of all w 2 V h with wj� =  . In particular,V h0 is the space of all v 2 V h which vanish on the boundary �.



4 M. GILES, M. LARSON, M. LEVENSTAM, AND E. S�ULIThe �nite element approximation of (2.1) reads: �nd uh 2 V h0 such thata(uh; v) = (f; v) for all v 2 V h0 .(2.2)Here and below (�; �) denotes the scalar product in L2 and a(v; w) = (�(v);rw) =(rv; ATrw), for v; w 2 H1, where AT is the transpose of A.2.2. Approximation of the boundary 
ux. In this section we shall construct a �niteelement approximation to the boundary 
uxN(u) = Z� n � �(u) ds;where n denotes the unit outward normal vector to �. In order to do so, for u 2 H10denoting the weak solution to problem (2.1) and  2 H1=2(�), we consider the weightedboundary 
ux, de�ned by N (u) = Z� n � �(u) ds:(2.3)We note that since �(u) 2 [L2(
)]d and r � �(u) 2 L2(
), according to the trace theorem(see Theorem 2.2 in [10]), n � �(u)j� is correctly de�ned as an element of H�1=2(�), andN (u) is meaningful, provided that the integral over � is interpreted as a duality pairingbetween H�1=2(�) and H1=2(�). Moreover, applying a generalisation of Green's Identity(see Theorem 2.2 in [10]), we deduce that, for any v 2 H1 ,N (u) = (�(u);rv)� (f; v) = a(u; v)� (f; v):(2.4)Clearly, the value of the expression a(u; v)� (f; v) on the right-hand side is independent ofthe choice of v 2 H1 . From now on, for the sake of simplicity, we shall always assume that = vj� for some v 2 V h; in other words,  will be supposed to be a continuous piecewicepolynomial of degree k de�ned on �. This assumption will be satis�ed in our applications.Motivated by the identity (2.4), we de�ne the approximation Nh (uh) to N (u) as follows:Nh (uh) = a(uh; v)� (f; v); v 2 V h :(2.5)We note that, because of (2.2), Nh (uh) is independent of the choice of v 2 V h . Furthermore,we observe that, in general,Nh (uh) 6= Z� n � �(uh) ds = N (uh);in contrast with identity (2.4) satis�ed by the analytical solution u. However, we shallshow below that Nh (uh) is the appropriate approximation for N (u), rather than N (uh).



ERROR CONTROL FOR THE LIFT AND DRAG COEFFICIENTS 52.3. Error representation using duality. In order to derive a representation formulafor the error N (u)�Nh (uh) in the boundary 
ux, we introduce the following dual problemin variational form: �nd � 2 H1 such thata(v; �) = 0 for all v 2 H10 :(2.6)Consider the global error e = u� uh. Setting v = e in (2.6) we obtain0 = a(e; �) = a(e; �� ��) + a(e; ��);where we made use of the fact that the error e is zero on the boundary �; here � : H1 ! V h is a linear operator satisfying the approximation property (2.8) below. Since the de�nitionsof N (u) and Nh (uh) are independent of the choice of v 2 H1 and v 2 V h , respectively,we deduce thata(e; ��) = �a(u; ��)� (f; ��)�� �a(uh; ��)� (f; ��)� = N (u)�Nh (uh):Thus, we arrive at the error representation formulaN (u)�Nh (uh) = a(e; ��� �) = a(uh; �� ��)� (f; �� ��)(2.7)where, to obtain the last equality, we exploited the fact that u is the weak solution of (2.1)and that �� �� belongs to H10 .2.4. The a posteriori and a priori error estimates. In this section we introducea residual quantity associated with the approximate solution uh and derive a weighteda posteriori estimate for the error in the approximation to the boundary 
ux. We theninvestigate the order of convergence of the approximation through an a priori error analysis.Two basic hypotheses will be required. First, we assume the following local approxima-tion property: there is a linear operator � : H1 ! V h such thatkv � �vk� + h�kD(v � �v)k� � chs�kDsvk� ; 1 � s � k + 1;(2.8)for each � 2 Th, and c a positive constant, independent of � , v and h. We note herethat, without altering the basic error analysis that will follow, the right-hand side in thisinequality can be replaced by chsS(�)kDsvkS(�), where S(�) is the union of all elements inthe partition whose closure has non-empty intersection with the closure of � , andhS(�) = max�2Th;��S(�) h�;an approximation property of this kind would arise if one took �v to be the quasi-interpolant of v (see, for example, [7]). For the sake of notational simplicity, we shall refrainfrom doing this and assume (2.8) instead. Second, we make an assumption concerning theregularity of the dual problem: there is a t � 1 such that for every s, 1 � s � t, thereis a constant Cs such that the solution � to the dual problem (2.6) satis�es the followingestimate: kDs�k
 � CskDs�1=2 k�;(2.9)



6 M. GILES, M. LARSON, M. LEVENSTAM, AND E. S�ULIwhenever  2 Hs�1=2(�). For instance, this bound holds when � 2 Cs�1;1 and the entriesof A belong to C [s](
), see [10]. For each triangle � 2 Th and uh denoting the solution to(2.2) in V h0 , we introduce the residual quantity R� (uh) byR� (uh) = kr � �(uh) + fk� + h�1=2� k[n � �(uh)]=2k@�n�;(2.10)where [w] is the jump in w across the faces of elements in the partition, and n is the unitoutward normal vector to @� .Starting from the error representation (2.7), and estimating the right-hand side using theCauchy-Schwarz inequality element-by-element together with the approximation property(2.8), we arrive the following theorem; its proof will be given in the next section.Theorem 2.1. Let (2.8) and (2.9) hold, and suppose that  2 H��1=2(�), � � 1; then wehave that jN (u)�Nh (uh)j � cX�2Th h��R� (uh)!�;�; 1 � � � min(t; k + 1);where c is a constant, the local weight !�;� is de�ned by !�;� = kD��k� , and � is theweak solution of (2.6). Recall that the boundary 
ux N (u) is de�ned in (2.3), the discreteapproximation Nh (uh) in (2.5), and the residual quantity R� (uh) in (2.10).Note, in particular, that the power � of h = max� h� is determined by the approximationproperties of the �nite element space, the parameter t in the regularity assumption (2.9),and the smoothness of the dual solution �. To highlight the quality of the approximationNh (uh) to N (u), we state the following a priori error estimate; its proof is postponeduntil the next section.Theorem 2.2. Assume that (2.8) and (2.9) hold. Supposing that  2 H��1=2(�), � � 1;and u 2 H�, 1 � � � k + 1, we have thatjN (u)�Nh (uh)j � ch�+��2kD�uk
 kD��k
; 1 � � � min(t; k + 1);where � is the weak solution of (2.6), c is a constant, and h = max�2Th h� .This estimate shows that, for su�ciently smooth data, the order of convergence ofNh (uh)to N (u) is O(h2k). In general, this high order of convergence is not achieved for the naiveapproximation R� n � �(uh)ds. At least on quasi-uniform meshes, the a posteriori boundstated in Theorem 2.1 can be proved to be sharp by applying the a priori residual estimateobtained in [13]; this shows that�X�2ThR2� (uh)�1=2 = O(hk�1);and thus the right-hand side of the a posteriori estimate is O(h2k), in agreement withTheorem 2.2. Furthermore, we observe that since the data  for the dual problem (2.6) isknown, we may calculate the weight !�;� by approximating the solution of the dual problemnumerically. The right-hand side of the a posteriori error estimate is thus computable andcan be used for direct quantitative error estimation.



ERROR CONTROL FOR THE LIFT AND DRAG COEFFICIENTS 72.5. Proofs of Theorems 2.1 and 2.2. In this section we present the proofs of Theorems2.1 and 2.2.Proof of Theorem 2.1. Starting from the error representation (2.7), and integrating triangle-by-triangle using Green's identity, we haveN (u)�Nh (uh) = (�(uh);r(�� ��))� (f; �� ��)(2.11) = �X�2Th Z� (r � �(uh) + f)(�� ��)dx+ X�2Th Z@�n�([n � �(uh)]=2)(�� ��)ds= I + II;where we made use of the fact that �, the weak solution of the dual problem (2.6) is inC0;�(
), for some � in (0; 1) (see Theorem 5.24 in [9]), so that [�� ��] = 0 across @� n �for each element � in the partition. We now turn to estimating I and II. For I, we applythe Cauchy-Schwarz inequality and use the approximation property (2.8) to obtainjIj � cX�2Th hs�kr � �(uh) + fk�kDs�k� :Next we consider II. Applying the multiplicative trace inequality, see [7], followed bythe approximation property (2.8) yieldsk�� ��k@� � chs�1=2� kDs�k� :Thus, jIIj � cX�2Th hs�1=2� k[n � �(uh)]k@�n�kDs�k� :Substituting the bounds on I and II into (2.11) and recalling the de�nition of theresidual quantity (2.10), we deduce thatjN (u)�Nh (uh)j � cX�2Th hs�R� (uh)kDs�k� ;which is the desired estimate.Proof of Theorem 2.2. It follows from the error representation formula (2.7) thatjN (u)�Nh (uh)j � ckDek
kD(�� ��)k
:A standard energy norm error estimate giveskDek
 � ch��1kD�uk
; 1 � � � k + 1:Further, using the approximation property (2.8), we obtainjN (u)�Nh (uh)j � ch�+��2kD�uk
kD��k
;for 1 � � � min(k + 1; t).



8 M. GILES, M. LARSON, M. LEVENSTAM, AND E. S�ULI3. The Stokes problemWe now turn to the approximation of the lift and drag coe�cients for a 
ow governedby the stationary incompressible Navier-Stokes equations. First, we develop the theoryfor the Stokes problem, which is a linear elliptic system that approximates the Navier-Stokes equations at low velocities. In Section 4 we extend our results to the Navier-Stokesequations.3.1. The Stokes problem and its �nite element approximation. The Stokes prob-lem, describing the stationary motion of a 
uid in a bounded domain 
 � Rd, d = 2; 3;has the form: �nd u : 
! Rd; and p : 
! R such that�r � �(u; p) = f in 
;r � u = 0 in 
;(3.1) u = 0 on �;where the components of the stress tensor �(u; p) are de�ned by�ij(u; p) = 2��ij(u)� p�ij; i; j = 1; : : : ; d;(3.2)and �(u) is the strain tensor, with entries,�ij(u) = (@jui + @iuj)=2; i; j = 1; : : : ; d:(3.3)Here and below @j = @=@xj . In these equations u denotes the velocity vector of the 
uid,� > 0 is the (constant) viscosity coe�cient, p is the pressure, and f denotes the bodyforces. Introducing the space cW0 = W0 �M; where W0 = [H10 ]d and M = L2=R, and thebilinear forms a(v; w) = 2� dXi;j=1(�ij(v); �ij(w)); b(v; q) = �(r � v; q);(3.4)the variational form of the Stokes problem reads: �nd û = (u; p) 2 cW0 such thatA(û; v̂) � a(u; v) + b(v; p) + b(u; q) = (f; v) for all v̂ 2 cW0:(3.5)Here we made use of the fact that (�ij(v); @jwi) = (�ij(v); �ij(w)), which follows from thesymmetry of the strain tensor. Clearly, A(�; �) is a bilinear form on cW0 �cW0.The �nite element approximation of the Stokes problem has the form: �nd ûh =(uh; ph) 2 cW h0 =W h0 �Mh such thatA(ûh; v̂) = (f; v) for all v̂ 2 cW h0 ;(3.6)where W h0 = [V h0 ]d and Mh = V h. In order to ensure that this problem has a uniquesolution, it su�ces to suppose that the spaces W h0 and Mh satisfy the inf-sup condition[10]; we note, however, that the inf-sup condition does not enter explicitly into the aposteriori error analysis that will be described below.



ERROR CONTROL FOR THE LIFT AND DRAG COEFFICIENTS 93.2. Approximation of the lift and drag coe�cients. The traction vector on theboundary � has components Pdj=1 �ijnj, where n is the unit outward normal to �, andthus, given that  2 [H1=2(�)]d, the force in the direction  on � is given byN (û) = dXi;j=1Z� �ij(û)nj ids:If  is a unit vector parallel with the direction of the 
ow N (û) is called the drag on �,and if  is a unit vector perpendicular to the direction of the 
ow N (û) is referred toas the lift on �. If only a part �0 of the boundary � is of concern, then  can be takento have its support in �0. Indeed, in most problems of practical interest, �0 is a closedsurface, representing the boundary of an object immersed into the 
uid, and � n �0 willthen denote the boundary of the container. In addition, in the rest of the paper we shallassume that Xdi=1 Z� ni  i ds = 0;in order to ensure that  represents the trace on � of a divergence-free function that is in[H1(
)]d.In complete analogy with the derivation in Section 2.2, we note that upon multiplyingthe �rst equation in (3.1) by v 2 W = H1 1 � � � � � H1 d, integrating over 
, and usingGreen's identity, we obtainN (û) = (�(û);rv)� (f; v) = A(û; v̂)� (f; v);where in the last equality we made use of the fact that b(u; q) = 0. Further, we note thatthe right-hand side is independent of the choice of v̂ 2 cW . Motivated by this formula andour analysis in Section 2, we de�ne the following approximation to N (û):Nh (ûh) = (�(ûh);rv)� (f; v) = A(ûh; v̂)� (f; v);where v̂ = (v; q) 2 cW h = V h 1 � � � � � V h d �Mh. Again the right-hand side is independentof the choice of v̂ 2 cW h , and thus the de�nition is correct.3.3. Error representation using duality. For the representation of the error N (û)�Nh (ûh) we introduce the following dual problem in variational form: �nd �̂ = (�; �) 2 cW such that A(v̂; �̂) = 0 for all v̂ 2 cW0:(3.7)This problem has a unique weak solution, provided that  2 [H1=2(�)]d. Setting v̂ = û� ûhin (3.7), we obtain0 = A(û� ûh; �̂) = A(û� ûh; �̂� �̂�̂) + A(û� ûh; �̂�̂);



10 M. GILES, M. LARSON, M. LEVENSTAM, AND E. S�ULIwhere we added and subtracted �̂�̂ = (�1�; �2�) 2 cW h , with �1 and �2 denoting twobounded linear operators, to be de�ned below. Next we observe thatA(û� ûh; �̂�̂) = N (û)�Nh (ûh):Thus we obtain the following error representation formula:N (û)�Nh (ûh) = A(û� ûh; �̂�̂� �̂) = A(ûh; �̂� �̂�̂)� (f; �� �1�);(3.8)where, in the last equality, we used the fact that û is the weak solution of (3.5) and that�̂� �̂�̂ 2 [H10 (
)]d.3.4. The a posteriori estimate. In order to derive an a posteriori error estimate, weshall make two assumptions. First, we adopt the following approximation property: thereexists a linear operator �̂ : cW ! cW h , with �̂v̂ = (�1v; �2q), such that, for each � 2 Th,we have kv � �1vk� + h�kD(v � �1v)k� � chs�kDsvk� ; 1 � s � k + 1;(3.9) kq � �2qk� � chs�kDsqk� ; 1 � s � k:(3.10)Next we make the following assumption concerning the regularity of the dual problem(3.7): there exists t � 1 such that for every s, 1 � s � t, there is a constant Cs such thatthe solution � of the dual problem (3.7) satis�es the following bound:kDs�k
 + kDs�1�k
 � CskDs�1=2 k�;(3.11)whenever  2 Hs�1=2(�). For instance, this estimate is valid when � 2 Cs�1;1, see [10],[15]. Starting from the error representation formula (3.8) and estimating the right-handside using the same technique as in Theorem 2.1, we arrive at the following result.Theorem 3.1. Let û and ûh be the solutions of (3.1) and (3.6) respectively, and supposethat  2 [H��1=2(�)]d, � � 1, and that (3.9), (3.10) and (3.11) hold with t = �; then,jN (û)�Nh (ûh)j � cX�2Th h�R� (ûh)!�;�; � � min(t; k + 1);where, for each triangle � 2 Th, the residual quantity R� (ûh) is de�ned byR� (ûh) = kr � �(ûh) + fk� + h�1� kr � uhk� + h�1=2� k[n � �(ûh)]=2k@� ;(3.12)and the local weight !�;� is given by!�;� = kD��k� + kD��1�k� ;where �̂ is the solution to (3.7).



ERROR CONTROL FOR THE LIFT AND DRAG COEFFICIENTS 11Proof. By considering the error representation formula (3.8), and integrating triangle-by-triangle using Green's identity, we haveN (u)�Nh (uh) = �X�2Th Z� (r � �(ûh) + f)(�� �1�)dx+ X�2Th Z� (r � uh)(�� �2�)dx+ X�2Th Z@�n�([n � �(ûh)]=2)(�� �1�)ds= I + II + III;(3.13)where we made use of the fact that �, the weak velocity-solution of the dual problem (3.7)is in C0;�(
), for some � in (0; 1), so that [�� �1�] = 0 across @� n � for each element �in the partition. Now let us estimate I, II and III. For I, we apply the Cauchy-Schwarzinequality and use the approximation property (3.9) to obtainjIj � cX�2Th hs�kr � �(ûh) + fk�kDs�k� :Similarly, jIIj � cX�2Th hs�1� kr � uhk�kDs�1�k� :To deal with III, we argue in the same manner as for Term II in the proof of Theorem 2.1to arrive at the following bound:jIIIj � cX�2Th hs�1=2� k[n � �(ûh)]k@�n�kDs�k� :Substituting the bounds on I, II and III into (3.13) and recalling the de�nition of theresidual quantity (3.12), we deduce the desired a posteriori error bound.3.5. The a priori estimate. Proceeding in the same manner as in the case of the scalarelliptic equation discussed in the previous section, it is also possible to derive an a prioriestimate for the error in the lift and drag coe�cients. Indeed, it follows from the errorrepresentation formula (3.8) thatN (û)�Nh (ûh) = a(u� uh; �1�� �) + b(�1�� �; p� ph) + b(u� uh; �2�� �);where (�; �) is the dual velocity-pressure solution pair. Thus, by the Cauchy-Schwarzinequality,jN (û)�Nh (ûh)j � 2�kD(u� uh)k
 kD(�� �1�)k
+kD(�� �1�)k
 kp� phk
 + kD(u� uh)k
 k�� �2�k
:



12 M. GILES, M. LARSON, M. LEVENSTAM, AND E. S�ULIAssuming that the pair of �nite element spaces (W h0 ;Mh) satis�es the inf-sup condition(see, [10]) and that the solution to the Stokes problem and its dual are in [Hk+1(
)]d �Hk(
), it follows from this inequality and the approximation properties (3.9), (3.10) thatthe error between N (u) and Nh (uh) is of size O(h2k).4. The incompressible Navier Stokes Equation4.1. Analysis. The stationary incompressible Navier Stokes equations have the form: �ndu : 
! Rd; d = 2; 3; and p : 
! R such that�r � �(u; p) + �(u � r)u = f in 
;r � u = 0 in 
;(4.1) u = 0 on �;where ((u �r)v)i =Pdj=1 uj@jvi, and � is the density of the 
uid. The corresponding weakform reads: �nd û 2 cW0 such thatA(u; û; v̂) = (f; v) for all v̂ 2 cW0;(4.2)where A(w; û; v̂) = a(u; v) + b(v; p) + c(w; u; v) + b(u; q):Here the bilinear forms a(�; �) and b(�; �) are de�ned in (3.4) and the trilinear form c(�; �; �)is given by c(w; u; v) = �((w � r)u; v):We now discretize this problem analogously to the Stokes problem. The convection termmay be dealt with through the use of the streamline di�usion method, for example, [8];indeed, in our numerical experiments we employ the streamline di�usion �nite elementmethod. However, for simplicity of presentation, we neglect the stabilizing terms in ouranalysis and consider the standard Galerkin �nite element method, instead.The approximation of the lift and drag coe�cients follows in exactly the same way asfor the Stokes problem. To be precise, the approximation of N (û) = A(u; û; v̂) � (f; v),v̂ 2 cW , is de�ned by Nh (ûh) = A(uh; ûh; v̂)� (f; v);with v̂ 2 cW h , where  is as in Section 3.For the sake of representing the error N (û) � Nh (ûh), we introduce the following lin-earized dual problem in variational form: �nd �̂ = (�; �) 2 cW such thatL(u; uh; v̂; �̂) = 0 for all v̂ = (v; q) 2 cW0;(4.3)where L(u; uh; v̂; �̂) = a(v; �) + b(�; q) + c(u; uh; v; �) + b(v; �);



ERROR CONTROL FOR THE LIFT AND DRAG COEFFICIENTS 13and c(u; uh; v; �) = � ((�u � r)�+ (� � ruh); v) ;with (� � ruh)i =Pdj=1 �j@iuj. This de�nition of the linearized dual problem is motivatedby the following identityL(u; uh; û� ûh; �̂) = A(u; û; �̂)� A(uh; ûh; �̂):Choosing v̂ = û� ûh in (4.3) we thus obtain0 = L(u; uh; û� ûh; �̂)= A(u; û; �̂)� A(uh; ûh; �̂)= A(u; û; �̂� �̂�̂)� A(uh; ûh; �̂� �̂�̂)+ A(u; û; �̂�̂)� A(uh; ûh; �̂�̂);where, as above, we added and subtracted �̂�̂ 2 cW . Next, observing thatA(u; û; �̂�̂)� A(uh; ûh; �̂�̂) = N (û)�Nh (ûh);we �nally arrive at the error representation formulaN (û)�Nh (ûh) = A(uh; ûh; �̂� �̂�̂)� A(u; û; �̂� �̂�̂)(4.4) = A(uh; ûh; �̂� �̂�̂)� (f; �� �1�)where, in the last transition, we made use of the fact that �̂� �̂�̂ 2 cW0 and that û is theweak solution of (4.2).Estimating the right-hand side in a similar fashion as in Theorem 2.1, we obtain thefollowing a posteriori estimate.Theorem 4.1. Let û and uh be the solutions of (4.1) and (4.2), and assume that (3.9),(3.10) and (3.11) hold for the solution �̂ of (4.3). Supposing that  2 [H��1=2(�)]d, � � 1,we have that jN (û)�Nh (ûh)j � cX�2Th h�R� (ûh)!�;�; � � min(t; k + 1);where, for each triangle � 2 Th, the residual quantity R� (ûh) is de�ned byR� (ûh) = kr � �(ûh)� �(uh � r)uh + fk�+ h�1� kr � uhk� + h�1=2� k[n � �(ûh)]=2k@� ;and the weight !�;� is de�ned by!�;� = kDs�k� + kDs�1�k� :



14 M. GILES, M. LARSON, M. LEVENSTAM, AND E. S�ULI4.2. A numerical example. In this section we present a numerical example illustratingthe practical use of our estimates. We consider the computation of the drag coe�cientfor a cylinder immersed into a two-dimensional viscous incompressible 
uid in a channel,whose 
ow is governed by the incompressible Navier-Stokes equations (4.1) with prescribedin
ow velocity, no-slip conditions on the walls of the channel and the cylinder, and free
ow conditions at the out
ow. This problem is one of the benchmark problems presentedin [14], and the value, 5:57, of the drag coe�cient is determined experimentally.We approximate the exact 
ow in the channel by means of the streamline di�usion �niteelement method using stabilised piecewise linear approximation for both the velocity u andthe pressure p, see for instance [8]. The discrete equations are solved using a multigridmethod, and the adaptive algorithm is designed so that approximately 40% of the trianglesare re�ned in each step, depending on the size of h�R(uj)!�;�. In order to compute thequantities h�R(uj)!�;�, for each triangle � 2 Th, we solve the dual problem numerically andapproximate the weight !�;� using di�erence quotients. In this case, ignoring variationalcrimes, we expect � = 2, since the boundary data for the dual problem is smooth. InFigure 1 we present the computed error bound given in Theorem 4.1 and the error inthe drag coe�cient as functions of the number of degrees of freedom. The constant c inTheorem 4.1 is chosen equal to 1=10. The wiggles in the curves arise from the re�nementof the triangles and cancellation phenomena in the computation of Nh (ûh).In Figure 2 we show the �nal grid. Note that the re�nement is located close to thecylinder, which is what we expect. Furthermore, in Figures 3 and 4 we present the levelcurves of the velocity parallel to the channel of the 
ow and the dual 
ow, respectively.Note that the dual solution is large close to the cylinder indicating that it is importantthat the residual is small in this area. For simplicity, we have neglected the in
uence ofapproximating the curved boundary and boundary conditions in the computations.
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Figure 1. The error in the drag coe�cient and the a posteriori bound inTheorem 4.1 as functions of the number of degrees of freedom.
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Figure 2. The �nal mesh.

Figure 3. The �rst component of velocity of the 
ow.
Figure 4. The �rst component of the velocity of the dual 
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