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Abstract

The purpose of a reservoir offset is to enable the application of calibration data
(u(0), e.g. Stuiver et al. 1998) developed for one reservoir (primary reservoir) to
CRA’s from another (secondary reservoir). The usual approach has been to define
the activity of the secondary reservoir as some form of constant offset (with error)
from the primary reservoir (e.g. Stuiver and Braziunas 1993). In this case CRA’s
from a secondary reservoir are not independent. However, the standard procedure for
incorporating offset error into calibrated distributions assumes that the CRA’s from
secondary reservoirs are independent (e.g. Stuiver and Reimer 1993), accordingly
the calibrated distributions are incorrect. In many cases this calculation error will
be insignificant, however the calculation error will be significant in some situations
and approaches such as sample based Bayesian inference need to be adopted if a non
independent reservoir offset is applied.

1 Introduction

Reservoir offsets are commonly applied in the calibration of conventional radiocarbon
ages (CRA’s) deriving from reservoirs for which primary calibration data are unavail-
able. An offset is itself a measurement and is published with an associated standard
error. The contribution of this uncertainty to the final uncertainty in the calibrated
date must be taken into account when that CRA is calibrated. Suppose K CRA’s



(yi, t = 1,2...K) are measured, with corresponding standard errors (o, i = 1,2...K)
and the offset for the reservoir in question has been measured to be § with standard
error os. Standard practice is to combine the error in the CRA with the error in the
offset to produce a single number o] taking into account the two sources of error, i.e.

o, =10} + 0} (1)

Surprisingly enough this is not the correct calculation to do. Let R denote the un-
known true offset for the reservoir in question. The problem is that the formula above
treats R as a quantity which varies independently and normaly from one CRA to the
next, with mean equal to the observed offset § and standard deviation os. This is not
how we imagine the offset behaving. It is indeed assumed to have a normal distribu-
tion about ¢, but nature has applied exactly the same offset R to each CRA in the
R-reservoir. There may be some merit in treating the offset as a quantity that varies
from one CRA to another, even within a single reservoir, but this in not in any case
the correct way to quantify that variation.

In order to correctly incorporate reservoir offset error into calibrated distributions it
is necessary to identify an appropriate observation model.

2 Observation models

Let 6; denote the calibrated age parameter associated with the ith CRA. The obser-
vation model (model 1) which we believe is intended for CRA’s (y;, i = 1,2... K)
from the R-reservoir is

yi = 1(0;) + € +€(6;) + R (2)
e; ~ N(0,0;))
€(0;) ~ N(0,0,(6:))
R~ N(6,05)

According to this model the process mapping a calibrated date 6; to a CRA y; is as
follows: first there is the deterministic calibration p(6); this is offset by R to take
us from the calibration reservoir to the R-reservoir; to this we add a normal random
quantity €(6;) arising from uncertainty o,(6;) in the calibration curve p; the CRA
measurement yielding y; adds another normal random quantity ¢;. We do not know
the values of the quantities R, €(f;) and ¢;, but we do know, or can at least model,
their distributions. Thus the random variation €(6;) arising from uncertainty in the
calibration curve is treated a normal random variable with distribution N(0,0,(6;)),
that is, mean zero and standard deviation 0,(6;). These formulae determine an
explicit formula for the likelihood of 6; given the data ;.

In this case it is not possible to algebraically combine the model error terms to
generate an error for y; after Equation 1. However, the standard approach is to



combine the error terms as given in Equation 1. This calculation follows from an
assumption that the CRA’s are independent according to the following observation
model (model 2).

yi = 1(0;) + € + €(0;) + R (3)
e~ N(0,0;))
€(6;) ~ N(0,0(6;)
R; ~ N(0,05)

where the reservoir offset is allowed to differ between each CRA.

Clearly error combination according to Equation 1 is at odds with the assumption that
there is a constant reservoir offset (i.e. Equation 2). It is easy to visualise the problem.
When the uncertainty in the offset is large, and the analysis is done in the usual way,
with independent offsets as in model 2, each calibrated date moves independently
over the range allowed by the uncertainty in the J-measurement. However, when the
analysis is performed under model 1 all the calibrated dates move as a group over
their range: their CRA’s suffer a uniform offset, and it is the uncertainty in that
common offset leads to uncertainty in the age of the dates as a group. In that case
model 2 leads to a greater span in the values of the calibrated dates than model 1.

Unfortunately is is not straightforward to take proper account of the offset mea-
surement uncertainty in model 1 without using simulation-based statistical analysis.
However, software packages which implement simulation-based analysis are now in
widespread use (e.g. BCal Buck, Christen, and James 1999;0xcal Ramsey 1995;Date-
lab Jones and Nicholls 1999), and may easily be modified to take account of the issue
we raise here.

3 Experiments

In practice the difference between the two methods is slight when the error term
associated with the reservoir offset is small. However, where reservoir offset errors
are large the differences can be significant. This can be demonstrated via a simple
example consisting of two dates. Here we consider two dates (NZ-7755: BP, WK-
2548: BP) which relate to the same reservoir and derive from the same archaeological
stratum (Anderson, Smith, and Higham 1996). If we artificially vary the associated
offset error it can be observed that the degree of correlation between the calibrated
dates differs under the two models (Figure 1). In practice this exerts most influence
on statistics such as the difference in age, or span, between the two dated samples
(Figures 2). Under a constant offset model (model 1, Equation 2) the mean difference
in age and distribution of span for the two samples is largely independent of the offset
error. However, under an independent offset observation model (model 2, Equation 3)
the mean difference in age and span is more strongly correlated with the size of the
offset error.



Obviously the degree to which critical differences in statistics and calibrated distribu-
tions occur between constant and independent offset models varies depending upon
the problem under consideration. While the magnitude of error at which a significant
effect occurs in the example presented are not common, more extreme examples can
be found. The most significant routine reservoir offset calculation errors are likely
to occur with marine samples where reservoir offsets with larger errors occur (Stu-
iver and Braziunas 1993). It should also be noted that this has implications for the
calculation of marine calibration data derived from terrestrial data.

4 Conclusion

In the case that an independant reservoir offset is assumed (i.e. Equation 3), the
incorporation of offset error into calibration calculations using Equation 1 is appro-
priate. However, other approaches should be adopted if a constant or other non-
independant reservoir offset is applied (e.g. Equation 2). The use of a constant offset
that renders the observed CRA’s non-independant can be calculated via approaches
such as sampled based bayesian inference where the appropriate observation model
is applied.

Most available calibration software packages only implement reservoir offsets ac-
cording to the observation model given in Equation 3, and accordingly may not
be appropriate for calibration where a constant reservoir offset is assumed. It is
currently possible to calibrate CRA’s according to the observation models given
in both Equations 2 and 3 with the Datelab analysis package (Jones and Nicholls
1999,n.d.;www.car.auckland.ac.nz). Further technical details may be found in (Nicholls
and Jones 1998).

Other calibrated likelihood models can be developed to incorporate factors such as
temporal variance in the reservoir offset. However, all models other than the one
assuming independence require analysis via a method such as sample based Bayesian
inference.

A similar issue to the one discussed here appears in the treatment of the standard
errors in the calibration curve itself. The problem is that these errors are correlated
along the curve. This is considered in (Christen and Nicholls 2000) where it is shown
that the effect will be unimportant except possibly for high precision measurements
in which several dates have very nearly equal calibrated values.
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Figure 1: Correlation Plots of N7 7755 vs WK 2546
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Figure 2: Span as a function of offset error under model 1 and model 2



