
A Framework for Dialogue Data Collection with a Simulated ASR Channel

Matthew N. Stuttle, Jason D. Williams and Steve Young

Cambridge University Engineering Department
Trumpington Street, Cambridge, CB2 1PZ, United Kingdom�

mns25, jdw30, sjy � @eng.cam.ac.uk

Abstract

The application of machine learning methods to the dialogue
management component of spoken dialogue systems is a grow-
ing research area. Whereas traditional methods use hand-
crafted rules to specify a dialogue policy, machine learning
techniques seek to learn dialogue behaviours from a corpus of
training data. In this paper, we identify the properties of a
corpus suitable for training machine-learning techniques, and
propose a framework for collecting dialogue data. The ap-
proach is akin to a “Wizard of Oz” set-up with a “wizard” and
a “user”, but introduces several novel variations to simulate
the ASR communication-channel. Specifically, a turn-taking
model common in spoken dialogue system is used, and rather
than hearing the user directly, the wizard sees simulated speech
recognition results on a screen. The simulated recognition re-
sults are produced with an error-generation algorithm which al-
lows the target WER to be adjusted. An evaluation of the algo-
rithm is presented.

1. Introduction

The dialogue management component of a spoken dialogue sys-
tem (SDS) has traditionally been authored using hand-crafted
rules or states. These specify exactly what a system should do in
all possible dialogue situations. Creating these rules for larger
applications can be time-intensive. By contrast, statistical ap-
proaches to dialogue management seek to “learn” appropriate
behaviours using machine learning (ML) techniques. ML tech-
niques are appealing as they promise a principled, automated
method of optimisation. Statistical approaches rely on well es-
timated model parameters, ideally obtained from training data.
However, collecting appropriate data for training spoken dia-
logue systems is a difficult problem. Using human-human con-
versational data will not reflect the ASR channel, whilst human-
computer dialogue data will be limited by the dialogue policy
of the SDS used.

This paper proposes a novel framework for collection of
data suitable for training ML approaches to spoken dialogue
systems (SDSs). This paper is organised as follows: in section
2, we outline the problem of collecting data suitable for training
SDSs, and describe the characteristics of an ideal data collec-
tion. In section 3, we describe the proposed approach in de-
tail. The approach relies on the simulation of automated speech
recognition (ASR) errors in text. In section 4, we detail this
component and present experimental results using it in com-
bination with a statistical parser. Section 5 discusses the data
collections already undertaken with this framework and section
6 draws conclusions and discusses future work.

2. Background and Motivation
As mentioned above, specifying rules and states for hand-
crafted dialogue systems is time-intensive and may not provide
an optimal solution. Recent work has sought to provide power-
ful frameworks allowing designers to quickly specify and itera-
tively improve a dialogue design [1] [6].

2.1. Traditional vs. Statistical methods

Statistical approaches to dialogue management seek to formu-
late appropriate behaviours using ML techniques. The motiva-
tion for using statistical techniques is that they can be trained
directly from data, will be quicker to develop, and offer poten-
tial for improved robustness and adaptivity.

Generally speaking, ML techniques require a model of the
environment which maps direct observations to an internal state.
In our case, the environment model includes a models of the
user, task and ASR channel. The environment model also in-
cludes the likely outcome (i.e., successor state) given a particu-
lar action is taken in a particular state. The designer then spec-
ifies a reward/cost function, and the goal of the ML algorithm
is to find a mapping of states to actions which maximises the
reward measure. Thus creating an accurate environment model
(ideally through collecting data) is crucial to the success of these
methods.

2.2. Ideal dialogue data for statistical methods

There are a number of desirable properties which the data col-
lection framework should contain. For instance, the ASR-
channel is significantly different than the typical human-human
(HH) channel. Typical HH conversation is virtually instant, is
symmetric, contains prosodic information, and few “recogni-
tion” errors; the ASR channel explicitly segments turns using
an end-pointer, eliminates prosodic information, and introduces
significant ASR and parsing errors. In addition, during a collec-
tion phase, the end-system recognition performance in terms of
word error rate (WER) will not be known with certainty. Thus
the collection should sample across a range of WER levels.

It is not desirable for the collection framework to use a fixed
or a random policy. A “policy” is a mapping from states (i.e.,
dialogue situations) to system actions. If the system always se-
lects the same action in a given state, the data collected will not
provide a ML algorithm with any basis for selecting state/action
pairs unobserved in the corpus. Conversely, using a random pol-
icy would allow any action in any state. This behaviour in a col-
lection framework would produce nonsense dialogues, and be
unlikely to produce sufficient examples of successful dialogues.
In addition, the system should be quick to set-up. Ideally there
will be little overhead associated with undertaking a new col-
lection.

Given the above, the two customary sources of dialogue
data are of limited use. Direct human-human (HH) dialogue
is attractive in that speakers generally take reasonable but var-
ied conversational actions. However, normal HH dialogue does
not reflect the ASR channel. The other source of dialogue data
would be human computer (HC) dialogue. The drawback to this
is that existing SDSs typically use a fixed policy, thus making
the data unsuitable for training an ML-approach for the reasons
above.

It would be possible to undertake a data collection by mod-
ifying a SDS to deviate from a fixed policy. A random policy
would be easiest to implement but suffers from the issues listed
above. Creating a mapping of “reasonable” actions for each
state is also possible [8]. However, this is a particularly difficult
task for dialogue designers, and would not allow the rapid col-
lection of data. These limitations prompt us to propose a new
framework for dialogue data collection.

3. Proposed dialogue collection framework
3.1. Description

The basis of our collection approach is observing two people in-
teract in the presence of a simulated ASR channel. Our method-
ology is similar to previous approaches [9], but introduces sev-
eral additional elements of control.

3.1.1. Framework overview

The framework is based on a “Wizard of Oz” trial but has been
modified as summarised in Figure 1. Two experimental partic-
ipants, the “subject” and the “wizard” communicate via a sim-
ulated ASR channel. The participants are located in different
rooms and cannot see each other. It is also important that the
participants do not interact before the test is started.

The speech of both participants is end-pointed (i.e., seg-
mented into utterances for performing recognition) using a stan-
dard energy-based end-pointer. The end-pointer is used to de-
termine what wizard speech to play to the user, and what user
speech to play to the typist. The end-pointing happens in just
under real-time. The end-pointed utterances are saved for future
analysis.

The subject can hear the wizard directly. However, the wiz-
ard cannot hear the subject; rather, both participants are told that
the subject is speaking to a speech recogniser, which will take
its best guess of what the subject says, and display it on a screen
in front of the wizard.

When the system is busy and not listening to a participant,
they hear a “tick-tock” sound. A turn-taking model patterned
after typical HC turn-taking models is used in which the user
may “barge-in” over (interrupt) the wizard, but the wizard may
not interrupt the user. In reality, the subject is speaking to a
typist, who quickly transcribes the user’s utterance. This tran-
scription is passed to a system which simulates ASR errors, the
output of which is displayed to the wizard.

3.1.2. Internal State

One process maintains the state of the system and writes one
system log. Internally there are 5 system states:
� SILENCE: Either participant can begin speaking; both

hear silence.
� WIZARD TALKING: Entered when the wizard starts

talking. The user hears the wizard in this state. If the user

Figure 1: Setup for Wizard of Oz experiments

interrupts, transition to USER TALKING; if the wizard
stops speaking, transition to SILENCE.

� USER TALKING: Entered when the user starts talk-
ing. The wizard hears the tick-tock sound, and the typist
hears the user, and can begin typing. When the user fin-
ishes, transition to TYPIST TYPING.

� TYPIST TYPING: Both participants hear the tick-tock
sound. The typist can press a button to hear the user’s ut-
terance again. When the typist finishes typing, transition
to CONFUSER CONFUSING.

� CONFUSER CONFUSING: Both participants hear
the tick-tock sound. The ASR confuser receives the typ-
ist’s text and produces the “confused” version, which is
displayed on the wizard’s screen. Once finished, transi-
tion to SILENCE.

Transitions between states are summarised in Figure 2. Other
turn-taking models are possible by adjusting the rules in the
state-machine: for example, press-to-talk, changing the barge-
in model to allowing the participants to talk over each other,
etc.

Figure 2: State machine for wizard interaction

3.1.3. ASR Simulation

The ASR component takes the utterance transcribed by the typ-
ist and introduces ASR-like errors in the text. The aim of using
a simulated ASR channel rather than a real system is twofold.

First, the simulation allows the ASR error rate to be varied, al-
lowing a range of system conditions to be evaluated. Second,
using a simulated system at a target error rate is much quicker
than building and running a real ASR system. The simulation is
detailed in section 4.

3.2. Transcription and annotation

After collection, the data can be fully transcribed, and annotated
for a variety of phenomena including grounding behaviour, se-
mantic content, dialogue act type, etc. Inter-annotator agree-
ment for tasks like dialogue act tagging is typically acceptable
but not absolute [2]. Even so, we expect the collected dialogues
will be useful for training basic user model properties such as
likely behaviours after a misunderstanding.

3.3. Variations

The benefit of having a “talking” wizard (as above) is that no
state space or action set need be assumed in advance. From the
collected data, an appropriate set of actions and states can be
inferred [10]. However, once the action set and/or state space is
fixed, it is advantageous to give the wizard a distinct list of pos-
sible actions - a “clicking” wizard - to facilitate mapping from
wizard behaviour to system action. In addition, once a parser
has been created for a particular task, it would be possible to
present the parse results to the wizard. In effect this constrains
the state space and facilitates creation of the transition function.
At the same time, this modification would require additional
wizard education.

4. ASR confusion system
4.1. Pre-processing typist input

The nature of the ASR simulation requires that all words in
the typist’s transcription be in the system vocabulary. Thus,
mis-spellings and out-of-vocabulary (OOV) words must first be
mapped to in-vocabulary words. To accomplish this, an “AS-
pell” spell-checker process is run on each input word, and for
words not in the reference vocabulary, it returns its first sug-
gestion in the reference vocabulary using the Metaphone algo-
rithm to chose a sound-alike word [7]. This process maps all
OOV words (and mis-spelled in-vocabulary words) to a similar-
sounding in-vocabulary word.

4.2. Producing ASR errors

The ASR error simulation is based on previous approaches for
generating ASR errors or confusable words using weighted fi-
nite state transducers (WFST) [3]. These approaches work by
modelling the speech recognition process as a series of WFST
operations. The acoustic realisation of a word string (�����) as
well as the acoustic model (� , i.e. a HMM) is modelled. Hence
the n-best word list �	 can be expressed as the function

�	�
�	�
�� ���
 � ���
 �
���
�� (1)

where
	

is the original utterance,

is the FST composition
operator, � is the acoustic model phone score (from the HMM),�

is the pronuciation dictionary,
�

is the language model, and� ��� is the FST inversion of
�

.
For a simulated system it is then possible to replace the

acoustic realisation and HMM-based scoring process (�����
 �)
with a single confusion model � . The confusion model maps
phones in the orthographic transcription of the original utter-
ance (

	�
�� ���) to a set of confusable phones, each with a given

weight based on the log-likelihood of misrecognising phones.
Phone deletions are modelled as epsilon transitions. The con-
fusion matrix can be trained on phone-labelled test output data
from an ASR system. Thus we have:

�	�
�	�
�� ���
 �
���
�� (2)

The confusion matrix can be trained on any phone-level tran-
scription from speech data. To get the system to run in a rea-
sonable time for experiments, it is necessary to prune away un-
likely phone confusions from the matrix. This estimation is ac-
ceptable for our purposes because our aim is to simulate a range
of possible WERs by choosing single probable confusions and
not to provide an accurate estimation of the error rate for a given
system.

The error rate of the system can then be adjusted by varying
the free parameters in the system. These comprise the weighting
of the confusion matrix, the language model scale factor, and
the number of confusable phones per phone in the orthographic
transcription. Also, because an n-best list is produced as output,
sentences can be chosen at random from further down the n-
best list to yield more corrupted outputs. Choosing results from
the n-best list also enables the simulation to produce different
outputs for the same input.

4.3. Evaluation procedure

To evaluate the simulation, we compared it to real recognition
results and a “naive” corruption system using a metric of con-
cept accuracy. We selected the ATIS air travel information cor-
pus, and constructed a bigram language model.

For the real system, car noise was added to the ATIS-3 Nov
93 test sets at varying levels to obtain a range of WERs [5].

For our simulation, we generated a phonetic confusion ma-
trix from the TIMIT corpus orthographic phone transcriptions.
The TIMIT corpus was used as it provides full (correct) pho-
netic transcripts of the data. We produced varied WERs for the
system by varying the parameters of the WFST as mentioned
in the previous section: the pruning threshold of the phone ma-
trix, the language model, and the depth of the n-best list used to
generate confusable sentences.

For the “naive” corruption system, we used fixed proba-
bilities of deletion, insertion and substitution over each word
in transcribed data to generate corrupted data. The probability
distribution for substituted words was flat. The probabilities of
substitution, deletion and insertion were set such that the con-
fused transcriptions contained the same error rate as the ASR
data.

The parsing of the resulting transcription from each of the
three systems was performed using a hidden vector state parser
and evaluated by concept slot retrieval rate using a F-Measure
metric [5]. The F-measure metric gives a measure of both the
precision and recall rates for the named-entity extraction [4].

4.4. Evaluation results

The results of the experiments are shown in figure 3. For the
real ASR data, the F-measure degrades linearly with WER. It is
worth noting that the end-to-end performance in the real ATIS
system degrades sharply once the F-measure drops below 0.85.

The naive confusion system yields worse performance than
the real data, with much lower F-measures for similar WERs to
the real ASR data. The F-measure also degrades more sharply
as the WER increases. The WFST simulated data matches the

0 5 10 15 20 25 30 35 40
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Word Error Rate / %

F
 M

ea
su

re

Real data
Naive confuse
WFST confuse

Figure 3: Evaluation results of real and simulated ASR errors
on ATIS nov93 test set

real data reasonably closely, degrading at a similar rate. The
simulated data tends to give a slightly higher F-measure for
comparative WERs. The variations in the degradation of the
F-measure with increasing WER may be related to the depen-
dance of ASR errors. In the naive system the likelihood of an
error is fixed and unrelated to errors in surrounding words. This
is not an accurate representation of the ASR channel.

A range of error rates is achievable by varying the parame-
ters of the ASR simulator. However, regardless of the parame-
ters and WER set, the results will still lie on the same regression
line in figure 3. However, it is not useful to use a low language
model weight, as this will produce purely phonetic confusions
which a human subject can still parse with little effort (e.g.: way
to vs weigh two).

5. Experience of use
So far, we have used the framework to collect over 150 dialogs
for evaluation of the system and direct analysis. We have per-
formed an initial analysis of the data collected so far [11]. We
are currently applying the data to ML algorithms to create a
user model. In addition, we have also recently added support
for basic multi-modal interfaces.

From the data collections so far, we have observed a range
of behaviours and issues in the framework. For example, the
wizard cannot process all of the data that a computer algorithm
could - for example, confidence scores, parse scores, etc. While
this is true, our goal is to elicit varied user responses, not train
a wizard algorithm. In terms of reaction speed, the wizard will
need time to parse a confused sentences or search for informa-
tion whereas a computer would respond much quicker. Our ob-
servation is that the wizard’s comfort level with the interface
improves dramatically over the course of 3-4 dialogues. Thus,
it is important to conduct enough dialogues to enable the wiz-
ard becomes familiar with the interface. For longer utterances,
the typist will transcribe slower than an ASR system. However,
in our collections so far, user utterances are on average 10-12
words long, which the typist can generally enter within a few
seconds after the end of user speech. The confusion system
typically takes 1-2 seconds per utterance. The end-to-end aver-
age total perceived recognition times are not unrealistic for an
ASR system.

6. Conclusions and Future Work
We have presented the requirements of a corpus used to train
statistical dialogue managers, and presented a novel framework
designed to address those needs. The method relies on simu-
lating ASR confusions; we have attempted to show the confu-
sions behave similarly to real results. We intend to expand the
wizard’s interface to support a “point and click” interface, and
alternative forms of presentation to the wizard, including parse
results and/or confidence scores.

7. Acknowledgements
The authors would like to thank Yulan He for providing the
ATIS test data, and also for supplying the HVS parser for the
confusion experiments. This paper was supported by the EU
Framework 6 TALK Project (507802).

8. References
[1] D. Bohus and A. Rudnicky. RavenClaw: Dialogue Man-

agement Using Hierarchical Task Decomposition and an
Expectation Agenda. In Proc. Eurospeech, 2003.

[2] C. Doran, J. Aberdeen, L. Damianos, and L. Hirschman.
Comparing Several Aspects of Human-Computer and
Human-Human Dialogues. In Proc. 2nd SIGDial Work-
shop on Discourse and Dialogue, 2001.

[3] E. Fosler-Lussier, I. Amdal, and J.K. Hong-Kwang. On
the Road to Improved Lexical Confusability Metrics. In
Workshop on Pronunciation Modeling and Lexicon Adap-
tation for Spoken Language Technology, 2002.

[4] V. Goel and W. Byrne. Task-dependent loss functions in
speech recognition: application to named entity recogni-
tion. In ESCA ETRW Workshop on Accessing information
from Spoken Audio, 1999.

[5] Y. He and S.J. Young. Robustness Issues in a Data-
Driven Spoken Language Understanding System. In
HLT/NAACL04 Workshop on Spoken Language Under-
standing for Conversational Systems, 2004.

[6] S. Larsson and D. Traum. Information state and dia-
logue management in the TRINDI Dialogue Move Engine
Toolkit. Natural Language Engineering, Special issue on
Best Practice in Dialogue Systems Design, 2000.

[7] L. Phillips. The double metaphone search algorithm. In
C/C++ Users’ Journal, 2000.

[8] S. Singh, D. Litman, M. Kearns, and M. Walker. Optimiz-
ing Dialogue Management with Reinforcement Learning:
Experiments with the NJFun System. Journal of Artificial
Intelligence, 16:105–133, 2000.

[9] G. Skantze. Exploring Human Error Handling Strategies:
Implications for Spoken Dialogue Systems. In ISCA Tuto-
rial and Research Workshop on Error Handling in Spoken
Dialogue Systems , 2003.

[10] J. Williams and S. Young. Using Wizard-of-Oz simu-
lations to bootstrap Reinforcement-Learning-based dialog
management systems. In Proc. 4th SIGDIAL Workshop
on Discourse and Dialogue, 2003.

[11] J.D. Williams and S.J. Young. Characterizing Task-
Oriented Human-Human Dialog using a Simulated ASR
Channel. In Proc. ICSLP, 2004.

