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Abstract. Tagged Magnetic Resonance Imaging (MRI) is currently the
reference MR modality for myocardial motion and strain analysis. NMI-
based non rigid registration has proven to be an accurate method to
retrieve cardiac deformation fields. The use of aMI permits higher dimen-
sional features to be implemented in myocardial deformation estimation
through image registration. This paper demonstrates that this is feasi-
ble with a set of Haar wavelet features of high dimension. While we do
not demonstrate performance improvement for this set of features, there
is no significant degradation as compared to implementing the registra-
tion method with the traditional NMI metric. We use Entropic Spanning
Graphs (ESGs) to estimate the aMI of the wavelet feature vectors WFVs
since this is not possible with histograms. To the best of our knowledge,
this is the first time that ESGs are used for non rigid registration.

1 Introduction

Tagged magnetic resonance imaging (MRI) is a well established technique used to
obtain regional information about the deformation of the left ventricle (LV)[II2],
and thus potentially help to diagnose cardiovascular diseases. Basically, this tech-
nique consists in perturbating the magnetization of the myocardium in a specified
spatial pattern at end-diastole. These perturbations appear as dark stripes or
grids when imaged immediately after application of the tag pattern. Since the
myocardium retains knowledge of this disturbance, the dark grids experience the
same deformation the heart does as it contracts, allowing local strain parameters
to be estimated.

Several methods have been proposed to retrieve LV deformation field: op-
tical flow [3/4], Harmonic Phase (HARP) MRI [5l6], tag detection and track-
ing [7I89IT0] and image registration [IIIT2]. The use of registration to estimate
cardiac motion has proven to overcome many drawbacks existent on previous
approaches.

The use of aMI permits higher dimensional features to be implemented in
myocardial deformation estimation and registration problems. In this paper,
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we aim to evaluate the performance of aMI based registration methods with
respect to gold standard measurements and with respect to NMI based image
registration. Specifically, we use Haar wavelet coeflicients at each pixel as feature
vectors (FVs) and ESGs to estimate the aMI of these vectors.

This paper is organized in six sections. Section[2lexplains how to estimate car-
diac deformation fields by using image registration. In this section, the concept
of aMI and its estimation by using ESGs is also presented. Section [3] describes
the dataset used for the experiments. Results are presented in Section ] and
discussed in Section Bl Finally, the conclusions can be found in Section

2 Method

The registration algorithm we used, is based on the method originally developed
by Rueckert et al. [13] for detection of cancerous lesions in contrast enhanced
MR breast images. We modified this algorithm by replacing NMI with aMI
computed from Wavelet Feature Vectors (WFVs). The main problem derived
from using vectors instead of intensity values, is that the curse of dimensionality
forbids the use of histograms for probability density function (pdf) estimation.
Therefore, in order to compute the aMI of these vectors, we used kNN graph
estimators which completely bypass pdf estimation [T4].

2.1 Motion Estimation

To track cardiac motion throughout multiple time frames we used Multilevel
Free Form Deformations (MFFDs) as suggested by Schnabel et al. [15], where
the transformation T(u,t) is represented as the sum of a series of local FFDs:

t

T(ll, t) = Z Tfocal (ll7 t) (1)

p=1

Thus, the motion estimation starts registering the first two frames of the se-
quence I(x,0) and I(x,1), and a single FFD is obtained. Then, for the next
frame I(x,2), a new FFD is added and the frame is registered to I(x,0) taking
as initial transformation the one obtained for I(x, 1). This process is repeated for
the remaining frames I(x,t) in the cardiac cycle. Once all the frames are regis-
tered to the first one, the MFFD consists of N FFDs that model the myocardium
deformation.

2.2 Similarity Measure

To recover the deformation field at time ¢, the image I(x,t) is registered to
I(x,0) by optimizing some cost function. Let Iy and I; be random variables
representing the source and target image, with pdfs p,(Is) and p;(I;) respectively.
Let pst(Is, I;) represent the joint pdf of Iy and I;. The a mutual information
(aMI) of I, and I; is defined as:
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Fig. 1. kNN graphs for a set of 200 points in the plane and k=5. (a) Uniform distri-
bution (SD=1). (b) Gaussian distribution (SD=1).

aMlI = Doz(pst(ImIt) || pS(IS)pt(It))

1 —«
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When o — 1, aMI converges to the standard (Shannon) MI
pst(-[sa It)

MI:/ st(Ls, I¢) 1o (7

Ppst( t) log 2 (L)L)

According to Equation (@), aMI can be interpreted as a measure of dependency
between variables Iy and I, which is expected to be maximum at registration.

) dI,dI,. (3)

2.3 oMI Estimation

Given a set Z = {21,...,2,} of n vectors in R?, the k-Nearest Neighbor Graph
(kNN Graph) is formed by the points z; and the edges with their k nearest points
Ni,i(Z). This graph belongs to a particular class of graphs known as Entropic
Spanning Graphs (ESGs), whose relationship to alpha entropy is described in
[14]. Figure [l shows two examples of kNN graphs for different distributions.

Let I; and I; be two images from which the sets of feature vectors Z; =
{251,y 2sn} and Z¢ = {z41,..., ztn} have been extracted. KNN graphs allow
for estimating aMI between these images as [16]

1 1 lless (zsi 200) | 0

— Cip\Zsiy Zti
aMl=——log—> > L 7 (4)
a—1"n" & <¢||eip<zsi>|| ||ez-p<zti>||>

p=1

where ||€i,(2si, 24:)|| is the distance from the point (zs;, 2:;) € R?? to its p-nearest
neighbor in {zgj, 2¢; } ji, and ||e;p(2si)|| (|l€ip(22:)]]) is the distance from the point
zsi € RY, (24 € RY) to its p-nearest neighbor in {zs; i ({215} j21)-

In this work we used a = 0.5, v = 2, n ~ 1000 (it depends on the LV area),
k =4 and € = 0.1, the maximum allowed error between a point and its nearest
neighbor.
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2.4 Feature Vectors

There are many possible feature vectors (FV) to be used in oMI based tech-
niques. In this work, in order to obtain the feature vector corresponding to the
point xg, we applied the Discrete Wavelet Transform (DWT) to decompose the
image I(x) into four subimages I, (x),Irg(x), Igr(x) and Igm(x). Then, we
defined the FV of point xq by taking the corresponding wavelet coefficients as:

z=[Ipp(x) Ing (%) InL(X) Inm(x)] (5)

This paper is not focused on finding the optimal feature for this particular ap-
plication, but on evaluating the effect of introducing spatial information into the
objective function. Therefore, for a first approach, we chose Haar wavelet coef-
ficients owing to its well known ability for edge detection and simplicity. This
basis was expected to perform well defining tags in MRI images and thus good
for guiding the registration process.

3 Materials

3.1 Dataset

Two tagged 2D sequences were acquired with a GE Genesis Signa 1.5T MRI
scanner. A cine breath-hold sequence with a SPAMM grid tag pattern was used,
with imaging being done at end expiration. The in-plane image resolution was
1.56mmx 1.56mm. Cardiac cycle was sampled by acquiring a total of 16 frames.
However, only images from End of Diastole (ED) to End of Systole (ES) (sys-
tolic phase) were used in the experiments due to our interest on evaluating
deformation during heart contraction. The length of this cardiac cycle segment
is 5 frames.

3.2 Manual Measurements

In order to assess the method performance in tracking myocardial motion, tag-
intersection points were marked manually in each frame by two observers in two
independent sessions. For each sequence, 22 points were chosen to be tracked, and

(1) (2) (3) (4) ()

Fig. 2. Gold standard point positions in each frame from ED to ES for one of the

sequences used in this work
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thus 110 (22x5) points were marked. Gold-standard measurements were derived
for each tag-intersection point by taking the average of the measurements made
by the observers. Figure 2l shows the gold-standard landmarks for each frame in
sequence A.

4 Results

The mean error between the gold standard points and the corresponding po-
sitions assessed by the observers was calculated. Table 1 shows the intra and
interobserver variabilities of manual landmarking.

The deformation field of the myocardium was calculated with the method
explained in Section [2l The resulting transformations were then applied to the
gold standard pointset at ED to map these points to each phase. The mean
error between these mapped points and the actual positions according to the
gold standard was calculated. Figure [B] shows this error from ED to ES. With
both methods, subpixel accuracy was obtained for all the phases in patient A
and for the two first phases in patient B. Figure [4] shows the initial frames of
both sequences, along with an arrow plot showing the displacement field in the
myocardium during systole.

Table 1. Accuracy of manual measurements. Bias and standard deviation of the dif-
ferences, corrected for repeated measurements, between manual and gold standard
measurements

[ [Observer AJObserver B[ Observer A and B]

[Bias (mm) [ 0.0 [ 0.06 ] 0.03 |
| SD (mm) | 0.35 | 0.31 | 0.29 |
35 35
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Fig. 3. Mean error in landmark correspondence between the gold-standard position
and the position of the landmarks in end-diastole after being transformed through the
computed deformation field. Results for the different registration metrics is provided.
(a) Patient A. (b) Patient B.
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Fig. 4. Displacement of myocardium points during heart contraction by using non-rigid
registration for sequence A (top row) and sequence B (bottom row). (a) ED frame. (b)
ES frame. (¢) Motion field close-up obtained by using aMI. (d) Motion field close-up
obtained by using NMI.

5 Discussion

In this paper we have applied an ESG estimation of aMI for myocardial motion
estimation. The results show low mean error values with respect to the gold
standard measurements, which demonstrate that this method allows retrieving
cardiac motion fields accurately.

For this particular application, and according to Figure Bl the use of NMI
seems to give better results. However, the standard deviations of the errors are
high, and therefore these differences are statistically not significant. A possible
explanation for these differences may derive from the feature definition. In this
work we have used Haar wavelet coefficients because of their well known ability
for edge detection, which was expected to perform appropriately in detecting
tag borders. However, Haar basis presents a lack of invariance to translation and
rotation which can be corrected by using ”cycle spanning” or complex wavelets.
Haar basis also has an inherent lack of sensitivity to edge deformations which
dominate the deformation feature space. Regarding this matter, a smoother basis
like Daubechies or Curvelets might have better potential.

Another explanation for the differences with respect to NMI, is that estimat-
ing aMI in multidimensional spaces may introduce more local minima in the
error surface than conventional NMI. Thus, the lower accuracy may arise as a
consequence of using a local optimization like the downhill method used in this
work. Finally, the image resolution of MRI may justify some of the disagree-
ment between measurements. ESGs allow to estimate aMI accurately when the
number of FVs used to calculate the graph is large. Given that the in-plane
resolution is 1.56mmx1.56mm and that only the LV was considered, less than
1000 points were available for aMI estimation.
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Figure [ shows a good agreement between estimated displacements fields of
each metric for sequence B. For sequence A, there was clearly a different result
in the lower-right portion of the image. The frame at ES for this patient shows
completely vanished tags and poor image quality in the part of the myocardium
where the motion field is altered. Therefore, it could be hypothesized that the
incorporation of spatial features into the objective function makes the results
more dependent on the presence of such features in the target and source images.

With respect to the extension of this work to the three dimensional case,
the main drawback is that ESGs are computationally expensive. However, many
algorithms have been developed to compute graphs in an approximated manner,
allowing a significant speed up of the graph construction.

6 Conclusions

Entropic spanning graph estimation of aMI has been applied for non rigid reg-
istration for the first time and has proven to retrieve myocardial deformation
fields accurately. Although the results were quite satisfactory, even lower errors
have been obtained with NMI. However, the observed differences were statisti-
cally not significant and further research needs to be done to fully understand
the reason of this behavior. ESGs offer an increased flexibility in the kinds of
features one can use for these types of problems, and further research needs to
be done regarding this matter.
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