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ABSTRACT

Methods are developed for determining the orders in which a computer
program performs its operations and for verifying from its source code whether
a program adheres to any given sequencing rule. These methods are based on
analysis of the program's state graph, and techniques are presented for com-
pressing the graph to eliminate unnecessary detail and for expanding it to
add necessary distinctions. A program is described which automates most of
these methods and which has been used to analyze parts of a real operating
system. The methods are extended to apply to systems of parallel processes.
Systems are modeled as state graphs and analyzed for the order in which they

perform operations as well as for blockage properties such as deadlock.
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CHAPTER T

INTRODUCTION

1.1 The Problem

Many important properties of computer programs can be expressed in
terms of the order in which they perform actions. The order in which a pro-
gram produces its external effects can be important in many real time appli-
cations. Most methods for coordinating multiple parallel asynchronous pro-
cesses require that each process observe some protocol dictating the order
in which transactions between the processes may occur. Other properties
involve the internal workings of the memory function, such as the usually
desirable property that a program assign a value to a cell before using its
contents (the initialization problem). For large and complex programs, tra-
ditional testing and debugging methods cannot assure that a program has such
properties, and none of the formal proof procedures for programs are designed
to prove ordering properties.

The first objective of this study is the development and automation
of a method for stating and proving assertions about the order in which a pro-
gram performs its operations. A second goal is to develop a method for stating
and proving similar assertions about systems of processes running in parallel.
The methods must verify rather than simulate or test; the source code of the

object programs must be analyzed, not executed.



1.2 Summary of the Research

In this study a comprehensive method is developed for making and prov-
ing statements about the order in which programs perform actions. Individual
programs are modeled empirically as directed graphs called state graphs which
are generated from the source code, and paths through this graph indicate
possible sequences of actions by the program. The statements to be proved
are made in terms of prototype state graphs, small compact graphs specifying
allowable sequences of actions. Careful attention is given to the problems
of dealing with state graphs of large programs in limited space and time.
Techniques are presented for expanding and compressing state graphs to reflect
just the amount of detail needed and no more. Based on formal language theory,
an algorithm is presented which compares the sequences represented by one
graph with those of another.

The method presented for proving sequencing properties of programs is
practical and can be almost completely automated. A program is described
which implements most of the techniques and which has been used to analyze
parts of a real operating system.

The method developed for analyzing individual processes is extended
to apply to systems. Systems are modeled by their state graph, and this graph
can then be analyzed to determine the order in which the system performs
actions as well as for system blockage properties such as deadlock.

The program proof method presented here does not improve on or replace
any existing program correctness technique; rather its importance is that it
provides a whole new class of statements about programs which can be proved.
The method for analyzing systems cannot be applied directly to real large-scale

operating systems, but it does provide a unified model for expressing a wide



class of operating system properties and should prove useful in analyzing
simple systems and in evaluating protocols for coordinating parallel pro-

cesses.

1.3 The Context

As more and more people learn how to program computers, the seller's
market once enjoyed by programmers is turning into a buyer's market in which
customers can demand correct, dependably correct, and soon even provably cor-
rect programs. For this reason, and perhaps because the challenge of apply-
ing mathematical rigor to proofs about objects with effects in the real world
is irresistable, there has arisen beside the traditional interest in debugging
and testing programs a growing interest in proving statements about them a
priori. A survey of this area was recently provided by London [20]. An ex-
haustive bibliography by Hetzel [12] covers program testing and debugging as
well as program proving.

The object of the proofs referred to is program semantics, not syntax.
Throughout this study, 'program'" means '"'syntactically correct computer program.'
The semantics of a program is the set of all the effects of executing the pro-
gram. In the broadest sense, 'correctness' means that the semantics of a
program match the desire of the user or the intent of the writer. Obviously
then, we do not prove programs correct; in the current state of the art we
prove that a program has some property or, more specifically, that its execu-
tion has certain effects or that its effects have certain properties.

Perhaps because this area in computer science has taken models as
well as personnel from mathematics, programs have most often been viewed as

functions whose range and domain are the memory of the (virtual) machine upon



which they execute. One can take as argument the initial state, or the vector
of initial values in all the memory cells, the value as the final state, or
vector of final wvalues, and conceive of a program as the function which maps
one set of vectors to the other. There are many techniques for proving state-
ments, usually expressed in first order predicate calculus, about the program-
as-function. These include computational induction, structural induction,
recursion induction, fixed-point induction, and inductive assertions. Manna,
Ness, and Vuillemin [21] discuss all of these methods and prove some equiva-
lences among them. Many interesting properties of programs can be expressed
using these techniques, and London [19] has even been able to show that a
simple but real compiler produces correct code in the sense that the compiler-
produced machine code computes the same function as the source code.

However, a memory function is not a completely satisfactory model for
a computer program. A program operates over a length of time, while a function
is usually thought of as acting instantaneously. If a function produces as
its value a vector, the order in which the values in the vector are produced
does not usually matter. But because a program operates in time, the order
in which it performs its actions may be important.

This is not to say that the inductive proof methods do not take any
account of the sequential nature of programs. They all can allow composition
of functions and provide computation rules for order of evaluation. Even more
explicitly, the inductive assertion method involves explicitly marking paths
through the program and making assertions which apply before, and others after,
certain path segments have been executed. Perhaps the most explicit recogni-
tion of time is Good's [9] addition of a variable, t, representing the time
at which a given point in the program is reached, to the domain of the asser-

tions. The problem with using the augmented inductive assertion method to



prove statements about the order in which programs perform operations is that
unless one already knows the order it is very difficult to assign values to

t at each point in the program or to make statements about it, particularly
in any standard predicate calculus. This is because when a program has

loops one must assign a different t for each time the program reaches a given
point in the loop. Otherwise, if two different points on a loop were simply
assigned an unsubscripted t and t', respectively, it might be the case that
both t < t' and t > t' were true,

In fact this extension to the inductive assertion method was proposed
to allow one to prove additional statements about the memory function. It
can also be said of the path notation in the inductive assertion method and
of the composition of functions that they all allow the prover to more ac-
curately take into account the sequential nature of programs in order to make
or prove statements about the program as memory function, but they are not
well suited to stating or proving sequencing properties of programs. For this

important class of properties, a new method is needed.

1.4 Summary of Chapters

The structure of the rest of this study is as follows: Chapter II
introduces state graphs and develops the method for proving a wide class of
sequencing assertions about individual computer programs. Chapter III de-
scribes an actual program written to implement the method of Chapter II and
details the uses to which this program has been put. In Chapter IV the method
of Chapter II is extended to apply to systems of parallel processes. The
final chapter contains some general observations and suggestions for further

work.



CHAPTER II

ANALYZING INDIVIDUAL PROCESSES

2.1 Introduction

In this chapter a method is developed for analyzing the orders in
which individual computer programs perform their actions. The method con-
sists of three steps: First the program is modeled by its state graph. State
graphs are defined in the next section, and the process of building a pro-
gram's initial state graph from its source code is discussed in Section 2.5.
In the second step of the method the state graph is manipulated to eliminate
unnecessary detail and to make additional distinctions as needed. The two
main graph manipulatory techniques, folding and splitting, are explained in
Sections 2.6 and 2.7. The statements to be proved about programs are em-
bodied in small graphs called prototypes which specify allowable sequences.
The third and final step in the method presented in this chapter is to compare
the program's state graph with the prototype graph.

This chapter is organized so as to present as quickly as possible the
broad outline of the method, leaving until later certain details. Thus the
next three sections explain what a state graph is, what a prototype is, and
how to compare them. The later sections explain how to get the state graph
and how to assure that it compactly and accurately reflects the program's se-

quencing properties.,



2.2 State Graphs and Traces

In the course of its execution, a program carries the machine which
is interpreting it through many distinct states. By a state is meant a com-
bination of values of all the memory cells and registers, including the pro-
gram counter, used by the program.

A state graph of a program is a finite directed graph with nodes cor-
responding to states of the program/machine and arcs labeled with the program
actions which carry the machine from one state to the next. A state graph is
somewhat like a very detailed flow-chart of a program except that the roles
of nodes and arcs are reversed; arcs represent actions while nodes represent
states of the machine between actions.

A node may have several incident and exiting arcs, possibly with the
same labels, and two nodes may have more than one arc connecting them in
either direction. We use the notation s —s' to mean that there is an arc
from node s to node s' and s %, &' to indicate that this arc is labeled "x".
Node s' is a successor of s, and s is a predecessor of s'. An arc labeled x

may be called an "x-arc'". An arc from a node to itself is a unit arc.

50 = s  means that there is a sequence of nodes, §gs Sqs +ees S5 D > 0, such
that s, ; s, for 1 < i < n. In this case we say that there is a path from
s, to s_and that s_ is reachable from s_..

0 n n e 0

Notice that this model of a program leaves many aspects of its be-
havior uninterpreted. s 5 simply says that an action labeled '"x' has oc-
curred, but says nothing about what x is or what effects it may have. The
use of directed graphs other than state graphs as models of various aspects
of program structure or behavior is fairly common; a survey of some of these

models is provided by Baer [2].



Typically we shall not be concerned with trying to prove an assertion
about all the operations which the program may perform but about a relatively
small subset of them. For example, in the case of trying to determine whether
or not a program observes mutual exclusion on a given resource, the assertion
to be verified will only involve the four operations ''reserve the resource,"
"use it," '"release it," and 'halt," The order in which the program performs
any other operations is irrelevant. Thus for the purposes of this analysis
most or all other operations are completely equivalent and can be denoted
by the same arc label, e, which will be used to mean '"uninteresting operation."
Further, whole sequences of such uninteresting operations can be lumped to-
gether as a single operation represented by a single e-arc to the state re-
sulting from the execution of the last one of the sequence.

A typical feature of program execution is branching on the value of
some logical expression involving memory cells or registers. If the complete
state of the machine is known at all times then the results of such tests can
be determined, and there will be no uncertainty about the actual paths through
the state graph. However, the retention of complete information is impractical,
and thus it is sometimes convenient to mark the arcs leaving a given node with
the logical condition under which that transition may be made. These conditions
on the arcs will be in addition to the labels on the arcs identifying actions.

Since the representation of programs by their state graphs is the basis
of all analysis in this study, the terms '"node'" and '"state" will be used inter-
changeably when no confusion can result.

It is convenient to assume that there is a single unique starting state

of the program from which all states in its graph are reachable. Real programs,
however, may have several starting points, and even if they have only one it

may be the case that some of their memory cells or registers are initialized



externally so that there are many possible starting states. However, since
we are only interested in the order in which the program performs certain
interesting actions, it can do no harm to the analysis if we simply create
an extra node with no incoming arcs and an e-arc from it to each of the
actual possible starting states and call this new node the unique starting
state of the program. Throughout the rest of this study it will be assumed
that this has been done to all state graphs, and this node will be called s -
(The problem which arises when a program executes correctly with one set of
initial values for some variables but may perform actions in an incorrect
order for other initial values is discussed in Section 2.7.)

It is also convenient to assume that each state graph has identifiable

final states representing the states of the machine after it has finished

executing all of the instructions of interest. Certainly the states immed-
iately following "halt' actions are always final states, and any states with
no successors can always be automatically identified as final states. 1In
practice it may be the case that certain programs never terminate and in fact
do not even have a "halt" operation on any arc of their graph. An example
might be the program which accepts input for a system. For these programs,

the concept of a resting state [15] is useful. Intuitively, a resting state

is the state of a process when it has "just completed" whatever it does and

is about to "start over." More formally, a resting state is a state from
which all other states in the graph can be reached. Notice that the assump-
tion that all states are reachable from 8, makes it a resting state. This
formal definition of resting states may include more states than the intuitive
one; in fact, in a strongly connected graph all the states would be resting
states. Presumably only one or a few of these would be designated as final

states. In any case, it is assumed throughout the rest of this study that
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all state graphs have a known set of final states, whether halt states or
resting states or some of each, and that these states have been explicitly
so designated.

We are now ready to observe the way in which a state graph models
a program's sequencing behavior. Each path through the state graph from the
starting state to a final state represents a possible execution sequence of
the program, and the sequence of arc labels along this path denotes a sequence
of actions which the program may perform. The set of all such sequences de-
fines all the orders in which the program may perform its actions. Such a
sequence of arc labels is called a trace. The trace, a, associated with

each path is the sequence of arc labels along that path. Thus the notation

Q. R .
S0 = s indicates that there is a sequence of nodes Sgr Sp» +++5 S, D >0,
X,
i -
- < i = N e
such that $..1 s, for 1 <1 < n, and that « XX The length of a

path is defined to be the number of arcs, not necessarily distinct, traversed
along it, and the trace of a path of length O will be denoted by A. In a
string of symbols such as a trace, x* denotes an arbitrary number of occur-
rences of the symbol x, including none, while x+.means at least one x.

Since state graphs as defined here are finite, they may not be able
to accurately model the sequencing properties of programs with loops of arbi-
trarily large index or with recursion to arbitrary depth. This is a limitation
on all of the methods for analyzing both programs and systems presented in
this study.

As a final note, observe that the complete state graph of a program
actually contains all possible information about its behavior and semantics.
Any assertion about the effects of a program could in theory be decided by
an exhaustive examination of its state graph if such an examination were prac-

tical. Tts effects as a function on memory, for example, could be discovered
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by examining the values of memory cells at each of the final states or at

the states immediately preceding output actions. Such a proof procedure
would, of course, not only be inferior to the inductive methods mentioned

in the previous chapter but would be impractical for all but the most trivial
programs due to the great size of most state graphs. However, state graphs

do provide an adequate and practical basis for analyzing sequencing behavior

in many programs.

2.3 Prototype Graphs

In any program verification application, one must decide how to form
assertions about programs and how to characterize the kinds of properties
which can be analyzed. State graphs, along with the idea of traces, provide
a natural way of expressing sequencing properties. TIf the trace xyz exists
in the state graph of a program, then the program may perform an x followed
by a y and then a z. Thus any sequencing property of a program may be ex~
pressed in terms of the existence and/or non-existence of traces through its
state graph. As a simple example, suppose we wished to verify that a certain
program never performed x, y, and z consecutively in that order. It would be
a relatively easy matter to devise an algorithm which searched through a state
graph looking for a given trace. However, such an algorithm would be useful
only if there were one or a few specific traces whose existence one wanted to
deny or confirm. Typically there are an almost unlimited number of ways in
which a program can perform incorrectly or correctly. A much more general way
of characterizing sequencing properties is to express them as an extremely com-
pact state graph serving as a prototype of correct action. This can be illus-

trated by the following example.
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Suppose we have a resource, such as a table in memory, which is to
be used by several asynchronous parallel processes, and that we wish to in-
sure that no two processes ever access the table simultaneously by using
Dijkstra's semaphore protocol governing entry into critical sectiomns [6].
This protocol is defined in terms of three primitive operations:

P - Set an interlock which prevents any other process from performing
the P operation until this process has performed a V operation.

V - Release the interlock.

A - Access the shared table protected by the P and V operations.

A program is defined to be correct in its usage of these operations
if and only if all of the traces in its state graph from the starting state
to a final state are also present from the starting state back to that state

in the prototype graph of Figure 2.1.

Figure 2.1. Critical Section Prototype Graph

The node on the left is both the starting and final state of the graph
and represents the noncritical sections of the program. The node on the right
represents the critical section of the program when it is accessing the shared
table and when other programs must be prevented from doing so. This prototype
graph defines all of the desired correctness criteria for using the three
primitive operations: A program may not perform an A without first having

done a P because there are no traces from the starting state of the prototype
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beginning with A; having done a P, a program may not halt without doing a V
because the V-arc begins the only path back to the final state, etc.

Notice that each node of the prototype has a unit e-arc indicating
that other, uninteresting actions may be freely interspersed between the exe-
cution of the P, A, and V operations. All prototype graphs will have this
feature by definition, since if some action were forbidden between, say, a P
and a V, it would be interesting and should have a unique arc label other
than ¢ to represent it,

All program verification techniques ultimately depend on a user-
supplied specification of what constitutes ''correctness.'" The prototype
graph plays that role here; the methods of this chapter will aid the user in
verifying that a given program adheres to the sequencing rules defined by a
given prototype graph but say nothing about the correctness or appropriateness
of that prototype. In Chapter IV a method will be presented which can be used
to verify some properties of prototypes, but this method depends on a higher-
level prototype graph which in turn must be supplied by the user as his defini-

tion of correctness.

2.4 Comparison of Graphs

Suppose we are given the state graph, G, of some program, and a proto-
type graph, P, which expresses the correctness properties we wish G to have.
How do we verify that all of the traces in G are also in P? Is it possible
to have a single decision procedure which will answer this question for any
two graphs G and P?

The answer to the second question can be found in automata and formal

language theory. Notice that state graphs as they have been defined here may
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also be thought of as finite state automata (FSA). The set of all traces
through the state graph is just the regular language accepted by the FSA.
The problem of determining whether or not all the traces of G are also in P
is exactly equivalent to determining whether £(G) & Z(P) (where £(G) denotes
the language accepted by the FSA G). From formal language theory we know
that this question is solvable for any two FSA. (This and all following asser-
tions about the decidability or undecidability of questions in formal language
theory can be found in Hopcroft and Ullman [14], Chapter 14.)

There are many possible procedures for deciding whether or not
£(G) € £(P). One, specifically adapted to the purposes and notation of this
study, is presented below followed by a proof of its correctness. It must be
kept in mind that the purpose of this algorithm is not merely to decide
whether or not the graph conforms to the prototype, but, in case it does not,
to make it as easy as possible to find the error in the original program. This
consideration precludes changing the graph G in any important way.

It is assumed that the prototype graph P is deterministic, by which

is meant that no node has two outgoing arcs with the same label. 1In addition,
the algorithm requires that P be complete, by which is meant that if anywhere
in the graph there is an arc with a given label then every node must have an
outgoing arc with that label. If P is not already complete it can be made so
by adding to it one node called a "sink node'" and adding to every node which
does not have an outgoing arc with a given label an arc so labeled from it to
the sink state. The nodes of P are named Py» P> p', etc., and P has unit
e-arcs at every node. The nodes of G, the state graph of the program being
analyzed, are named Sy 8> s', etc. G is not necessarily either deterministic

or complete.
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Comparison Algorithm

1. Let L be a set of pairs (s,p), where s is a node of G and p is a node
of P, 1Initialize L to {(so,po)} where 54 and p, are the starting nodes

of G and P respectively.

2. 1If there exist s, p, x, s', and p' such that (s,p) is in L, s % s is
in G, and p e p' is in P, but (s',p') is not in L, then add (s',p') to

L and repeat this step.

3. 1If there is a member (s,p) of L such that s is final but p is not, report

an error, otherwise report success.

LEMMA 1. The algorithm is finite.

Proof: All the existential searches are of finite sets. The loop
in step 2 must terminate eventually, because it continues only as long as
it adds new elements to L, and L is a subset of the (finite) Cartesian product

of the nodes of G and the nodes of P.

LEMMA 2. At the end of step 2, (s,p) is a member of L if and only if there

exists an o such that 50 IS s and Py =N p.

Proof: To show that (s,p) in L implies the existence of a, induct on
the number n of iterations of step 2 before (s,p) is added to L. For n = O,

we have s = s Clearly a = A (the empty trace) suffices, since

0 and p = p

0
A A . , X
sy 8 and Py ~ Py For n > 0, at step n-1 we had (s,p) not in L, s' = s

in G, p' §>p in P, and (s',p') in L. By the induction hypothesis, there exists

B B

a B such that s, => s and Py => p because (s',p') is in L. Now o = Bx.
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To show that sS4 2> s and Py > p imply that (s,p) is in L, induct on

the length of . For o = A, we have s = and p = P> and we know that

E> s' %5 and Pg §> p' 2E>p.

0
(so,po) was put in L at step 1. If o = Bx, then s,
So (s',p') is in L by the induction hypothesis. By step 2, (s',p') in L,

s' %5 in G and p' §>p in P imply that (s,p) is put in L.

THEOREM. The algorithm reports an error at step 3 if and only if G generates

a trace not generated by P.

Proof: 1If step 3 reports an error, then there exists a (s,p) in L
with s final and p not. By Lemma 2 there exists an o such that 50 2> s and
Py > p. Thus G generates a. But since P is deterministic and p is not
final, P does not generate «.

If there exists an o which is generated by G but not by P, then there
exists a final s such that 0 2> s. Since P is complete, there exists a p
such that Py 2> s. Since P is complete, there exists a p such that Py > P.
By Lemma 2 (s,p) is in L. But since P does not generate «, p is not final,

and step 3 will report an error. Q.E.D.

One would probably not implement the comparison algorithm as it is
written. For one thing, rather than having many pairs scattered throughout
L of which s is the first member, one might prefer to associate one set of
nodes of P with each node of G in order to make clearer which sections of the
object program correspond to which states of the prototype. The searches can
be made deterministic. More importantly, it is not actually necessary to make
P complete; one can modify the test at step 2 so that if (s,p) is in L and

s % s' is in G but there is no outgoing arc from p labeled x, then thealgorithm
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reports an error at once. This is because the x-arc from s to s' must be
part of a trace in G which is not in P because P is deterministic. It will
be assumed in the examples which follow that this second modification has
been made to the algorithm.

This modification to the comparison algorithm raises a point which
must be discussed in more detail. Consider the two graphs in Figure 2.2.

In both graphs the node labeled 0 is the starting and only final state.

Figure 2.2. Graphs of Two Erroneous Programs

For both graphs the intended prototype is the graph P of Figure 2.1. The
first graph, Gl’ is clearly wrong; it contains the illegal sequences e(AV)*.
The original algorithm will not report these illegal sequences, however, and
technically that would be correct since they do not end at a final state and
hence are not elements of i(Gl). Obviously, however, we would like to be told
about such illegal traces in programs, and modifying the algorithm so that
failure is reported when arcs in G have no corresponding arcs in P accom~

plishes this end. The second graph, G,, has no illegal sequences, but like

2}
G1 it has a region from which there is no path to a final state. This pre-
sumably reflects an error in the program, but not one which the comparison

algorithm will detect.

A very simple algorithm will detect them, however, First work from
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80 forward along arcs, marking those states which can be reached from 45
and then work from the final states backward along the arcs, marking states
from which some final state is reachable. Next consider states which do not
have both marks: States without the first mark are not reachable at all and
may be deleted from the graph. States with the first mark but not the second
have no path to a final state.

In using the comparison algorithm on the state graph G of a program,
one has three choices: the above marking algorithm can be applied to G be-
fore giving it to the comparison algorithm, or one can simply assume certain
properties of G without checking, or one can apply the comparison algorithm
to all graphs with the understanding that technically it detects sequences
rather than elements of £(G).

As an example of the use of the comparison algorithm, suppose we

wish to verify that £(G) € £(P) where G and P ate the graphs in Figure 2.3.

G: P:

Figure 2.3. Example Graphs

Node 3 is the final state of G; 0 of P. Initially L contains only (0,0). The
two A-arcs from node O cause (1,1) and (2,1) to be added to L. Then the C-arc
from 1 to 3 adds (3,0) to L, and finally the B-arc from 2 to 1 causes (1,2)

to be added. Table 2.1 summarizes the results of the algorithm so far.
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TABLE 2.1

PARTIAL EXECUTION OF THE COMPARISON ALGORITHM

L Reason for Being Added to L
(0,0) Initialization
(1,1) 0 é>1 in G, O é>l in P
2,1) 0852incg 081 inp
(3,0) 1%3ing 1S0inp
(1,2) | 2B1ine 12202

Nothing more can be added to L so we proceed to step 3. The only member of
P paired with 3, the final state of G, is 0 which is the final state of P,
so the algorithm reports success.

The comparison algorithm could be made considerably simpler by re-
quiring that G be deterministic. In fact, there are algorithms for construct-
ing from any nondeterministic FSA a deterministic one which accepts exactly
the same language. However, these constructions may distort the original
graph and destroy correspondences between states of the graph and sections
of the program and thus, in the case when the algorithm reports failure, make
it harder for the user to identify the faulty segment of code containing the
illegal path. In all the methods of state graph manipulation and analysis pre-
sented in this study, one aim is the retention in the graph of as much infor-
mation about the original object program as is practical.

Prototype state graphs allow one to state as correctness criteria
any member of the whole class of regular languages. From an automata theory

point of view, the method developed so far models the object program as an
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FSA and then compares this FSA with another. With these observations in
mind, it is natural to ask whether the method can be extended to other models
and languages. Would it not be possible, for example, to model programs as
pushdown automata and compare them to prototype pda, thus allowing ourselves
to use as correctness criteria any context free language? The answer is no.
From formal language theory we know that there can be no general algorithm

for determining whether or not L1 EILZ when L1 and L2 are arbitrary context~-

free languages. The same is true when Ll and L2 are both any type of formal

language except regular. The question is solvable when L., is regular and

1

LZ is an LR(k) language, but not when L

does not mean that the state graph of a program could not be used to determine

2 is context free or higher. This
if it adhered to some specific sequencing rule expressed as a higher type
language by some ad hoc method but only that no general verification procedure
is possible for such criteria. Thus one implication of the foregoing formal
language theory results is that state graphs or some similar FSA-like model

of programs are the most promising for development of general sequencing veri-

fication procedures.

2.5 State Graph Construction

Let us now turn our attention to the construction of state graphs
representing programs. The general technique is to first read the source code

of the object program line by line and construct an initial state graph which

very much resembles the program's flow chart except that operations label arcs
rather than nodes. This initial graph will then generally have to be exten-
sively manipulated both to make it accurately reflect the program's sequencing

properties and to compress it. In the discussion which follows, it will be
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assumed that the object program is written in an assembly language; however,
the basic principles are the same for programs written in some higher-level
languages.

Building the initial graph is very much like assembling the object
program, with the result being a graph rather than machine code. The source
code is read in one line at a time and parsed. Then, depending on the opera-
tion in the line, appropriate actions are performed on the state graph.

Some lines result in no action at:all, while some classes of instruc-
tions always require actions. Instructions representing actions which appear
in the prototype graph cause the creation of a new arc, appropriately labeled,
from the current node to a new node representing the state of the machine
resulting from that action. Any instruction which affects the flow of con-
trol of the program will result in some addition to the state graph. For ex-
ample, a branch statement results in two e~arcs from the current node to the
two appropriate nodes. Under certain conditions these arcs may be tagged
with the logical condition under which each path is taken. Any labeled in~
struction causes the creation of a new node corresponding to the state of the
machine just before that line is executed. Program location labels may be
attached to the nodes so that later the user may easily see which nodes cor-
respond to which sections of program source code.

Techniques for building state graphs are somewhat dependent on the
source language of the programs and thus may vary depending on the application,
but basically are adaptations of well-known techniques in assembler and com-
piler writing. Chapter IIT contains more detail on the techniques used in
one application as well as a discussion of some serious problems encountered
in trying to build accurate state graphs. The present discussion will conclude

with an example. Figure 2.4 shows a segment of MIX code purporting to



implement mutual exclusion on a table J using semaphores.

JAP LOC1 noncritical branch to LOCL
®) J reserve table J
ENTA 1
STA SW SW «1
JMP L0C2 unconditional jump to I1.O0C2
. (uninteresting code)
LOCl STZ SW SW <0
L0C2 . (uninteresting code)
IDA SW
JAZ LOC3 branch to LOC3 if SW=0
) J release table J

LOC3

Figure 2.4. Segment of Source Code

The building techniques described so far result in the graph segment of

Figure 2.5.

Figure 2.5. Segment of Initial State Graph (Incorrect)
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2.6 Splitting

In the example above, it is immediately obvious that something is
wrong. When this graph is compared to the prototype graph of Figure 2.1,
it appears that there are several illegal traces. Apparently the program
can reserve the table and not release it or release it without having re-
served it since the traces Pee and eeVe are both present in the state graph.
But a careful examination of the source code shows that these crimes will
never actually be commitited and that the program is in fact correct in its
use of P and V.

This example illustrates the necessity of expanding the initial state
graph to make needed distinctions based on the values of program variables.
In the example the problem is, of course, that no account was taken of the
switch variable SW in building the graph. The graph does not have enough
states. The initial state graph produced directly from the program's source
code is not at all a complete state graph; it does not have a different node
for each combination of variable values. Many combinations are lumped together
in one state. In fact, the only distinction between states in this initial
graph is in the value of the program counter; no distinctions based on values
of other variables have been made. As the example shows, distinctions between
states based on other program variables may be needed. Yet not all distinc-
tions can be kept because the full state graph is unmanageably large.

The solution to the problem is to designate certain variables to be
critical. The initial state graph will be expanded to reflect distinctions
between states based on different values of these critical variables, while
other variables will continue to be ignored. This designation can be selec-

tive; variables can be ignored in some parts of a program and considered
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critical in others. The definition of critical variables is pragmatic and
may be after-the-fact: a variable is critical if failure to comsider it so
results in spurious illegal traces in the state graph.

Two modifications to the building process are necessary in order to
deal with critical variables. Whenever a variable which has been designated
to be critical acquires a new value, this fact must be noted and information
about its value attached to the current node of the graph. Whenever a branch
is made on the value of a critical variable, the conditions under which each
path is taken must be attached to the outgoing arcs. If SW had been desig-
nated critical in the example of Figure 2.4, then the initial state graph

should be that of Figure 2.6.

LoCcl

Figure 2.6. Segment of Initial State Graph (Corrected)

The graph now contains all the necessary information, and it remains
only to expand the graph to include the additional states. This expansion
is accomplished by SElitting. In splitting, one mode is split into two or

more nodes, with all arcs and all information attached to the node retained.
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This process begins at the node from which there are conditional arcs and
propagates backward along the directed graph to nodes at which the critical
variable acquired known values. At these points arcs with conditions con-
trary to the information on the node are deleted. Thus two or more copies

of the whole graph segment between the variable being set and its subsequent
use are created corresponding to the (presumably) different sequences of
actions performed as the critical variable takes on its range of values. An
implementation of this splitting process is described in Chapter III. The
use of this technique implies that any variable to be designated critical
must be known to take on only a finite range of values. This is a limitation
on the method, but fortunately, critical variables‘usually obey the restriction.

To continue with the example: applying the splitting process to the
graph of Figure 2.6, beginning at the node labeled LOC2, the result is the
graph of Figure 2.8. The graph of Figure 2.7 shows an intermediate stage of
the process.

There are now two nodes representing the state of the machine when the
program is at the statement labeled "LOC2" corresponding to the two different
paths by which the program might get there, i.e., corresponding to the two
different values of the variable SW. The state graph no longer looks so
much like a flowchart, but the retention of labels and variable values with
each node allows the user to see what each node corresponds to in the behavior
of his program.

The identification of critical variables is the only major part of the
methods described in this chapter which has not been automated. The technique
currently in use is for the human user to look over the source code and to

identify (by insertions into the text of the code) the intervals, if any, in

which certain variables must be considered critical. In practice the identity
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Figure 2.7. Graph Segment During Splitting

Figure 2.8.

Graph Segment After Splitting

26
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of critical variables is usually obvious; furthermore, the failure to iden-
tify one is not disasterous. As the example illustrates, failure to note a
critical variable can result only in the presence of spurious illegal traces
in the state graph, and the attempt to find the corresponding illegal path
in the program will bring the omitted variable to the user's attention.

One class of critical variables can be identified automatically,
namely the locations to which the program returns from subroutines. Asso-
ciated with each subroutine encountered in the source code is a generated
unique variable which is automatically designated critical. When building
the initial state graph, each call to the subroutine results in setting the
value of this variable, and the return statements in the subroutine are treated
as branches on its value. The splitting process then results in the insertion
of a copy of the subroutine's graph at each point in the program's graph where
the subroutine was called. The finiteness restriction on critical variables
implies that recursive subroutine calls cannot be handled.

One: other problem in connection with critical wvariables arises when
they do aot acquire their values by explicit assignment statements but rather
are set by input statements or are initialized externally. In this case the
splitting process as described so far cannot terminate since no nodes will be
found at which a critical variable has a known value. The most useful solu-
tion is to modify the splitting procedure slightly so that it stops at the
starting node and at relevant input nodes, simply leaving the two (or more)
outgoing arcs with conditions attached. This will result in the creation of
two or more copies of the graph segment between this node and the point where
the branch occurred. Following one or more of these paths should yield an
illegal trace (else the variable was not really critical) and thus the expli-

cit conditions on the arcs will tell the user under exactly which initial
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values of the critical variable his program will run correctly.

2.7 Folding

It has been mentioned that the full state graphs of most real programs
are unmanageably large. The number of nodes in the full state graph of a
program may be thought of as the product of the sizes of the ranges of all
memory cells and registers which the program uses or may use. Thus the
state graphs of many programs will have more nodes than the number of memory
cells actually available on the largest computer, even if we ignore the prob-
lems created by the facts that the ranges of some variables may not be known
and that since programs may be run on virtual machines even the number of
memory cells used cannot be determined a priori.

In general, the problem of the size of state graphs is solved by dis-
carding unnecessary information and ignoring the distinction between two
states when the distinction is irrelevant or of no use to the analysis. The
technique for compressing state graphs is called folding. Folding consists
quite simply of combining two or more nodes into one node, preserving all the
arcs into or out of all the original nodes by having them all go into or out
of the one new node.

The initial state graphs of programs can be large, and the splitting
process can greatly increase their size. The comparison algorithm must deal
with each node of the state graph at least once and possibly many times. Thus
in order to save both memory and processing time, it is necessary to keep the
graph as folded as possible at all times. In fact, folding is the crucial
technique which makes practical the analysis methods presented in this study.

Folding can be thought of as a homomorphic mapping from the set of
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nodes of a graph onto a subset of the nodes which preserves the connectivity
properties of the graph. If G is the original graph and H is the folded
graph, then a folding is a mapping, £, from the nodes of G to the nodes of

H such that if s S s' then £(s) §>f(s'). For a thorough discussion of graph
homomorphisms see Hedetniemi [11].

In practice, folding can almost always be defined in terms of ignoring
a particular variable or set of variables; if the only distinction between
the states represented by two nodes is the value of x, then folding those
two nodes together is equivalent to ignoring the value of x. Notice that
the source code listing of an assembly language program is an extremely
folded version of its own state graph in which every variable except the pro-
gram counter is ignored. Each line of executable code labels the transition
from one state to another, i.e., from one value of the program counter to
another. The initial state graph built from the source code is similarly
folded. The problem in the example in which the value of SW was ignored was
that the initial graph was too folded.

It is of crucial importance that since folding preserves individual
arcs with their labels, it preserves both paths and traces. That is, if the
trace xy...zZ existed in a graph G, and G is folded to H, then the trace xy...z
will also be present in H. A proof that folding preserves traces can be
found in Howard [15].

This property of folding allows us to deal with folded versions of the
state graph of a program when searching for sequences of operations in viola-
tion of some rule; if an illegal trace does not exist in the folded graph, it
did not exist in the original graph. Unfortunately, the converse of this is
not true; that is, folding will generally add traces which were not in the

original graph. This is undesirable only if the added traces are illegal,
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that is, if they were not allowed by the rule to which we are trying to prove
that the program adheres. Thus the general strategy in dealing with state
graphs must be to fold them as much as possible without introducing spurious
illegal traces.

The only restriction of folding is that it must not introduce into
the graph illegal traces, i.e., traces not present in the prototype. But
this criterion is difficult to apply directly since constant reference to
the prototype would be inconvenient and time consuming and since the compari-
son algorithm cannot even be applied until all the splitting has been done.
The criterion can be applied indirectly, however, by using the one feature
known to be present in all prototype graphs, namely the unit e-arcs at every
node. The presence of these arcs in the prototypes guarantees that two traces
differing only in instances of € will either both be legal or both be illegal.
This observation permits the adoption of the following two folding rules:

1. 1If node s is directly connected to s' only by a e-arc from s to

s', and either (a) s has no other successors or (b) s' has no other
predecessors, then s and s' may be combined.

2. If there is a e-arc from s to s' and a e-arc from s' to s, then

s and s' may be combined.

It is easy to see that any traces added by folding in accordance with
these rules will differ from some trace already present in the graph by at
most some instances of €. For example, consider the "only successor" rule
illustrated by Figure 2.9. Represent any trace from 89 to s by a, any trace
from sy to s' by B, and any trace from s' to a final state by y. Then the
only traces from 50 to a final state going through either s or s' are aey and

By. After folding, the traces added are ay, Be+&, etc.
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Figure 2.9. Illustration of the "Only Successor' Folding Rule

Since adding or deleting € from a trace does not make it a new trace for the
purposes of sequencing analysis, it can be seen that the strategy represented
by the two folding rules given is quite conservative; not only are no illegal
traces added, but no new traces of any kind are added. With or without
allowing reference to the prototype, more sophisticated folding rules can
be devised which result in an even more compact graph than that resulting
from application of the two given rules; there is some discussion of folding
strategy in Chapter III.

Returning once more to the table reservation example, applying the

folding rules to the graph of Figure 2.8 yields the graph of Figure 2.10.

@ LOC2

Figure 2.10. Graph Segment After Folding
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The comparison algorithm can now easily verify that the graph contains only
traces present in the prototype of Figure 2.1, and therefore the code seg-
ment it represents uses the P and V operations correctly.

In this particular example the two nodes connected by the only re-
maining e-arc could have been combined safely, but only because the prototype
happens to allow repeated P-V pairs. Had the prototype been instead as in
Figure 2.11, this folding would have introduced spurious illegal traces.

This example is sufficient to show that one cannot fold across all e-arcs.

+ B
-

€

Figure 2.11. Prototype for One-use-only

This example also illustrates one reason why in practice the final
graphs even of correct programs can almost never be folded to exactly match
the prototype; even if there is such a folding, universally safe folding rules
will usually not accomplish it. Another reason is that there may be no such
folding. 1In Figure 2.3, G is correct with respect to P, but there is no fold-

ing of G which will result in P.

2.8 Summary

The general method for proving assertions about the order in which
programs perform interesting actions will now be summarized before proceeding

to more detail in Chapter III. The method assumes that three things are given:
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a source listing of the program, a list of interesting actions which the
program may perform, and a prototype graph. The method consists of three
main steps:

First, an initial state graph is built from the source code. This
is the hardest step to perform in practice, the most difficult to describe
since much depends on the source language of the object program, and the
step least amenable to proof of correctness. The method can probably be
made provably correct but at approximately the cost of proving correct a
large compiler. In practice, the user will probably have to simply assume
that an initial state graph has been built which accurately reflects the se-
quencing properties of his program. This assumption includes two subsidiary
ones: that the code which performs interesting actions can always be recog-
nized as such, and that all critical variables have been so designated and
take on only a finite range of values.

This initial state graph must then be expanded to reflect differences
between states when critical variables have different values. It must also
be folded to save time and space. These two graph manipulation actions can
be taken with perfect confidence that the sequencing properties of the initial
state graph have not been altered.

The third and final step is to verify that the state graph has the
specified property. If the property has been specified by use of a prototype
state graph, then the comparison algorithm can be used. It is assumed that
if other formalizations are used they would be chosen with a view to algo-
yithmic verification.

It can be seen that the model can be manipulated with more confidence

than it can be built. But the assumptions involved in building the initial
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state graph are not as dangerous as they might seem because the method tends
to be failsafe; the most likely error in building a graph, the failure to
note a critical variable, will add traces rather than delete them. If this
method verifies that a program has a specified property, a user may be fairly
confident in that result. If the method indicates that a program is incor-
rect there are three possibilities: the user can find the illegal path in
the program, find an overlooked critical variable and try the method again,

or remain uncertain about the correctness of his program,



CHAPTER III

PRACTICAL EXPERIENCE

3.1 Introduction

In this chapter, the techniques which are a part of the analysis
method presented in the last chapter will be discussed in more detail. The
emphasis will be on practical problems, and the discussion will focus on a
program, TRACE, which has implemented some of the techniques to perform se-
quencing analysis on real object programs. TRACE is also discussed in a
paper by Howard and Alexander [16].

TRACE is written in FORTRAN and accepts as input object programs
written in CDC6600 peripheral processor assembly language, pp COMPASS. Using
the techniques already described, it builds and manipulates state graphs and,
optionally, outputs them at various stages in the processing. It may also
accept a prototype graph and use the comparison algorithm to verify that the
object program adheres to the prototype. TRACE is organized in overlays.

The main program consists of numerous utility routines and a simple driver.

The driver calls in turn three overlays which perform the three steps of the
analysis method: BUILD reads the source code and the list of interesting in-
structions and builds the initial state graph. SPLIT processes all conditional
arcs, splitting nodes to reflect different values of critical variables.
CLEANUP performs final folding, reads in the prototype, and performs the com-~

parison algorithm.

35
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3.2 Building the State Graph

BUILD is divided conceptually into two functions, a parser and recog-
nizer for the source code, and a set of executive routines which build the
initial state graph. BUILD first reads in the user-supplied list of source
code operations which result in some addition to the graph being built. In
effect, by ignoring and taking no-action upon those instructions whose op-code
is not on the list, BUILD is folding the graph even as it builds it. This
list includes, but is much larger than, the set of interesting operations
which appear in the prototype graph. This larger list must include all con-
trol operations in the object language such as jumps, return jumps, and branches.
While it is unlikely that such program control actions would appear explicitly
on a prototype graph as an interesting action, they do determine paths
through the graph from state to state and hence must be taken into account.
Keeping up with the value of critical variables requires that some loads and
stores also be on the list. A particular store action will result in an addi-
tion to the graph only if the operand is a critical variable. Even though the
importance of some instructions depends partly on their context, once a source
statement has been parsed and recognized it is relatively easy to make the
appropriate addition to the graph.

The more difficult function of BUILD is the recognition of important
statements. COMPASS is a relatively powerful assembly language with such
features as overlays and macros with conditional assembly. Yet BUILD had to
be far shorter and simpler than a full COMPASS assembler to allow more time
to develop the other, theoretically more interesting, portions of TRACE. Thus
no attempt was made to handle such difficult constructions as table jumps,

"7IN #+7" (branch to this address plus 7), or macro calls. 1In all of these
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cases, the user must substitute more straightforward code into the object
program before giving it to BUILD.

An even more critical problem is the recognition of important actions
when these actions are not performed in one line of code. An example will
illustrate the problem. In some systems there may be a one-line primitive
such as Dijkstra's P operation for reserving tables, but in the UT2 operating
system used at the University of Texas Computation Center this action is ac-
complished by a series of statements which load a certain value into a certain
address (to be polled by a monitor) and then repeatedly test that address for
a response signal, The names assigned to the variables involved may vary
from program to program. Some system programmers use a macro to accomplish
the task, in which case the name of the macro serves very nicely as the in-
struction to be recognized, but some programmers do not use the macro. In the
latter case it would seem that the program analysis method being presented
here needs to have incorporated into it both a pattern recognition facility
and some technique for specifying patterns of program code. This feature
has not been implemented; at present if an important action cannot be recog-
nized by the presence of one line of code, such a line must be inserted at the
appropriate point in the source by the user.

As was mentioned in the previous chapter, the user must make one other
set of additions to the source code of the object program to denote critical
variables. If x is critical within a certain segment of the program, then
some pseudo-op such as "NOTE X" must be inserted before that segment. "ENDNOTE
X" may optionally follow the segment. These insertions need not be made for
the critical variables connected with subroutine calls and returns which are

handled completely automatically.
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3.3 Splitting

After the initial state graph has been built and some preliminary
folding accomplished, SPLIT is called. During the building, branches on
the value of critical variables resulted in two or more outgoing arcs from
the current node being tagged with the condition under which each path would
be followed. Nodes with outgoing conditional arcs are called 'question nodes."
Each time a question node was created as a result of such a branch, BUILD
put that node on a pushdown stack which was saved for SPLIT,

SPLIT begins each cycle through its algorithm by considering the top
node on this question stack. If the node has associated with it state infor-
mation relevant to the conditions on the outgoing arcs, appropriate action
is taken: 1if the condition on the arc is incompatible with the state, the
arc is deleted; if the state satisfies the condition, then the condition is
removed from the arc. If there remain arcs with conditions about which the
node contains no information, then the node is split into as many copies as
there are mutually exclusive conditions. Each node has attached to it state
information compatible with one condition, and this condition is attached to
all its incoming arcs. The conditions are then removed from the outgoing arcs.
The node is then removed from the question stack, and if it has been split then
all its predecessors are added to the stack since they now have conditional
outgoing arcs. When the question stack is empty, SPLIT terminates.

Notice that since state information is attached to each newly split
node before leaving it, and since an attempt is made to answer the questions
on the arcs with information at hand on the node before splitting it, this pro-
cess cannot get trapped on loops; it will traverse a loop in the state graph

at most once for any given set of conditions.



