
ORI GIN AL PA PER

Compositional pattern producing networks: A novel
abstraction of development

Kenneth O. Stanley

Received: 13 April 2006 / Revised: 21 January 2007 / Published online: 10 May 2007

� Springer Science+Business Media, LLC 2007

Abstract Natural DNA can encode complexity on an enormous scale. Researchers

are attempting to achieve the same representational efficiency in computers by

implementing developmental encodings, i.e. encodings that map the genotype to the

phenotype through a process of growth from a small starting point to a mature form.

A major challenge in in this effort is to find the right level of abstraction of

biological development to capture its essential properties without introducing

unnecessary inefficiencies. In this paper, a novel abstraction of natural development,

called Compositional Pattern Producing Networks (CPPNs), is proposed. Unlike

currently accepted abstractions such as iterative rewrite systems and cellular growth

simulations, CPPNs map to the phenotype without local interaction, that is, each

individual component of the phenotype is determined independently of every other

component. Results produced with CPPNs through interactive evolution of two-

dimensional images show that such an encoding can nevertheless produce structural

motifs often attributed to more conventional developmental abstractions, suggesting

that local interaction may not be essential to the desirable properties of natural

encoding in the way that is usually assumed.

Keywords Evolutionary computation � Representation � Developmental encoding �
Indirect encoding � Artificial embryogeny � Generative systems � Complexity

1 Introduction

Representation is at the heart of artificial intelligence. Particularly when a problem

involves search, a good representation of the solution space can mean the difference

between success and failure. In evolutionary computation, as traditional fixed-length

K. O. Stanley (&)

School of Electrical Engineering and Computer Science, University of Central Florida,

4000 Central Florida Blvd., Orlando, FL 32816-2362, USA

e-mail: kstanley@cs.ucf.edu

123

Genet Program Evolvable Mach (2007) 8:131–162

DOI 10.1007/s10710-007-9028-8



genomes and direct encodings reach their limits, the importance of representation

has moved to the forefront of research. Meanwhile, biology remains a potent

reminder of how far there is to go. In biology, the genes in DNA represent

astronomically complex structures with trillions of interconnecting parts, such as the

human brain [1–3]. Yet DNA does not contain trillions of genes; rather, somehow

only 30,000 genes encode the entire human body [4].

There is thus reason to believe that the discovery of systems as complex as

humans is only possible through extraordinarily efficient encoding, as seen in

nature. A key process in natural encoding is development, in which DNA maps to

the mature phenotype through a process of growth that builds the phenotype over

time. Development facilitates the reuse of genes because the same gene can be

activated at any location and any time during the development process. Thus a small

set of genes can encode a much larger set of structural components.

This observation has inspired an active field of research in artificial developmental
encodings [5–8]. The aim is to find the right abstraction of natural development for a

computer running an evolutionary algorithm, so that it can begin to discover

complexity on a natural scale. Abstractions range from low-level cell chemistry

simulations to high-level grammatical rewrite systems [8]. A common facet of such

abstractions is that the state of an individual phenotypic component at one moment in

development affects the states of components in the same vicinity in the future, that is,

development unfolds through local interactions. Because no abstraction so far has

come close to discovering the level of complexity seen in nature, much interest

remains in identifying the properties of abstractions that give rise to efficient encoding.

This paper introduces a novel abstraction of natural development that breaks the

strong tradition of local interaction and temporal unfolding in developmental

encoding research. Yet it is nevertheless demonstrated that it captures several

essential characteristics of such encoding. The fundamental insight behind this new

encoding, called Compositional Pattern Producing Networks (CPPNs), is that it is

possible to directly describe the structural relationships that result from a process of

development without simulating the process itself. Instead, the description is

encoded through a composition of functions, each of which is based on observed

gradient patterns in natural embryos.

Because CPPNs are structurally similar to artificial neural networks, they can

right away take advantage of existing effective methods for evolving neural

networks. In particular, the Neuroevolution of Augmenting Topologies (NEAT)

method evolves increasingly complex neural networks over generations [9–11]. In

this paper, with only slight adjustment, NEAT is modified to create CPPN–NEAT,

which evolves increasingly complex CPPNs. In this way, it is possible to evolve

increasingly complex phenotype expression patterns, complete with symmetries and

regularities that are elaborated and refined over generations.

The main contribution of this paper is to establish CPPNs as a legitimate

abstraction of natural developmental encoding. To provide evidence for this claim, a

novel experimental approach to analyzing the properties of genetic encodings is

introduced: CPPN–NEAT-based interactive evolutionary computation (IEC), in

which a human select the parents of each new generation, is used to produce

examples of several fundamental structural motifs and elaborations of nature.

132 Genet Program Evolvable Mach (2007) 8:131–162

123



Symmetry, reuse, reuse with variation, preservation of regularities, and elaboration

of existing regularities all are demonstrated and capitalized on by CPPN–NEAT,

validating it as a promising new abstraction of natural developmental encoding, and

one that is able to evolve increasingly complex patterns.

While the primary conclusion is simply that CPPNs are legitimate abstractions of

developmental encoding, the ramifications of this conclusion are significant.

Admitting a new class of encoding that lacks classic temporal unfolding and local

interaction expands the scope of developmental encoding research and suggests

possible new directions for the field. Perhaps most significantly, if similar motifs

can be produced with and without local interaction, the question arises whether local

interaction is, at a high level, essential to efficient encoding, or whether it is rather

only an artifact of the constraints imposed by physics in nature.

The next section provides background on the role of development in both natural

evolution and artificial evolutionary algorithms. Section 3 then details the CPPN

approach, and how CPPN–NEAT evolves increasingly complex patterns. Finally,

Sect. 4 explains the experimental approach and discloses results, followed by a

discussion in Sect. 5.

2 Background

This section introduces important concepts in developmental encoding, starting with

a review of prior computational abstractions. Following this review, typical patterns

produced by natural development are discussed, providing context for evaluating the

validity of different abstractions. Finally, an important process in natural evolution

called complexification, which also occurs in the experiments in this paper, is

described.

2.1 Artificial developmental encodings

The apparent connection between development and complexity in biology has

inspired significant research into artificial developmental encoding in recent years

[5–7, 12–37]. Just as a biological embryo starts from a single cell and through a

series of genetic instructions achieves structures of astronomical complexity,

artificial developmental encodings strive to map an artificial genome to a

comparatively more complex phenotype through a series of steps that grow a

small starting structure into a mature form.

Development makes such representational efficiency possible by allowing genes

to be reused in the process of assembling the phenotype. Without such reuse, the

genotype would need to be as complex as the phenotype, potentially including

millions or even trillions of separate genes, an intractable search space. Through

reuse the number of genes can be orders of magnitude fewer than the number of

structural units in the phenotype, making search for extremely complex structures

practical. For example, there are numerous receptive fields in the human visual

cortex, each of which is encoded from the same genes. Thus, a small number of

genes can encode for a large number of structures. As the brain develops during

Genet Program Evolvable Mach (2007) 8:131–162 133

123



embryogenesis, each time a receptive field is built, a similar set of genes is activated

[38, 39]. In this way, development and reuse are complementary partners in the

representation of complexity. While factors such as the environment and its

interaction with development affect the success of evolutionary search as well, the

encoding’s efficiency provides a significant advantage.

Artificial developmental encodings attempt to exploit the relationship between

reuse and complexity in a similar way to nature. However, because computers differ

from the natural world and because it is not necessary to simulate every facet of a

biological process in order to capture its essential properties, finding the right level

of abstraction remains an open problem. Therefore, several levels of abstraction

have been explored in recent years. These range from low-level cell chemistry
simulations to higher-level grammatical approaches.

Cell chemistry methods simulate the local interactions among chemicals and

genes inside and between cells during embryogenesis [6, 12–20, 24–26, 28, 31–33,

37, 40, 41]. These methods follow the philosophy that the essential functions that

allow development to yield significant complexity are located in the physical

interactions that occur among proteins and cells in a developing embryo. Thus, cell

chemistry approaches evolve genes that produce simulated proteins that diffuse and

react as genotype maps to phenotype through a process of growth. The networks

formed by genes that send signals back and forth through their protein products are

called gene regulatory networks (GRNs). GRNs are often explicitly simulated in

cell chemistry methods [14, 16, 17].

In contrast, grammatical approaches simulate development at a higher level of

abstraction by evolving sets of rewrite (i.e. symbol replacement) rules [7, 21–23, 27,

29, 30, 34–36, 42]. When applied iteratively these rules grow a final structure from a

single starting symbol. Each replacement occurs at the locality of the symbol to be

replaced within the growing phenotype. Thus, local interaction and temporal

unfolding also control the growth of phenotypes through grammars.

Both approaches have produced significant results, including simulated three-

dimensional body morphologies and locomotion [7, 15], neural networks with

repeating structures [21, 27], and physical structures with self-similarity [7, 17].

However, no approach has achieved complexity even close to that seen in nature.

Thus, the search for powerful developmental encodings continues [8]. Expanding

the scope of developmental encoding to include novel abstractions opens up new

opportunities for such exploration.

The next section discusses important characteristics of developmental patterns.

2.2 Patterns of development

Development produces patterns and evolution produces sequences of patterns over

generations. Patterns include regularities, and regularities are what make reuse

possible. Without regularity, the same information could not produce different parts

of the same phenotype, removing much of the advantage of development. This

section enumerates a set of general characteristics of patterns observed in natural

organisms that can also be sought in artificially evolved phenotypes.

134 Genet Program Evolvable Mach (2007) 8:131–162

123



Identifying the general characteristics of natural patterns is an important

prerequisite to describing how such patterns can be generated algorithmically. Both

Turing [37] and Lindenmayer [29] were initially inspired by the patterns they

observed in nature before they attempted to describe how those patterns could be

generated. Turing eventually proposed his reaction diffusion model, which

successfully produces patterns similar to those seen on sea shells and animal pelts,

and Lindenmeyer invented L-systems, which grow accurate plant-like morpholog-

ies. Thus, by identifying the common general properties of patterns in nature, it

becomes more clear for what phenomena artificial systems must account. The

following list describes both patterns present in individual organisms, and the way

those patterns change over generations.

• Repetition: Multiple instances of the same substructure is a hallmark of

biological organisms. From cells throughout the body to neurons in the brain, the

same motifs occur over and over again in a single organism. Repetition in the

phenotype is also called self-similarity [6].

• Repetition with variation: Frequently, motifs are repeated yet not entirely

identical. Each vertebrae in the spine is similar, yet they each have slightly

different proportions and morphologies [3]. Similarly, human fingers repeat a

regular pattern, yet no two fingers on the same hand are identical. Repetition

with variation is abundant throughout all of natural life.

• Symmetry: Often repetition occurs through symmetry, as when the left and right

sides of a body are identical mirror images in classic bilateral symmetry.

• Imperfect symmetry: While an overall symmetric theme is observable in

many biological structures, they are nevertheless generally not perfectly

symmetric. Such imperfect symmetry is a common feature of repetition with

variation. The human body, while overall symmetric, is not equivalent on both

sides; some organs appear only on one side and one hand is usually dominant

over the other.

• Elaborated regularity: Over many generations, regularities are often elaborated

and exploited further [43]. For example, the bilaterally symmetric fins of early

fish eventually became the arms and hands of mammals, displaying some of the

same regularities [44].

• Preservation of regularity: Over generations, established regularities are often

strictly preserved. Bilateral symmetry does not easily produce three-way

symmetry, and four-limbed animals rarely produce offspring with a different

number of limbs, even as the limb design itself is elaborated.

Using this list, phenotypes and lineages produced by artificial encodings can be

analyzed according to their natural characteristics, giving an indication whether a

particular encoding is capturing essential properties and capabilities of natural

development. The characteristics in this section are employed to interpret

experimental results reported in Sect. 4.

The next section describes a process through which the patterns represented by a

set of genes can become increasingly complex.

Genet Program Evolvable Mach (2007) 8:131–162 135

123



2.3 Complexification

The process of complexification allows evolution to discover more complex

phenotypes than would be possible through optimizing a fixed set of genes. This

section explains complexification, which is demonstrated in the experiments in

Sect. 4, and how it can be implemented.

In searching for the solution to a particular problem whose dimensionality is

unknown a priori, the more dimensions there are in a selected solution space, the

harder it is to discover. In other words, complex solutions are more difficult to

evolve than simple ones. Developmental encodings attempt to reduce the effective

complexity of the search space by encoding a complex phenotype in a significantly

lower-dimensional genotype.

Yet even this reduction does not remove the curse of dimensionality. Even with a

developmental mapping, it still takes many thousands of genes to represent

genuinely complex phenotypes. For example, the human genome has 30,000 genes

(3 billion base pairs), which is a significantly high-dimensional search space.

Although the compression between genotype and phenotype is indeed substantial

(encoding hundreds of trillions of phenotypic components), the search space of the

genotype still remains prohibitively complex for direct search.

The reason evolution can overcome this prohibitive complexity is that it does not

start searching in a space of the same complexity as the final solution. New genes

are occasionally added to the the genome, allowing evolution to perform a

complexifying function over and above optimization. Complexification allows

evolution to begin with simple phenotypes by starting search in a low-dimensional

space, and elaborate on them incrementally, as opposed to evolving elaborate

systems from the start.

This process of gradually adding new genes has been confirmed in natural

evolution [45–49] and shown to improve adaptation [50]. New genes commonly

appear through gene duplication, which is a special kind of mutation in which one

or more parental genes are copied into an offspring’s genome more than once. Gene

duplication has been responsible for key innovations in overall body morphology

over the course of natural evolution [45, 47, 48, 51]. The main effect of gene

duplication is to increase the dimensionality of the genotype, thereby allowing it to

represent increasingly complex phenotypic patterns. Thus, complexification and

developmental encoding work together to produce complex phenotypes.

In artificial evolution, genes can be added in many ways, including but not

limited to duplication. They can also simply be added as new dimensions with

random values or through a more domain-specific process based on properties of the

genotype. Regardless of how they are added, the new space they afford builds on the

information that is already present and allows a process of unbounded elaboration.

Through complexification, major animal body plans can be established early in

evolution and then elaborated and refined as new genes are added. Thus, it is

important that any encoding abstracted from biology be able to complexify in

addition to efficiently encode regularities. The encoding proposed in Sect. 3.4

satisfies these criteria.

The next section presents a novel perspective on developmental encoding.

136 Genet Program Evolvable Mach (2007) 8:131–162

123



3 Patterns without local interaction

Much of evolutionary computation, and artificial intelligence as a whole, is

concerned with finding the right level of abstraction. A strong assumption behind

much recent work in developmental encoding is that local interaction and temporal

unfolding in a simulation are abstractions that capture the essential properties of

development in nature. Although this assumption is powerfully intuitive, this

section shows how it is possible to abstract away even these seemingly fundamental

features yet still capture the same essential generative properties. The approach is

motivated by the characteristics of patterns produced by natural evolution discussed

in Sect. 2.2. The central insight is that local interaction and unfolding over time are

prerequisites only to encoding in the physical universe. When the constraints of

physics are lifted, they can be abstracted away.

3.1 Eliminating temporal unfolding

There is a compact description of the phenotype that does not involve explicit

temporal unfolding. In order to see that such a description must exist, it helps to

conceive the phenotype as a distribution of points in a multidimensional Cartesian

space. Viewed this way, a phenotype can be described as a function of n
dimensions, where n is the number of dimensions in the physical world. For each

coordinate, the presence or absence of a point, or its level of expression, is an output

of the function that describes the phenotype. Figure 1 shows how a two-dimensional

phenotype can be generated by a function of two parameters.

This observation implies that any phenotype produced through a temporal

progression is also possible to represent through a functional description. In fact,

Cybenko [52] showed that any function can be approximated by a neural network

with two hidden layers. The more neurons in the network, the more accurate the

approximation can be. Thus, any morphology, when viewed as a distribution of

particles in space, is possible to represent as a function without the notion of time. A

Fig. 1 A function produces a phenotype. The function f takes arguments x and y, which are coordinates in
a two-dimensional space. When all the coordinates are drawn with an intensity corresponding to the
output of f at that coordinate, the result is a pattern, which can be conceived as a phenotype whose
genotype is f. In this example, f produces a triangular phenotype

Genet Program Evolvable Mach (2007) 8:131–162 137

123



developmental chronology is only one way of producing a particular constellation of

particles.

It follows that encoding an unfolding process may be unnecessary to produce

complex phenotypes because a functional description could alternatively have been

evolved. Such a description would not necessitate a long unfolding chain of

interactions and productions. Thus, at least theoretically, it is possible that the

essential properties of developmental encoding can be captured by an encoding

without the notion of time. The next section strengthens this perspective by showing

how functional representations can include the same essential pattern-generating

information as developmental encodings, and in similarly compact ways.

3.2 Functions and regularities without local interaction

The process of temporal unfolding is predicated on local interaction. Phenotypic

development over time requires that local states interact to produce successor states

at the same loci. Thus, if temporal unfolding is to be replaced with functional

description, then that description must subsume the role of local interaction to

remain a valid abstraction of development. This section shows how a class of

functional descriptions can in fact mimic the effects of local interaction.

A significant function at early stages of development in natural embryogeny is to

define a coordinate frame, i.e. a set of virtual coordinate axes, upon which future

stages of development will be based [44, 53]. The simplest and most basic of these

coordinates frames are the main axes of the body, which are defined at the very

beginning of development, inside the egg itself [44, p. 188]. These axes include the

anterior–posterior axis (i.e. head to feet), and the dorsal-ventral axis (i.e. back and

front). Just like the x and y axes in a simple Cartesian coordinate system, these two

main axes are orthogonal and roughly straight. The initial axes are determined

through a cascade of local gene interactions defined by a GRN, that is, a signaling

pattern that develops over time culminates in a chemical gradient along each initial

axis.

Once the initial axes are defined, new coordinate frames for subregions of the

body can then be appropriately spatially situated [53]. In this way, the gradients that

define earlier coordinate frames are inputs to future cascades that produce more

localized coordinate frames. For example, the body plan of the Drosophila fly

includes a series of segments, each with its own internal coordinate axes. Each

segment is the origin of a specific body part or region, such as legs, wings, and the

head. (Each of these regions in turn have their own subregions with their own

coordinate frames as well.) Importantly, the particular coordinate frame of each

body segment must be determined by where that segment lies along the anterior–

posterior axis of the complete body. In fact, the genes that determine the

segmentation of the body by defining their coordinate frames (called HOX genes)

are activated from the initial axial gradients [54, 55]. Figure 2 shows the anterior–

posterior axis of a simplified insect model, and the segments along its axis.

Meinhardt [53, p. 81] gives a succinct summary of the phenomenon of layering

coordinate frames (which he calls subfields) one upon another:

138 Genet Program Evolvable Mach (2007) 8:131–162

123



It will be shown that many of these experiments are explicable under the

assumption that the boundaries between patches of differently determined

cells, determined under the influence of the primary gradient(s), become the

organizing regions for the developmental control of subfields. Since the

boundaries of existing structures give rise to the new structures, the existing

and the new structures have necessarily the correct spatial relationship to each

other. This allows a very reliable finer subdivision of a developing embryo.

Interestingly, although the coordinate frames in natural development are defined

through local GRNs that unfold over time, in principle the same axes can be

described functionally instead, simply by composing the functions that describe

them. Through function composition, it is simple to demonstrate that biologically

plausible new coordinate frames are derivable from preexisting ones without a

notion of time. Consider the left–right axis, along which bilateral symmetry is

present in many organisms. Coordinates along this axis can be defined simply as

f(x) = x. However, in order to become bilaterally symmetric along this axis, a

developing embryo must organize a gradient that peaks at the center and diminishes

towards both the left and right sides. The organizing process to achieve such a

gradient may be complex and involve many local interactions, yet functionally it

can be described simply as a Gaussian: gðxÞ ¼ 1

r
ffiffiffiffi

2p
p e�ðx�lÞ2=2r2

(Fig. 2). In fact, a

similar effect could be achieved even more simply through the absolute value

function, assuming the midline is x = 0: h(x) = | x |. It is important to note also that a

bilaterally-symmetric coordinate frame does not preclude simultaneous bilateral

asymmetries; the original left–right gradient is no less present.

Just as a symmetric function can yield bilateral symmetry, segmentation can be

represented through periodic functions. The function j(y) = sin(y) effectively assigns

a repeating coordinate frame (i.e. a set of segments) laid along the anterior–posterior

axis. In the case of sine, each coordinate frame is itself symmetric about its peak

value. Repeating asymmetric frames can be created analogously using the modulus

function as in k(y) = y mod 1.

Fig. 2 Gradients define the body plan. A simplified insect model with discrete body segments and
bilateral symmetry is depicted. Gradients along the major axes define the the overall body plan. The
anterior–posterior gradient allows segments to situate in the embryo along that axis, each one destined to
grow its own associated body parts such as wings or legs. The Gaussian gradient, a function of the
original left–right axis gradient, is distributed symmetrically about that axis, allowing bilateral symmetry
to develop from it

Genet Program Evolvable Mach (2007) 8:131–162 139

123



Coordinate frames created through a developmental process interact with

each other to produce complex patterns with regularities. In the same way,

functionally-represented frames can be composed to create complex regularities. In

this way, composition replaces interaction. For example, bilateral symmetry and

segmentation along the left–right axis can produce two sets of segments with

opposite polarities. This phenomenon is easily achieved by feeding the output of a

symmetric function into a periodic function (Fig. 3). This simple composition

creates a new set of coordinate frames that can now be used for further refinement,

all without explicit local interaction.

The preceding argument establishes that fundamental interactions over develop-

ment are in fact analogous to a series of function compositions that each in turn

create a new, more refined coordinate frame. Eventually, these frames can combine

to form patterns much like those observed in nature. This analogy raises the

intriguing possibility that function composition is a valid abstraction for develop-

ment, even though function composition is not intrinsically an unfolding process.

The main idea is that the order in which functions are composed is an abstraction

for the chronology of events over the course of development, without the need for

simulating such events locally.

A natural way to represent a composition of many functions is as a connected

graph (Fig. 4). The initial coordinate axes (i.e. the most basic coordinate frame) can

Fig. 3 Composing gradient functions. This example illustrates how a simple composition of functions in
one dimension can produce a pattern with multiple regularities. A network representation of each
composition is depicted to the right of each function graph. The initial asymmetric gradient x is composed
with both a symmetric function (F1) and a periodic function (F2), resulting in two sets of segments with
opposite polarity. Thus, new coordinate frames can be built upon preexisting ones without local
interaction

140 Genet Program Evolvable Mach (2007) 8:131–162

123



be provided as inputs to the graph. The next level of nodes can be thought of as

descriptions of the first stages of development, such as establishing bilateral

symmetry. Higher level nodes then establish increasingly refined coordinate frames.

The final outputs are thus informed by each transformation that takes place before

them. In this way, the entire graph is like a diagram of the sequence of steps that

happen over a developmental chronology.

Providing the initial coordinate axes as inputs to the graph is what allows local

interaction to be eliminated: In physical space there are no intrinsic coordinates that an

individual cell can access to determine its location (and hence its identity). Therefore,

local interaction becomes a way of asking, ‘‘where am I?’’ That is, through the

collective negotiation of adjacent cells that interact with each other, it is possible to

derive a coordinate frame. However, by composing functions that take as arguments an

absolute frame of reference, the need for such negotiation is eliminated and all

identities and relative locations can be determined completely independently.

Interestingly, a graph of such compositions is very similar to an artificial neural

network with arbitrary topology. The only difference between the two is that

artificial neural networks generally use sigmoid functions (and sometimes Gaussian

functions) as activation functions in each node, whereas the function composition

graph may use any of a variety of canonical functions at each node.

The analogy between a function composition graph and an artificial neural

network (ANN) is so strong, in fact, that it is tempting to equate the two. However,

while from an external objective standpoint they are clearly related, using the term

artificial neural network would be misleading in the context of this discussion

because artificial neural networks were so named in order to establish a metaphor

with a different biological phenomenon, i.e. the brain. The terminology should avoid

making the implication that biological, thinking brains are in effect the same as

developing embryos. Therefore, this paper uses the term Compositional Pattern

Fig. 4 Composition of functions as a graph. The graph determines which functions connect to which.
The connections are weighted such that the output of a function is multiplied by the weight of its outgoing
connection. If multiple connections feed into the same function, it means that the downstream function
takes the sum of their weighted outputs. Note that the topology is unconstrained and can represent any
possible relationships. This representation is similar to the formalism of artificial neural networks with
arbitrary activation functions and topologies. Because the absolute coordinate frame (x,y) is input to the
network, local interaction can be eliminated from the representation

Genet Program Evolvable Mach (2007) 8:131–162 141

123



Producing Network (CPPN) to refer to graph constructs that describe compositions

of functions intended to produce regular patterns.1

By querying a CPPN separately for each point in the Cartesian coordinate space

independently, it can describe an entire phenotype without local interaction or

temporal unfolding. The coordinates of each point are input into the CPPN and the

output of the CPPN designates what should exist at that point in space, as depicted

in Fig. 1.

The next section explains how CPPNs can be evolved in a way that maintains the

analogy with development: Major body-plan features can be established first and

then refined in future generations, just as happens over the course of natural

evolution.

3.3 Evolving compositional pattern producing networks

It is fortuitous that CPPNs and ANNs are virtually the same from a structural

perspective because many methods already exist for evolving ANN topology and

weights [10, 21, 56–60]. These methods can be easily extended to CPPNs with little

change. There are also methods for evolving genetic programs, which can be similar

to CPPNs [61, 62].

Given so many choices, what is the best method for evolving a CPPN? Evolving

CPPNs should maintain the essential properties of evolution in nature. One of these

properties, described in Sect. 2.3, is the gradual complexification of the genome:

Evolution did not begin search in the space of human beings. Rather, there was

initially a smaller genome and new genes were added over the course of evolution.

In a CPPN, adding a new gene means adding a new connection or function node to

the network. Such an addition is analogous to adding a new gene in a GRN. Thus, if

CPPNs are allowed to complexify in this way, then they too can establish

fundamental regularities early in evolution and then elaborate on them over

generations.

The NeuroEvolution of Augmenting Topologies method [NEAT; 10, 11] was

designed with this process in mind. NEAT evolves increasingly complex ANNs

over generations, and addresses the challenges that come with evolving a population

of diverse complexifying topologies by using historical markings. Because NEAT

starts with simple networks and expands the search space only when beneficial, it is

able to find significantly more complex ANNs than fixed-topology evolution [11].

Although NEAT was originally designed to evolve ANNs, it requires only trivial

modification to evolve CPPNs, since they are so similar. The next section describes

CPPN–NEAT.

3.4 CPPN–NEAT

This section explains how NEAT can evolve CPPNs. See Stanley [21], Stanley and

Miikkulainen [10, 11] for detailed descriptions of original NEAT.

1 Potential confusion notwithstanding, the relationship between development and ANNs is not

accidental; rather, it shows that the same kinds of abstractions underly diverse complex phenomena.

142 Genet Program Evolvable Mach (2007) 8:131–162

123



The NEAT method was originally developed to solve difficult control and

sequential decision tasks. The neural networks control agents that select actions

based on their sensory inputs. While previous methods that evolved neural

networks, i.e. neuroevolution methods, evolved either fixed-topology networks [63,

64], or arbitrary random-topology networks [21, 56, 65], NEAT is the first to begin

evolution with a population of small, simple networks and complexify the network

topology over generations, leading to increasingly sophisticated behavior.

Before describing the CPPN extension, let us review the three key ideas on which

the basic NEAT method is based. First, in order to allow network structures to

increase in complexity over generations, a method is needed to keep track of which

gene is which. Otherwise, it is not clear in later generations which individual is

compatible with which, or how their genes should be combined to produce

offspring. NEAT solves this problem by assigning a unique historical marking to

every new piece of network structure that appears through a structural mutation. The

historical marking is a number assigned to each gene corresponding to its order of

appearance over the course of evolution. The numbers are inherited during

crossover unchanged, and allow NEAT to perform crossover without the need for

expensive topological analysis. That way, genomes of different organizations and

sizes stay compatible throughout evolution, solving the previously open problem of

matching different topologies [66] in an evolving population.

Second, NEAT speciates the population, so that individuals compete primarily

within their own niches instead of with the population at large. This way,

topological innovations are protected and have time to optimize their structure

before competing with other niches in the population. NEAT uses the historical

markings on genes to determine to which species different individuals belong.

Third, other systems that evolve network topologies and weights begin evolution

with a population of random topologies [21, 65]. In contrast, NEAT begins with a

uniform population of simple networks with no hidden nodes, differing only in their

initial random weights. Diverse topologies gradually accumulate over evolution,

thus allowing diverse and complex phenotype patterns to be represented. No limit is

placed on the size to which topologies can grow. Thus, NEAT can start minimally,

and grow the necessary structure over generations.

New structures are introduced incrementally as structural mutations occur, and

only those structures survive that are found to be useful through fitness evaluations.

In this way, another advantage of complexification is that NEAT searches through a

minimal number of weight dimensions, significantly reducing the number of

generations necessary to find a solution, and ensuring that networks become no

more complex than necessary. In effect, then, NEAT searches for a compact,

appropriate topology by incrementally complexifying existing structure.

CPPN–NEAT is an extension of NEAT that allows it to evolve CPPNs. While

networks in original NEAT only include hidden nodes with sigmoid functions, node

genes in CPPN–NEAT include a field for specifying the activation function. When a

new node is created, it is assigned a random activation function from a canonical set

(e.g. including Gaussian, sigmoid, and periodic functions). Furthermore, the

compatibility distance function that is utilized to determine whether two networks

belong in the same species includes an additional argument that counts how many

Genet Program Evolvable Mach (2007) 8:131–162 143

123



activation functions differ between the two individuals. This feature allows

speciation to take activation function differences into account. Because CPPN–

NEAT is an enhancement of an effective preexisting method, it provides a reliable

platform for studying the evolution of increasingly complex forms. The next section

discusses the computational complexity of CPPN representation.

3.5 CPPN computational complexity

The CPPN must fully activate once for each coordinate in the phenotype, making its

complexity O(N), where N is the number of coordinates. Thus, for an n · n two-

dimensional grid, the CPPN is activated O(n2) times. Unlike other developmental

abstractions, CPPNs can produce the same phenotype at any resolution because

increasing resolution only requires increasing the granularity of coordinates. A

CPPN is in effect an infinite-resolution mathematical structure. Therefore, because

the phenotype resolution is not an intrinsic property of the CPPN, computational

complexity can be minimized for a particular task by only activating at the minimal-

necessary resolution. Furthermore, because the CPPN is activated independently for

each coordinate in the phenotype, the complete computation of every coordinate is

trivial to parallelize.

Because they are both developmental abstractions, it is informative to compare

CPPNs with GRNs. The computational expense in a GRN results from every active

cell reacting to all incoming signals on every timestep. For a cell to react to

incoming chemicals, it must process them with its internal GRN, which necessitates

significant computation. In effect, such a procedure must activate on the order of

every cell for every developmental step, resulting in O(Ct) complete GRN

activations, where C is the maximum number of cells and t is the number of

timesteps. If the phenotype is roughly a c · c grid of cells, then its time complexity

for complete development is O(c2t). Furthermore, GRNs must compute cell-cell

signaling, and sometimes diffusion and reaction over long distances, adding to the

computational burden. In fact, the need to simulate an entire interacting physical

system of possibly thousands or more cells over hundreds or thousands of

developmental steps is a significant long-term challenge for the field of develop-

mental encoding. Thus, CPPNs may save time on some problems by cutting out t.
It is important to note however that the number of individual cells or structural

components may differ for CPPNs versus GRNs on the same task. Therefore O(n2)

and O(c2t) should not be compared directly. However, the complexity bounds do

give a rough sense of how the different methods contrast that may be helpful in

deciding which abstraction to choose for a particular task in the future.

The next section demonstrates through several experiments that CPPN–NEAT

produces phenotypes that exhibit key natural characteristics.

4 Experiments

Developmental encodings are traditionally evaluated for their performance on

benchmark tasks [6, 7, 14–19, 21–23, 27, 28, 31, 42, 67]. These tasks range from

144 Genet Program Evolvable Mach (2007) 8:131–162

123



body–brain evolution [15, 16, 23, 28], to target object morphologies [6, 17, 22], to

target patterns such as flags [18, 19, 31]. It is also common to compare

developmental encodings to direct encodings, usually demonstrating that reuse

can be advantageous when the target is sufficiently regular and complex to make

direct encoding prohibitive [6, 22, 23, 67, 68].

For three reasons, this paper takes a significantly different experimental

approach. First, the primary aim of this paper is to demonstrate that CPPNs

abstract the essential properties of natural development even without local

interaction or unfolding over time. Because removing these features significantly

distances CPPNs from more traditional abstractions, the aim in this section to

establish that CPPNs deserve to be categorized in the same class. Other

developmental encodings generally need not establish this link because their

relationship to natural development is more explicit.

Second, natural evolution does not evolve to specified targets. Rather, it exploits

established regularities in creative ways. Thus, evaluating against a specific target or

task does not necessarily reveal CPPNs’ ability to similarly establish and then

exploit regularities. In the future, it will be informative to measure CPPN

performance in a range of domains; however, first it is important to establish that the

way evolving CPPNs solve tasks indeed matches with the important mechanisms of

natural evolution and development. The major contribution of this paper is thus to

establish that a new kind of abstraction of development is admissible.

Third, natural organisms do not appear to be able to take on any arbitrary form.

For example, no macroscopic organism has any appendage analogous to a wheel,

even though a wheel is a fundamental engineering structure. Thus, if DNA was

tasked with representing a car, it would likely fail. Nevertheless, such failure would

not be an indictment against its potential for encoding unparalleled complexity.

Therefore, rather than focus on whether a CPPN can represent a certain class of

object, the following experiments focus on its ability to establish and exploit

regularities in general.

4.1 CPPN–NEAT-based interactive pattern evolution

To explore both the patterns that CPPNs produce and the way evolution varies those

patterns, an interactive evolutionary approach was taken. Interactive evolution [69,

70] allows a user to perform the selection step that determines which individuals

will be parents of the next generation. By introducing this interactive role for the

experimenter, it is possible to intentionally explore the space of generated patterns

in ways that would otherwise be impossible.

The interactive approach works by visually presenting the experimenter with all

the patterns in the current generation on the screen at once (Fig. 5 introduces the two

programs used in the experiments). The experimenter then picks the parents of the

next generation by clicking on them. Thus, the selection step is entirely determined

by the human experimenter. The aim is to intentionally search for certain types of

patterns in order to ascertain whether they can be elaborated and maintained in the

same ways as in natural evolution.

Genet Program Evolvable Mach (2007) 8:131–162 145

123



146 Genet Program Evolvable Mach (2007) 8:131–162

123



This approach resembles what are commonly called genetic art programs, which

are traditionally used to generate aesthetically pleasing abstract pictures that would

otherwise be unlikely to be conceived by a human [71–78]. Genetic art programs

closely follow the original Blind Watchmaker idea from Dawkins [79], in which

simple genetically-encoded patterns are evolved through an interactive interface.

Interactive evolution is a novel approach to exploring the properties of a

developmental encoding and therefore requires justification. While the interactive

genetic art concept is often considered an entertainment application or artistic tool,

it is also a rich and underutilized experimental medium for exploring the

characteristics of various encodings, as this section will show. Using genetic art,

an experimenter can volitionally explore implicit capabilities such as elaboration

and preservation of regularity that target-based or benchmark-based evolution

cannot easily reward explicitly. For example, in target-based evolution, even if

bilateral symmetry is integral to the final design, it may not be preserved from one

generation to the next when an early bilaterally-symmetric candidate is far from the

target. In contrast, the value of symmetry would be immediately apparent to a

human experimenter, who can thus select for it explicitly. Because just such regular

properties define the capabilities of an encoding, interactive evolution makes a

powerful experimental platform.

Introducing interactive evolution as an experimental tool in developmental

encoding raises the inevitable question whether past genetic art systems are in effect

experiments in developmental encoding as well. In such systems, it is important to

distinguish the process of interactive evolution from the particular encoding being

explored. In principle, interactive evolution can be used to explore the properties of

any encoding, including those with no relationship to development. In general, the

encodings used in genetic art systems are not motivated by or based upon natural

development. Rather, they are often designed to include intuitive aesthetic features

such as shape descriptors [80]. Nevertheless, many such systems do in effect

implement what can be described in retrospect as a rough abstraction of development.

In fact some features of CPPNs appear as early as Sims [76], who interactively

evolves images encoded as symbolic Lisp expressions. These expressions can

include any combination of numerous operations including periodic and symmetric

functions in addition to noise generators, image processing functions, and others.

These expressions produce complex, aesthetically pleasing results.

On the other hand, other approaches to genetic art such as MUTATOR [78, 81]

employ encodings more reminiscent of traditional developmental encodings such as

Fig. 5 Interactive evolution experimental interfaces. The two platforms shown above allow an
experimenter to evolve CPPN-generated patterns interactively. The set of patterns shown are the current
population, and the experimenter can select the parents of the next generation (i.e. fitnesses are not
assigned). Both platforms were used in the experiments in this section. Random initial generations are
shown for each. From initial populations such as these, all of the regular and complex forms that follow
were evolved. (a) DNGA is by Mattias Fagerlund, and uses his underlying DelphiNEAT platform to
evolve CPPNs. (b) SNGA, which uses Colin Green’s SharpNEAT platform, is by Holger Ferstl. Both
platforms are freely available, including source code (see Acknowledgements). The interactive interface
makes it possible to explore the way evolution establishes and varies regularities, as opposed to
attempting to solve a particular benchmark

b

Genet Program Evolvable Mach (2007) 8:131–162 147

123



L-systems, which include a period of iterative growth that repeatedly places the

same primitives in different locations and with different orientations and scales.

In general, the distinctions among different genetic art approaches with respect to

developmental encoding are often ill-defined because they were not designed to

address the same considerations. Husbands et al. [82] describe a system for

interactively evolving three-dimensional shapes that includes both assembling

primitives and transform functions such as scaling and twisting that are combined

like CPPN function compositions. Nishino et al. [80] introduces a similar system

that combines deformable three-dimensional primitives, which effectively encodes

visual artifacts.

Thus, overall, individual features of CPPNs have appeared in disparate prior

genetic art systems, mainly as a means of convenient deformation. However, before

it is pointed out that establishing coordinate frames through local interactions in

development can be abstracted as composing canonical functions, it is not surprising

that many such systems may go unrecognized by the developmental encoding

community. Rather than competing with existing genetic art approaches, CPPNs

aim to explicitly exploit the abstraction with development. This paper does not

assert that CPPNs are an entirely novel mathematical formalism; function

composition is a highly general procedure employed across the disciplines of

science. Rather, the main contribution is to highlight the relationship between

CPPNs and development, a crucial link that heretofore has not been established.

Genetic art in this section acts only as a vehicle for making this connection. From

this novel perspective, it will be instructive in the future to explore many encodings,

including both existing genetic art encodings and traditional developmental

encodings, in a similar manner.

In this paper, the interactive evolution procedure is used to analyze CPPN–

NEAT. Both DNGA and SNGA begin with a population of randomly initialized

networks with one or two hidden nodes. The choice to start this way (as opposed to

with no hidden nodes) was made so that patterns in the initial generation would

be nontrivial. The user picks one or two parents of the next generation, which are

then displayed. The networks utilized by both programs are CPPNs that can

represent arbitrary compositions of Gaussian and sigmoid functions. Furthermore,

special coordinate frames are provided at the inputs in addition to x and y. DNGA

Fig. 6 CPPN inputs. Three values, the coordinate on the horizontal axis (x), the coordinate on the
vertical axis (y), and the distance of the current coordinate from the center (d) are input into the CPPNs in
the experiments in Sects. 4.2 and 4.3. Inputting d provides a bias towards symmetry. However, since d is
radially symmetric, it does not automatically provide a bilaterally-symmetric coordinate frame

148 Genet Program Evolvable Mach (2007) 8:131–162

123



(Fig. 5a) provides the CPPN with a distance from the center coordinate (d), while

SNGA (Fig. 5b) allows the experimenter to provide any arbitrary coordinates

frames, including sine waves of varying period. Thus, these programs allow the user

to both explore and observe explicit examples of how CPPNs compose functions

and derive patterns from provided coordinate frames. Figure 6 depicts the

coordinates input into the networks.

Each new generation is created by mutating and mating the chosen parents. Thus, in

these experiments, because the user performs selection, speciation (Sect. 3.4) is not

utilized.2 However, complexification still occurs, with mutations occasionally adding

more functions and connections in the CPPN. In SNGA, the probability of adding a

neuron to a child genome is 0.5 and the probability of adding a connection is 0.4. In

DNGA, the probabilities are 0.06 for both. Extensive experimentation verified that

both systems consistently evolve complex regular phenotypes, indicating that

interactive CPPN–NEAT is robust to a wide range of these parameters. In both

systems, function outputs range between [�1,1]. However, ink level is darker the

closer the output is to zero. Therefore, an output of either�1 or 1 produces white. This

approach was found to produce the most interesting patterns in early generations.

The following experiments evaluate evolved patterns against the characteristics

of natural biological patterns (Sect. 2.2).

4.2 Elaboration on pure symmetry

Hundreds of millions of years ago during a period of evolution known as the

Cambrian Explosion, when numerous new animal body plans were appearing, the

bilateria appeared. The simplest of the bilateria were a kind of flatworm

[44, pp. 38–41]. This original body plan has been elaborated for hundreds of

millions of years, all the while preserving its fundamental design. Can a CPPN

(a) First Bilateral Symmetry (b) CPPN

Fig. 7 Initial discovery of bilateral symmetry. This individual appeared in the third generation. (a) Its
pattern forms a nose-like structure with symmetry around the horizontal midline. (b) Its CPPN contains
three hidden node functions and twelve connections. The inputs (at top) start with the bias, followed by x,
y, and d. The single ink-level output is at the bottom. Connection thickness is proportional to strength.
The symmetry property is strongly ingrained into the genotype: Only one of its connections can cause it to
lose symmetry

2 Even though speciation is not used in these experiments, it is still a crucial component of CPPN–NEAT

for any experiment that is not interactive. Speciation in original NEAT has been shown to protect

innovative topologies long enough to reach their potential [10]. Since CPPN–NEAT will be used in the

future to evolve complex phenotypes without user interaction, speciation is still important and therefore

described in Sect. 3.4.

Genet Program Evolvable Mach (2007) 8:131–162 149

123



analogously capture a bilateral body plan and maintain and elaborate on bilateral

symmetry for generations?

To address this question, a spaceship morphology was interactively evolved with

DNGA. The first step was to determine whether the CPPN can discover and

establish bilateral symmetry. As Fig. 5 shows, symmetry is by no means ubiquitous

in random initial populations. Many individuals lack recognizable symmetry

completely. However, in 20 separate runs, bilateral symmetry arises within the first

three generations 100% of the time. Evolution quickly finds a CPPN structure that

defines symmetry across a single axis, thereby creating a framework for bilateral

symmetry. Figure 7a shows a typical early bilaterally-symmetric pattern.

The CPPN that generates this pattern has twelve connections, two hidden

sigmoid functions, and one hidden Gaussian function (Fig. 7b). Interestingly, only

one of the 12 connections can perturb the symmetry of the pattern. Therefore, there

is only a one-in-twelve chance that any single gene mutation breaks symmetry.

The first individual with a recognizable spaceship-like pattern is shown in

Fig. 8a. It has seventeen connections and four hidden functions that together

produce a tail, wings, and a nose. These features will persist throughout evolution. A

succession of descendants that elaborate on this initial theme is shown in Fig. 8.

What is significant about these elaborations is how they genuinely preserve the

underlying regularities but also become more complex.

(a) 4 func., 17 conn. (b) 5 func., 24 conn. (c) 6 func., 25 conn. (d) 8 func., 28 conn.

(e) 8 func., 30 conn. (f) 8 func., 31 conn. (g) 8 func., 32 conn. (h) 8 func., 34 conn.

(i) 8 func., 36 conn. (j) 9 func., 36 conn. (k) 9 func., 38 conn.

Fig. 8 Sequence of descendant spaceship patterns. The chronological sequence (a)–(k) displays
successive progeny evolved with interactive CPPN–NEAT. The number of hidden functions and
connections in the generating CPPN is shown below each pattern. The sequence exhibits a continual
elaboration of regular form in part analogous to natural elaboration

150 Genet Program Evolvable Mach (2007) 8:131–162

123



Figure 8h shows a remarkable and surprising subsequent variation on the tail in

which evolution invented tail fins all at once in a single generation. The tail fins

respect the underlying symmetry and at the same time introduce entirely new and

elegant features. This kind of elaboration suggests that the complexifying CPPNs in

effect implement the fundamental process of continual elaboration of form. This

level of meaningful (from a human perspective) elaboration is a significant goal for

artificial developmental encodings. Figure 8i displays a descendant of the original

tail-fin pattern. The descendant significantly varies the wing regularity yet still

preserves its integrity. The presence of wings has become in effect a ‘‘module’’ of

the phenotype.

Evolution later creates a ‘‘cockpit’’ elaboration (Fig. 8j). This variation is

accompanied by an overall change in style. The wings are more rounded and the tail

fins less ornate. Yet the main features still persist, showing the powerful capacity of

the representation to facilitate meaningful change by capturing the regularities as

functional relationships.

Whereas the initial spaceship CPPN contains four hidden functions and 16

connections (Fig. 8a), the final, significantly more complex spaceship CPPN

includes nine hidden functions and 38 connections (Fig. 8k). Thus, the size of the

genotype slightly more than doubled due to CPPN–NEAT’s complexification. The

added structure allows CPPN–NEAT to lay new features on top of established

coordinate frames. At the same time, it is notable that only 38 connections code for

the complex pattern shown in Fig. 8k, indicating that CPPNs have the potential to

reuse information and represent patterns in a way that enhances representational

efficiency in analogy with natural development.

The succession of spaceship phenotypes in this section exhibits several of the

fundamental characteristics of developmental encoding in nature. Symmetry is

established early and then elaborated. Regularity is preserved and expanded.

Mutations respect the underlying body plan as it elaborates through complexifica-

tion. The next section addresses whether CPPNs can also create regularity within

imperfect symmetry.

(a) Symmetric Sunglasses (b) Warped Symmetry (c) CPPN

Fig. 9 Varying symmetry. A single connection gene controls the level of symmetry in the pattern. (a) The
original pattern displays perfect bilateral symmetry. (b) By manipulating a single gene, the symmetry can
be varied, yet without breaking the overall regularity of the structure. (c) An arrow points to the single
gene responsible for asymmetry. Since overall regularity is preserved, the representation of the sunglasses
by the CPPN cannot be strictly hierarchical

Genet Program Evolvable Mach (2007) 8:131–162 151

123



4.3 Representing imperfect symmetry

Symmetry is frequently discussed in the developmental encoding literature [6, 22,

68]. However, symmetry with variation receives less attention even though it is

perhaps more essential and fundamental to the patterns of nature than perfect

symmetry. The placement of organs like the heart, subtle differences between

cerebral hemispheres, and even externally observable asymmetry, such as the

lobster’s claw, are the norm rather than the exception. Perhaps most remarkable is

that patterns can acquire asymmetries over generations while still preserving their

overriding symmetrical regularities. This capability implies that encoding in nature

is richly amorphous rather than strictly hierarchical or modular. Established

regularities can be warped and partially broken without breaking the entire

mechanism. A good abstraction of development should exhibit the same capability.

Figure 9a shows a pair of bilaterally symmetric ‘‘sunglasses.’’ The bilateral

symmetry is an example of genetic reuse because the CPPN functions that describe

the left shade are the same as the ones that describe the right. However, varying the

weight of a single connection gene (Fig. 9c) actually varies the asymmetry of the

shades, even while maintaining the overall regularity (Fig. 9b) of the pattern. In fact,

the same genetic information is still generating both sides of the pattern, but one

(a) Eye warped left (b) Symmetric eye (c) Eye warped right

Fig. 10 Eye asymmetries. The eye-generating CPPN can produce all three eyes above by varying only
one connection weight. Interestingly, the eye turns as if in a three-dimensional space, showing that the
composition of functions can result in complex new coordinate frames, sometimes having meaningful
real-world interpretations, such as rotational variance in a three-dimensional space

Fig. 11 CPPN periodic inputs. Instead of inputting x and y as usual, sin (10x) and sin (10y) are input in
the experiments in Sect. 4.4. These inputs create a novel, repeating coordinate frame on which the CPPN
can now elaborate. The purpose of this experiment is to show the powerful effect that coordinate
transformation can have on phenotypic patterning

152 Genet Program Evolvable Mach (2007) 8:131–162

123



side is a variation of the other. Evolution is able to elaborate selectively without

breaking the overall pattern.

Such elaboration is possible because a coordinate frame in a CPPN can be varied

without destroying the pattern that is generated on top of it. Thus, the overall

symmetry of the underlying coordinates can be broken through a single gene, but

the complex pattern drawn within those coordinates still exists uncorrupted. This

phenomenon is an abstraction of two gradients formed through local interaction

within a natural embryo influencing the fate of cells at different positions. Figure 9

demonstrates that the abstraction is valid.

Figure 10 shows a similar phenomenon in an ‘‘eye’’ pattern evolved interactively

with SNGA in which the eyeball can be rotated to one side or another by varying a

single gene. The modular elements that compose the image survive even as their

underlying coordinate system warps.

Circular cell pattern Circularity selected for further(a) (b)

Fig. 13 Distance from center becomes the salient coordinate frame. By selecting patterns for displaying
radial symmetry instead of repetition (from the sine waves), it is possible to change which coordinate
frame becomes more salient in the overall pattern. While pattern (a) still shows its underlying sinusoidal
structure, pattern (b) is becoming increasingly dominated by its radial frame. With continued selection,
the sine wave coordinate frame completely disappears. This experiment shows that evolution can select
which of the available frames in a CPPN is most important, and furthermore mix and match them with
precise ratios

Complete Pattern Zoomed In Discrete Variation(a) (b) (c)

Fig. 12 Repetition with variation. The pattern in (b) is a closeup of the upper-left portion of (a). Arrows
in (b) point to significant difference between motifs that are otherwise similar. By mixing inputs from
separate coordinate frames, one repeating and one not, a CPPN can easily generate a large variety of
patterns with this property. This phenomenon is similar to the interaction of two chemical gradients in a
developing embryo, one periodic and one not. In (c), the object at the center of the pattern exhibits a
strong dissimilarity from its repeated relatives, showing that the effect of interacting coordinate frames
can be highly pronounced. In these patterns, the CPPN makes a strong analogy with nature and displays
some of its essential capabilities

Genet Program Evolvable Mach (2007) 8:131–162 153

123



These examples demonstrate CPPNs’ ability to encode imperfect symmetry.

4.4 Repetition with variation

Reuse through repetition with variation is crucial in natural organisms. Fingers and

toes clearly share fundamental regularities yet also differ in size and proportion.

Cortical columns in the brain also share structure yet are not identical [3]. If every

slight variation on a theme required an entirely different set of genes, the

representational space of many organisms would be prohibitively complex. Can a

CPPN capture this important kind of regularity?

To answer this question, instead of inputting the x,y, and d coordinates into the

CPPN in SNGA as normal, sin(10x), sin(10y), and d were input instead (Fig. 11). By

inputting sine waves, the same coordinate frame repeats over and over again.

However, the d coordinate, i.e. distance from center, does not repeat. Therefore,

functions higher in the CPPN can utilize both the repeating frame of reference and

the absolute reference at the same time. If indeed CPPNs can use this information to

produce complex regularities with variation, then it is likely that CPPNs can evolve

compositions of such functions to produce such patterns when necessary.

Figure 12a shows a repeating pattern generated by the CPPN with sine inputs.

The period of the sine wave is apparent in the image, but more significant is that the

design at the center of each repeated instance is slightly different (Fig. 12b).

Figure 12c depicts another example of this phenomenon. The repeating structures

are so clearly delineated that they are almost discrete, yet all related to one another.

Figure 13a shows how different coordinate frames can become more or less salient

in the overall composition. In the pattern, the effect of the d coordinate is more

apparent than sine than in the patterns in Fig. 12. In Fig. 13b, d is even more salient.

Fig. 14 Ubiquitous repetition with variation. CPPNs easily produce such patterns when the right
coordinate frames are introduced. As the figure shows, there are a great variety of such images

154 Genet Program Evolvable Mach (2007) 8:131–162

123



Finally, it is important to note that such patterns are effectively ubiquitous when

a periodic coordinate frame is combined with an aperiodic one. Under such

conditions, almost every pattern generated displays repetition with variation

(Fig. 14). Thus, it turns out that such patterns are easily produced by such a

combination.

These examples demonstrate how a CPPN can generate repetition with variation,

a phenomenon commonly attributed to natural developmental encodings. This

phenomenon is an abstraction of the local interaction of two chemical gradients in a

developing embryo, one periodic and one not. Figures 12–14 demonstrate that the

abstraction works in practice.

While in these examples sine is input to the CPPN to demonstrate its effects

explicitly, in practice the CPPN can discover sin(x) or sin(y) on its own by simply

by adding nodes with sine activation function internally. In this way, repeating

patterns of diverse frequencies can be discovered without provided input.

In summary,even without local interaction or unfolding over time, CPPNs exhibit

fundamental properties of natural development, including symmetry, imperfect

symmetry, repetition, repetition with variation, elaboration of existing regularities

through complexification, and preservation of regularities. In traditional develop-

mental encodings, these motifs are often taken for granted and thus not tested for

explicitly; for CPPNs they demonstrate that function composition has more in

common with such encodings than is generally acknowledged. For these reasons,

CPPNs are admissible into the class of valid abstractions of biological develop-

mental encoding.

5 Discussion and future work

Because CPPNs are unlike traditional developmental encodings, it was necessary to

establish that they nevertheless belong in the same class of abstractions.

Establishing that link is the main contribution of this paper. In doing so, a new

and promising research direction is revealed. This section focuses on the promise of

this new direction, and where it may lead.

5.1 A novel abstraction

A CPPN is not a simulation of natural development. Rather, it is an abstraction. The

long term goal of such work is not to emulate nature but to succeed in automatically

generating complexity on the scale of natural organisms. Thus, nature is inspiration

insofar as nature is useful towards this goal.

Nevertheless it is important to identify the extent to which CPPNs capture natural

phenomena to solidify their place as a valid abstraction. This paper made an analogy

between the local interaction of gradient patterns unfolding over time and simple

canonical functions composing with one another to create ever-more elaborate

patterns. This analogy and the subsequent demonstrations of natural motifs and

elaborations underly the argument that CPPNs in effect abstract essential properties

of natural encoding.

Genet Program Evolvable Mach (2007) 8:131–162 155

123



Yet it may appear that the abstraction ends at encoding while missing other

fundamental features of development in nature. For example, developmental is often

cited for its connection to embodiment, adaptation, and dynamic processes such as

self-repair [67, 83, 84]. The phenotype is viewed as a body inextricably tied to its

environment that changes and adapts in concert with and in reaction to its

surroundings. All organisms change and adapt over their lifetimes, both cognitively

and otherwise. By foregoing local interaction and the normal sequence of temporal

unfolding, CPPNs appear to perilously abstract away such crucial phenomena.

However, it turns out that the abstraction naturally encompasses these

phenomena as well, further supporting its validity. They key observation is that

position, which is provided as input to the CPPN, is in effect a property of the

environment. That is, each point in the environment has a position, and that position

is what is input into the CPPN when it is queried for that point. Thus, in this view,

the CPPN is directly a function of the environment. To extend this notion of

environmental embodiment further only requires that other position-dependent

environmental features are input to the CPPN as well. For example, if the CPPN is

being queried for (x,y), it can also be provided chemical concentrations,

temperatures, visual stimulus, auditory stimulus, or any other feature of the

environment in addition to x and y at the same location. In this way, the spatial

pattern generated by the CPPN is as much a product of its environment as any other

developmental encoding.

Furthermore, adaptation can then be achieved by iterating the CPPN as the

environment changes. That is, the CPPN can be re-queried at every point (or at

every point where change has occurred). Interestingly, such iteration reintroduces

time, showing that CPPNs can indeed function temporally when necessary. In fact,

change over time, or adaptation, therefore presents no special problem. This

capability supports further that CPPNs belong in the same class as other

developmental encodings.

5.2 The role of local interaction

Symmetries and regularities were presented in this paper that in another context

might be attributed to a local interactive process. If local interaction can be removed

without loss of expressivity, what does that imply about its apparent central role in

development?

One interpretation is that local interaction is only necessary in nature because

of constraints imposed by physics. In particular, physical space contains no

explicit coordinate system, necessitating that developing embryos build their

own. In effect, to assume its proper role, every cell in the body must at some

point answer the question, ‘‘where am I?’’ Thus, an interesting hypothesis is that

local interaction primarily serves to create coordinate systems, i.e. gradients, that

signal positional information to cells. In a world where such information is

explicit in every point in space (such as CPPNs), the role of each cell can be

computed directly as a function of the local coordinate, precluding the need for

local interaction. Thus the importance of local interaction to developmental

abstractions is an open question.

156 Genet Program Evolvable Mach (2007) 8:131–162

123



5.3 Not just pictures

If CPPNs were only used to draw pictures, their utility would be limited. However,

patterns in this paper are depicted visually only for illustration; CPPN output can be

interpreted for any objective in any substrate. If the substrate is neural, the CPPN

can describe the neural pathways, including all the symmetries, repeating patterns,

and elegant group-wise connectivity. If the substrate is physical, the CPPN can

encode the building blocks that compose the body, which can then be run in

simulation, and later manufactured in the real world. Patterns underly almost all

natural and artificial structures; thus a general pattern-generating mechanism can

potentially represent any of them.

Just as methods for mapping other developmental encodings to useful phenotypes

have motivated much research to date, methods for CPPN interpretation are fruitful

avenues for future research as well. Though such research is at an early stage, a few

preliminary observations can point in promising directions. While it is natural to

interpret multidimensional distributions of particles as straightforward spatial

patterns (e.g. as the human eye interprets the two-dimensional patterns in this

paper), such interpretation may not most effectively exploit the encoding. Spatial

patterns intuitively evoke the idea of contiguous morphology, and it may indeed

prove useful to generate morphologies based directly on CPPN-output spatial

patterns. However, contiguous morphologies have limited application.

A significant problem with such structures is that they lack discrete divisions

among their parts. For example, it would be difficult in robot design to decide where

the arm ends and where the torso begins. Similarly, spatial patterns are ambiguous

with respect to connectivity in e.g. a neural network. Yet this problem does not

imply that CPPNs lack the apparatus to effectively represent such structures;

rather, it suggests that some phenotypes are best represented in a higher-dimensional

space than their observable physical morphology. That is, such structures are

characterized crucially by their connectivity, and connectivity includes hidden

spatial dimensions. For example, a connection between two points on a two-

dimensional plane actually requires four dimensions to describe: (x1,y1) and (x2,y2).

Thus a four-dimensional CPPN (i.e. one that takes four inputs rather than two)

creates a pattern within a hypercube that can be projected back into two dimensions

as a connectivity pattern.3

The broader implication is that while many kinds of structures may appear to

require information that is not inherent within spatial patterns, this problem can be

solved by embedding solutions in a higher-dimensional space wherein such details

can now fit; CPPNs can produce patterns in any number of dimensions simply by

providing the right number of orthogonal axes as inputs. Thus, CPPNs can

potentially be employed as general pattern generators for any substrate in any

domain.

3 Our research group is currently experimenting with four-dimensional CPPNs that produce two-

dimensional connectivity patterns, with promising preliminary results.

Genet Program Evolvable Mach (2007) 8:131–162 157

123



5.4 Complexification and CPPNs

A final important result, evident in the spaceship experiment, is that CPPNs can

complexify in a similar way to natural organisms. Fundamental regularities can be

established early in evolution, and then expanded and exploited through a process of

elaboration. This elaboration is possible because the size of the genome is

expanding, thereby expanding the range of complexity that the CPPN can represent.

Thus, a significant benefit of the CPPN abstraction is that a principled method for

complexifying network structures, NEAT, already exists. With little modification

NEAT is extended to CPPN–NEAT, making possible experiments in continual

elaboration of form.

6 Conclusion

Research in developmental encoding to this date can be characterized as a search for

the right abstraction. Computational abstractions of natural development generally

have included, not surprisingly, local interaction and unfolding over time. In this

paper, a novel abstraction was proposed that breaks this tradition. Nevertheless, this

abstraction, called Compositional Pattern Producing Networks (CPPNs), still

captures essential properties of natural developmental encoding. A series of

interactive evolutionary experiments with CPPNs demonstrated that they indeed

produce patterns and sequences of patterns with properties analogous to those seen

in natural evolution and development. Furthermore, an algorithm for evolving

increasingly complex CPPNs, called CPPN–NEAT, was introduced. Thus, a

promising new encoding that is demonstrably capable of discovering symmetry and

repetition with variation is revealed. Future research will focus on converting the

patterns output by CPPNs into important substrates such as large-scale neural

networks, physical morphologies, and building architectures.

Acknowledgements Special thanks to Mattias Fagerlund for creating the first NEAT-based genetic art
program based on his DelphiNEAT implementation, to Holger Ferstl for creating the second NEAT-based
genetic art program based on SharpNEAT, and to Colin Green for creating SharpNEAT. All the software
and source code used in this paper, including DNGA, SNGA, DelphiNEAT, and SharpNEAT, is available
through http://www.cs.ucf.edu/*kstanley.

References

1. Dellaert, F.: Toward a biologically defensible model of development. Master’s thesis, Case Western

Reserve University, Clevekand, OH (1995)

2. Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Principles of Neural Science. Elsevier, Amsterdam,

3rd edn (1991)

3. Zigmond, M.J., Bloom, F.E., Landis, S.C., Roberts, J.L., Squire, L.R. (eds.) Fundamental Neuro-

science. Academic Press, London (1999)

4. Deloukas, P., Schuler, G.D., Gyapay, G., Beasley, E.M., et al.: A physical map of 30,000 human

genes. Science 282, 744–746 (1998)

158 Genet Program Evolvable Mach (2007) 8:131–162

123

http://www.cs.ucf.edu/$\sim$kstanley


5. Angeline, P.J.: Morphogenic evolutionary computations: Introduction, issues and examples. In:

McDonnell, J.R., Reynolds, R.G., Fogel, D.B. (eds.) Evolutionary Programming IV: The Fourth

Annual Conference on Evolutionary Programming, pp. 387–401. MIT Press, Cambridge (1995)

6. Bentley, P.J., Kumar, S.: The ways to grow designs: A comparison of embryogenies for an evolu-

tionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-1999), pp. 35–43. Kaufmann, San Francisco (1999)

7. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for

body-brain evolution. Artif. Life 8, 223–246 (2002)

8. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9, 93–130 (2003)

9. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the NERO video game.

IEEE T. Evolut. Comput. Special Issue Evolut. Comput. Games 9, 653–668 (2005)

10. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolu-

tionary Comput. 10, 99–127 (2002)

11. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complexification.

J. Artif. Intell. Res. 21, 63–100 (2004)

12. Astor, J.S., Adami, C.: A developmental model for the evolution of artificial neural networks. Artif.

Life 6, 189–218 (2000)

13. Boers, E.J.W., Kuiper, H.: Biological metaphors and the design of modular artificial neural networks.

Master’s thesis, Departments of Computer Science and Experimental and Theoretical Psychology at

Leiden University, The Netherlands (1992)

14. Bongard, J.C.: Evolving modular genetic regulatory networks. In: Proceedings of the 2002 Congress

on Evolutionary Computation (2002)

15. Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic com-

plexity in artificial ontogeny. In: Spector, L. et al. (eds.) Proceedings of the Genetic and Evolutionary

Computation Conference. Kaufmann, San Francisco, pp. 829–836 (2001)

16. Dellaert, F., Beer, R.D.: A developmental model for the evolution of complete autonomous agents.

In: Maes, P., Mataric, M.J., Meyer, J.-A., Pollack, J., Wilson, S.W. (eds.) From Animals to Animats

4: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. MIT

Press, Cambridge, MA (1996)

17. Eggenberger, P.: Evolving morphologies of simulated 3D organisms based on differential gene

expression. In: Husbands, P., Harvey, I. (eds.) Proceedings of the Fourth European Conference on

Artificial Life, pp. 205–213. MIT Press, Cambridge, MA (1997)

18. Federici, D.: Evolving a neurocontroller through a process of embryogeny. In: Schaal, S., Ijspeert,

A.J., Billard, A., Vijayakumar, S., Hallam, J., Jean-Arcady (eds.) Proceedings of the Eighth Inter-

national Conference on Simulation and Adaptive Behavior (SAB-2004), pp. 373–384. MIT Press,

Cambridge, MA (2004a)

19. Federici, D.: Using embryonic stages to increase the evolvability of development. In: Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO-2004) Workshop Program.

Springer-Verlag, Berlin (2004b)

20. Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development: The

multiple mechanisms of morphogenesis. In: Langton, C.G. (ed.) Artificial Life III, pp. 389–416.

Addison-Wesley, Reading (1993)

21. Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encoding for

genetic neural networks. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., (eds.) Genetic

Programming 1996: Proceedings of the First Annual Conference, pp. 81–89. Cambridge, MA: MIT

Press (1996)

22. Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical de-

sign. In: Proceedings of the 2002 Congress on Evolutionary Computation (2001a)

23. Hornby, G.S., Pollack, J.B.: Body-brain co-evolution using L-systems as a generative encoding. In:

Spector, L. et al. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference.

Kaufmann, San Francisco (2001b)
24. Jakobi, N.: Harnessing morphogenesis. In: Proceedings of Information Processing in Cells and

Tissues, pp. 29–41. University of Liverpool (1995)

25. Kaneko, K., Furusawa, C.: Emergence of multicellular organisms with dynamic differentiation and

spatial pattern. Artif. Life 4, 79–93 (1998)

26. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)

27. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system.

Complex Syst. 4, 461–476 (1990)

Genet Program Evolvable Mach (2007) 8:131–162 159

123



28. Komosinski, M., Rotaru-Varga, A.: Comparison of different genotype encodings for simulated 3D

agents. Artif. Life 7, 395–418 (2001)

29. Lindenmayer, A.: Mathematical models for cellular interaction in development parts I and II.

J. Theor. Biol. 18, 280–299; 300–315 (1968)

30. Lindenmayer, A.: Adding continuous components to L-systems. In: Rozenberg, G., Salomaa, A.

(eds.) L Systems, Lecture Notes in Computer Science 15, pp. 53–68. Springer-Verlag, Heidelberg,

Germany (1974)

31. Miller, J.F.: Evolving a self-repairing, self-regulating, French flag organism. In: Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2004). Springer Verlag, Berlin (2004)

32. Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. J. Theor. Biol. 152,

429–453 (1991)

33. Nolfi, S., Parisi, D.: Growing neural networks. Technical Report PCIA-91- 15. Institute of

Psychology, C.N.R., Rome (1991)

34. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer-Verlag, Heidelberg,

Germany (1990)

35. Schnier, T.: Evolved representations and their use in computational creativity. PhD thesis, University

of Sydney Department of Architectural and Design Science, Australia (1998)

36. Sims, K.: Evolving 3D morphology and behavior by competition. In: Brooks, R.A., Maes, P. (eds.)

Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living

Systems (Artificial Life IV), pp. 28–39. MIT Press, Cambridge, MA (1994)

37. Turing, A.: The chemical basis of morphogenesis. Phil. T. Roy. Soc. B 237, 37–72 (1952)

38. Gilbert, C.D., Wiesel, T.N.: Receptive field dynamics in adult primary visual cortex. Nature 356,

150–152 (1992)

39. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas

(18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

40. Behravan, R., Bentley, P.J.: Exploring reaction-diffusion and pattern formation. In: Proceedings of

the First Australian Conference on Artificial Life (ACAL 2003) (2003)

41. Cangelosi, A., Parisi, D., Nolfi, S.: Cell division and migration in a genotype for neural networks.

Technical Report PCIA-93, Institute of Psychology, C.N.R. Rome (1993)

42. Belew, R.K., Kammeyer, T.E.: In: Forrest, S. (ed.) Proceedings of the Fifth International Conference

on Genetic Algorithms. Kaufmann, San Francisco (1993)

43. Stanley, K.O., Reisinger, J., Miikkulainen, R.: Exploiting morphological conventions for genetic

reuse. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004)

Workshop Program. Springer Verlag, Berlin (2004)

44. Raff, R.A.: The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago,

The University of Chicago Press (1996)

45. Amores, A., Force, A., Yan, Y.-L., Joly, L., Amemiya, C., Fritz, A., Ho, R.K., Langeland, J., Prince,

V., Wang, Y.-L., Westerfield, M., Ekker, M., Postlethwait, J.H.: Zebrafish HOX clusters and ver-

tebrate genome evolution. Science 282, 1711–1784 (1998)

46. Darnell, J.E., Doolittle, W.F.: Speculations on the early course of evolution. Proc. Natl. Acad. Sci.

USA 83, 1271–1275 (1986)

47. Force, A., Lynch, M., Pickett, F.B., Amores, A., Lin Yan, Y., Postlethwait, J.: Preservation of

duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999)

48. Martin, A.P.: Increasing genomic complexity by gene duplication and the origin of vertebrates. Am.

Nat. 154, 111–128 (1999)

49. Watson, J.D., Hopkins, N.H., Roberts, J.W., Steitz, J.A., Weiner, A.M.: Molecular Biology of the

Gene, 4th edn. The Benjamin Cummings Publishing Company, Inc, Menlo Park, CA (1987)

50. Altenberg, L.: Evolving better representations through selective genome growth. In: Proceedings of

the IEEE World Congress on Computational Intelligence, pp. 182–187. IEEE Press, Piscataway, NJ

(1994)

51. Carroll, S.B.: Homeotic genes and the evolution of arthropods and chordates. Nature 376, 479–485

(1995)

52. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.

2, 303–314 (1989)

53. Meinhardt, H.: Models of Biological Pattern Formation. Academic Press, London (1982)

54. Curtis, D., Apfeld, J., Lehmann, R.: Nanos is an evolutionarily conserved organizer of anterior-

posterior polarity. Development 121, 1899–1910 (1995)

160 Genet Program Evolvable Mach (2007) 8:131–162

123



55. Lall, S., Patel, N.: Conservation and divergence in molecular mechanisms of axis formation. Annu.

Rev. Genet. 35, 407–447 (2001)

56. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent

neural networks. IEEE Trans. Neural Networks 5, 54–65 (1993)

57. Opitz, D.W., Shavlik, J.W.: Connectionist theory refinement: Genetically searching the space of

network topologies. J. Artif. Intell. Res. 6, 177–209 (1997)

58. Pujol, J.C.F., Poli, R.: Evolution of the topology and the weights of neural networks using genetic

programming with a dual representation. Technical Report CSRP-97-7, School of Computer Science,

The University of Birmingham, Birmingham B15 2TT, UK (1997)

59. Yao, X., Liu, Y.: Towards designing artificial neural networks by evolution. Appl. Math. Comput. 91,

83–90 (1996)

60. Zhang, B.-T., Muhlenbein, H.: Evolving optimal neural networks using genetic algorithms with

Occam’s razor. Complex Syst. 7, 199–220 (1993)

61. Miller, J.F.P.T.: Cartesian genetic programming. In: Proceedings of the Third European Conference

on Genetic Programming Published as Lecture Notes in Computer Science, vol. 1802, pp. 121–132

(2000)

62. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Slection.

MIT Press, Cambridge, MA (1992)

63. Gomez, F., Miikkulainen, R.: Solving non-Markovian control tasks with neuroevolution. In:

Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 1356–1361.

Kaufmann, San Francisco (1999)

64. Saravanan, N., Fogel, D.B.: Evolving neural control systems. IEEE Expert 10, 23–27 (1995)

65. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87, 1423–1447 (1999)

66. Radcliffe, N.J.L: Genetic set recombination and its application to neural network topology optimi-

zation. Neural Comput. Appl. 1, 67–90 (1993)

67. Roggen, D., Federici, D.: Multi-cellular development: Is there scalability and robustness to gain. In:

Proceedings of the 8th International Conference on Parallel Problem Solving from Nature (PPSN

VIII), pp. 391–400 (2004)

68. Reisinger, J., Stanley, K.O., Miikkulainen, R.: Towards an empirical measure of evolvability.

In: Genetic and Evolutionary Computation Conference (GECCO2005) Workshop Program, pp. 257–

264. ACM Press, Washington, D.C. (2005)

69. Parmee, I.C.: Improving problem definition through interactive evolutionary computation. J. Artif.

Intell. Eng. Design Analy. Manuf. Special Issue: Human-computer Interact. Eng. 16, 185–202 (2002)

70. Takagi, H.: Interactive evolutionary computation: Fusion of the capacities of EC optimization and

human evaluation. Proc. IEEE 89, 1275–1296 (2001)

71. Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-gener-

ated images. Connect. Sci. 6, 325–354 (1994)

72. Dawkins, R.: The evolution of evolvability. In: Langton, C.G. (ed.) Artificial Life, pp. 201–220.

Addison-Wesley, Reading, MA (1989)

73. Greenfield, G.R.: Evolving expressions and art by choice. Leonard 33, 93–99 (2000)

74. Lund, H.H., Pagliarini, L., Miglino, P.: Artistic design with GA and NN. In: Proceedings of the 1st

Nordic Workshop on Genetic Algorithms and Their Applications (1NWGA), pp. 97–105 (1995)

75. McCormack, J.P.: Interactive evolution of L-system grammars for computer graphics modelling. In:

Green, D.G., Bossomaier, T. (eds.) Complex Systems: From Biology to Computation, pp. 118–130.

IOS Press, Amsterdam (1993)

76. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH ’91), pp. 319–328. ACM Press, New

York, NY (1991)

77. Smith, J.R.: Designing biomorphs with an interactive genetic algorithm. In: Belew, R.K., Booker,

L.B. (eds.) Proceedings of the 4th International Conference on Genetic Algorithms (ICGA-91),

pp. 535–538. Morgan Kaufmann, San Mateo, CA (1991)

78. Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, London (1992)

79. Dawkins, R.: The Blind Watchmaker. Longman, Essex, UK (1986)

80. Nishino, H., Takagi, H., Cho, S.-B., Utsumiya, K.: A 3D modeling system for creative design. In:

15th International Conference on Information Networking, pp. 479–486 (2001)

81. Todd, S., Latham, W.: The Mutation and Growth of Art by Computers, chapter 9, pp. 221–250.

Morgan Kaufmann (1999)

Genet Program Evolvable Mach (2007) 8:131–162 161

123



82. Husbands, P., Germy, G., McIlhagga, M., Ives, R.: Two applications of genetic algorithms to

component design. Evolutionary Computing. LNCS 1143, 50–61 (1996)

83. Andersen, T., Otter, C., Petschulat, C., Eoff, U., Menten, T., Davis, R., Crowley, B.: A biologically-

derived approach to tissue modeling. In: Westwood, J. et al., (eds.) Technology and Informatics,

pp. 15–21. IOS Press, Amsterdam (2005)

84. Miller, J.F.: Evolving developmental programs for adaptation, morphogenesis, and self-repair. In:

Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J. (eds.) Advances in Artificial Life. 7th

European Conference on Artificial Life, vol. 2801 of Lecture Notes in Artificial Intelligence,

pp. 256–265. Springer, Dortmund, Germany (2003)

162 Genet Program Evolvable Mach (2007) 8:131–162

123


	Compositional pattern producing networks: A novel abstraction of development
	Abstract
	Introduction
	Background
	Artificial developmental encodings
	Patterns of development
	Complexification

	Patterns without local interaction
	Eliminating temporal unfolding
	Functions and regularities without local interaction
	Evolving compositional pattern producing networks
	CPPN-NEAT
	CPPN computational complexity

	Experiments
	CPPN-NEAT-based interactive pattern evolution
	Elaboration on pure symmetry
	Representing imperfect symmetry
	Repetition with variation

	Discussion and future work
	A novel abstraction
	The role of local interaction
	Not just pictures
	Complexification and CPPNs

	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


