An Abstract Domain for Bit-Vector Inequalities*

Tushar Sharma', Aditya Thakur®, and Thomas Reps!:?

! University of Wisconsin; Madison, WI, USA
2 GrammaTech, Inc.; Ithaca, NY, USA

Abstract. This paper advances the state of the art in abstract inter-
pretation of machine code. It tackles two of the biggest challenges in
machine-code analysis: (1) holding onto invariants about values in mem-
ory, and (2) identifying affine-inequality invariants while handling over-
flow in arithmetic operations over bit-vector data-types.

Most current approaches either capture relations only among registers
(and ignore memory entirely), or make potentially unsound assumptions
when handling memory. Furthermore, existing bit-vector domains are
able to represent either relational affine equalities or non-relational in-
equalities (e.g., intervals).

The key insight to tackling both challenges is to define a new domain
combinator (denoted by V), called the view-product combinator. V con-
structs a reduced product of two domains in which shared view-variables
are used to communicate information among the domains. V applied to a
non-relational memory domain and a relational bit-vector affine-equality
domain constructs the Bit- Vector Memory-Equality Domain (BYME), a
domain of bit-vector affine-equalities over memory and registers. V ap-
plied to the BYME domain and a bit-vector interval domain constructs
the Bit-Vector Memory-Inequality Domain, a domain of relational bit-
vector affine-inequalities over memory and registers.

1 Introduction

The aim of the paper is to expand the set of techniques available for abstract
interpretation and model checking of machine code [1,24,35]. It tackles two of
the biggest challenges in machine-code analysis [30]: (1) holding onto invariants
about values in memory, and (2) identifying affine-inequality invariants while
handling overflow in arithmetic operations over bit-vector data-types.

Challenge 1: Memory-Value Invariants. When analyzing machine-code,
memory is usually modeled as a flat array. When analyzing Intel x86 machine
code, for instance, memory is modeled as a map from 32-bit bit-vectors to 8-
bit bit-vectors. Consequently, an analysis has to deal with complications arising
from the Little-Endian addressing mode and aliasing.

* Supported, in part, by NSF under grant CCF-0904371; by ONR under grants
N00014-{09-1-0510, 11-C-0447}; by AFRL under contract FA8650-10-C-7088; and
by DARPA under cooperative agreement HR0011-12-2-0012. Any opinions, find-
ings, and conclusions or recommendations expressed in this publication are those of
the authors, and do not necessarily reflect the views of the sponsoring agencies.

2 Tushar Sharma, Aditya Thakur, and Thomas Reps

Ezxample 1. Consider the following machine-code snippet:

mov eax, [ebp]
mov [ebp+2], ebx

The first instruction loads the four bytes pointed to by register ebp into the
32-bit register eax. Suppose that the value in register ebp is A. After the first
instruction, the bytes of eax contain, in least-significant to most-significant order,
the value at memory location A, the value at location A+ 1, the value at location
A+ 2, and the value at location A + 3. The second instruction stores the value
in register ebx into the memory pointed to by ebp+2. Due to this instruction,
the values at memory locations A + 2 through A+ 5 are overwritten, after which
the value in register eax no longer equals (the little-endian interpretation of)
the bytes in memory pointed to by ebp. a

Challenge 2: Relational-Inequality Invariants over Bit-Vectors. Seminal
work by Cousot and Halbwachs [10] defined the polyhedral domain, which is ca-
pable of expressing relational affine inequalities over rational (or real) variables.
However, the native machine-integer data-types used in programs (e.g., int,
unsigned int, long, etc.) perform bit-vector arithmetic, and arithmetic oper-
ations wrap around on overflow. Thus, the underlying point space used in the
polyhedral domain does not faithfully model bit-vector arithmetic, and conse-
quently the conclusions drawn from an analysis based on the polyhedral domain
are unsound, unless special steps are taken [33].

Ezxample 2. The following C-program fragment incorrectly computes the average
of two int-valued variables [2]:

int low, high, mid;

assume (0 <= low <= high);

mid = (low + high) / 2;

assert (0 <= low <= mid <= high);

A static analysis based on polyhedra would draw the unsound conclusion that
the assertion always holds. In particular, assuming 32-bit ints, when the sum of
low and high is greater than 23! — 1, the sum overflows to a negative value, and
the resulting value of mid is negative. Consequently, there exist runs in which the
assertion fails. These runs are overlooked when the polyhedral domain is used
for static analysis because the domain fails to take into account the bit-vector
semantics of program variables. O

The problem that we wish to solve is not one of merely detecting overflow—
e.g., to restrain an analyzer from having to explore what happens after an over-
flow occurs. On the contrary, our goal is to be able to track soundly the effects of
arithmetic operations, including wrap-around effects of operations that overflow.
This ability is useful, for instance, when analyzing code generated by production
code generators, such as dSPACE TargetLink [11], which use the “compute-
through-overflow” technique [15]. Furthermore, clever idioms for bit-twiddling

An Abstract Domain for Bit-Vector Inequalities 3

I5F T+ 7+ T 150 T+ + 7
4+ ++ + + + o+ 4]
134+ + + + + + + 13 ++ 4+
12+ + + + + + + + 12 +
| 4+ +++++ 11 ++++
100 10 e

9 o s 9 R

8 FH+++ A+t 8 +++ o+

7 FAh o+ 7 o

6 FAht 6 + 4+

5 FA+ 5 + 4+ +
4 F o+ 4 + 4+
3|+ +H+ A+ 3|+ + 4+
2|+ + s 2|+ + ++
I+ + + + 4+t 1+ + + +
O+ +++ + 4+ O+ + + +

012345678 9012131415 0T234506 780 0T I2I314T5

() z+y+4<T7 (b) z+y <3

Fig.1: Each + represents a solution of the indicated inequality in 4-bit unsigned
modular arithmetic.

operations, such as the ones explained in Warren’s book [37], sometimes rely on
overflow.

The ideas used in designing an inequality domain for reals do not carry over
to one designed for bit-vectors. First, in bit-vector arithmetic, positive constant
factors cannot be canceled on both sides of an inequality; for example, if x and
y are 4-bit bit-vectors, then (4,4) is in the solution set of 2z + 2y < 4, but
not of x + y < 2. Second, in bit-vector arithmetic, additive constants cannot be
canceled on both sides of an inequality, as illustrated in the following example.

Ezample 3. Let x and y be 4-bit bit-vectors. Fig. 1(a) and Fig. 1(b) depict the
solutions in bit-vector arithmetic of the inequalities z+y+4 < 7 and z +y < 3,
respectively. Although z+y+4 < 7 and z+y < 3 are syntactically quite similar,
their solution spaces are quite different. In particular, because of wrap-around
of values computed on the left-hand sides using modular arithmetic, one cannot
just subtract 4 from both sides to convert the inequality x + y + 4 < 7 into
z+y<3. O

Some techniques exist that are capable of representing certain kinds of in-
equalities over bit-vectors and handling memory soundly, e.g., the value-set anal-
ysis (VSA) used in CodeSurfer/x86 [1]. VSA uses a domain of intervals with a
congruence constraint, sometimes called “strided-intervals” [29,32]. However,
VSA is an “independent-attribute analysis”—i.e., it is not capable of expressing
relations among the values of multiple memory locations and registers.

Recent work has developed several abstract domains of relational affine equal-
ities over variables that hold machine integers [27, 20, 13]. These domains do ac-
count for wrap-around on overflow. With respect to their analysis capabilities,
the drawback of these domains is that they are unable to identify inequality
invariants.

Problem Summary. These challenges lead to the following problem statement:

Design an abstract domain of relational bit-vector affine-inequalities over
memory-values and registers.

4 Tushar Sharma, Aditya Thakur, and Thomas Reps

Key Insight: The View-Product Combinator. The key insight used to
tackle both challenges involves a new domain combinator (denoted by V), called
the view-product combinator. V constructs a reduced product of two domains [8],
using shared view-variables to communicate information between the domains.
The following example illustrates the concept of a view-variable:

Ezample j. Consider the equality constraint H := z + 2mm[y + 2] = 4, where
x and y are bit-vector variables and mm is the memory map. The term mm[e]
denotes the contents of mm at address e. Let £ denote any of the abstract domains
of relational affine equalities over bit-vector variables [27,20,13]. H cannot be
expressed using & alone. However, the formulas + 2mm[y + 2] = 4 and u =
mm[y + 2] Az + 2u = 4 are equisatisfiable. The variable u is called a view-variable;
the constraint u = mm[y + 2] is the view-constraint associated with w.

The equality z+2u = 4 can be expressed using &; therefore, what we require is
a second abstract domain capable of expressing invariants that involve memory
accesses, such as v = mm[y 4+ 2]. This need motivates the bit-vector memory
domain M that we introduce in §4. The constraint H can then be expressed by
(i) introducing view-variable u, (ii) representing u’s view-constraint in M, (iii)
extending & with u, and (iv) using M and & together. O

The Bit-Vector Memory-Equality Domain BYME, a domain of bit-vector
affine-equalities over variables and memory-values, is created by applying the
view-product combinator V to the bit-vector memory domain (§4) and the bit-
vector equality domain. The Bit-Vector Inequality Domain BVZ, a domain of
bit-vector affine-inequalities over variables, is created by applying V to the
bit-vector equality domain and a bit-vector interval domain. The Bit- Vector
Memory-Inequality Domain BYMZ, a domain of relational bit-vector affine-
inequalities over variables and memory, is then created by applying V to the
BYME domain and the bit-vector interval domain. The latter construction il-
lustrates that V composes: the BYMZ domain is created via two applications of
V.

The design of the view-product combinator ¥V was inspired by the Subpoly-
hedra domain [23] (SubPoly), a domain for inferring relational linear inequalities
over rationals. SubPoly is constructed as a reduced product of an affine-equality
domain K over rationals [18], and an interval domain J over rationals [7] in
which slack variables are used to communicate between the two domains. Such
a design enables SubPoly to be as expressive as Polyhedra, but more scalable. V
provides a generalization of the construction used in SubPoly. In fact, SubPoly
can be constructed by applying V to K and J (see Eqn. (1) in §8).

Enabling Technology: Automatic Synthesis of Best Abstract Oper-
ations. Using a framework developed in prior work [34], we give a procedure
for synthesizing best abstract operations for general reduced-product domains. In
particular, we use this framework to ensure that the transformers for the reduced-
product domains constructed via V are sound and precise, thereby guaranteeing
that analysis results will be a conservative over-approximation of the concrete
semantics.

An Abstract Domain for Bit-Vector Inequalities 5

mov ecx, [ebp—4] //ecx = mm[ebp — 4]
add ecx, eax /] ecx = ecx + eax
cmp ecx, 10d //if ecx >, 10

ja L // goto L

Xor ecx, ecx /] ecx=0

0 < mm[ebp — 4] + eaz < 10
L:

Fig. 2: Example snippet of Intel x86 machine code.

Contributions. The contributions of the paper are:

— The bit-vector memory domain, a non-relational memory domain capable of
expressing invariants involving memory accesses (§4).

— The view-product combinator V), a general procedure to construct more ex-
pressive domains (§5).

— Three domains for machine-code analysis constructed using V:

e The bit-vector memory-equality domain BYME, which captures equality
relations among bit-vector variables and memory (Defn. 6).

e The bit-vector inequality domain BVZ, which captures inequality rela-
tions among bit-vector variables (Defn. 7).

e The bit-vector memory-inequality domain BYMZ, which captures in-
equality relations among bit-vector variables and memory (Defn. 8).

— A procedure for synthesizing best abstract operations for reduced products
of domains that meet certain requirements (§6).

— Experimental results that illustrate the effectiveness of the BYZ domain ap-
plied to machine-code analysis (§7). On average (geometric mean), our BVZ-
based analysis is about 3.5 times slower than an affine-equality-based anal-
ysis, while finding improved (more-precise) invariants at 29% of the branch
points.

82 provides an overview of our solution. §3 defines terminology. §8 describes
related work. §9 concludes.

2 Overview

In this section, we illustrate the design of the bit-vector memory-inequality do-
main. Consider the Intel x86 machine-code snippet shown in Fig. 2. Pseudo-code
for each instruction is shown at the right-hand side of each instruction. Note that
the ja instruction, “jump if above, unsigned”, treats ecx as unsigned. Thus, con-
trol reaches the xor instruction only if the value in ecx is greater than or equal
to 0, and less than or equal to 10. Let R := {eax,ecz,ebp} denote the set of
register variables, and mm denote the memory map.

The highlighted text in Fig. 2 states the invariant H := 0 < mm[ebp—4]+eazx <
10 that holds after the xor instruction. Again, let £ denote any of the abstract
domains of relational affine equalities over bit-vector variables [27,20,13]. The
invariant H cannot be represented using £, because (i) H involves an invariant
about a value in memory mm, and (ii) H is an inequality. To handle memory,
we introduce the bit-vector memory domain M, which is capable of expressing

6 Tushar Sharma, Aditya Thakur, and Thomas Reps

certain constraints on memory accesses. In particular, we can use M to express
the constraint w = mm[ebp — 4], where u is a fresh variable. We call u a view-
variable and v = mm[ebp — 4] a view-constraint for u. H can be written as the
equisatisfiable formula H,, := v = mm[ebp — 4] A 0 < u + eazx < 10.

Notice there are no memory accesses in the constraint 0 < u+ eax < 10. The
inequality 0 < u+eax < 10 and u+eax = sA0 < s < 10 are equisatisfiable, where
s is a fresh variable. Similar to u, s is a view-variable with v+ eax = s is a view-
constraint for s. Thus, H,, can be rewritten as H,,; := u = mm[ebp—4] Au+eax =
s A0 < s < 10. Furthermore, u + eax = s can be expressed in £, and 0 < s < 10
can be expressed using a bit-vector interval domain Z. Thus, by introducing
the view-variables v and s, the invariant H can be expressed using M, &, and
7 together. The following derivation illustrates the above decomposition of the
invariant H:

u+eaxr =s s € [0,10]
u = mm[ebp — 4] 0<u+ear <10
0 < mm[ebp — 4] + eaz < 10

INEQUALITY

MEMORY

Note that the view-constraints u = mm[ebp — 4] and s = u + eaz do not directly

constrain the values of R and mm; they only constrain the view-variables u and
s. The shared view-variables are used to exchange information among the vari-
ous domains. In particular, the view-variable w is used to exchange information
between memory domain M and equality domain £, and the view-variable s is
used to exchange information between £ and interval domain 7.

3 Terminology

We assume that there is a Galois connection G = C % A between abstract
domain A and concrete domain C. For a given family of abstract domains A,
A[V] denotes the specific instance of A that is defined over vocabulary V', where
V' can contain function symbols and variables.

For a somewhat technical reason, we introduce the device of an abstract-
domain constructor. Given an abstract-domain family A and vocabularies V3
and V4, an abstract-domain constructor for A, denoted by € 4(V1, Va), constructs
A[V5], where V; C V5 C V4 W V5. In particular, €4 is free to decide what subset
of V4 to use when constructing A[V3]. (In our applications, the abstract-domain
constructors either use all of V4 or none of V5.)

Let A € A[V]; we denote by A |y, the value obtained by projecting A onto
the vocabulary V7 C V. We use & to denote a vocabulary-extension operator
over domains; in particular, given domain A[V;] and vocabulary Va, A[V1]@® V2 =
A[Vi W V3.

We now define the main concepts in Symbolic Abstract Interpretation [31]
Let £ be a logic, and [¢] denote the meaning of ¢ € L.

1. Given an abstract value A € A[V], the symbolic concretization of A, denoted
by 7(A), maps A to a formula 7(A) such that A and 7(A) represent the same
set of concrete states (i.e., v(A) = [7(A4)]).

2. Given ¢ € L, the symbolic abstraction of ¢, denoted by a@(p), maps ¢ to the
best value in A that over-approximates [¢] (i.e., a(¢) = a([¢])).

An Abstract Domain for Bit-Vector Inequalities 7

Experience shows that for most abstract domains it is easy to write a ¥
function (item 1) [31]. Several frameworks exist for computing @ [31,36,34],
including ones that apply to abstract domains whose elements are abstractions
of transition relations (i.e., relations over assignments to pre-state/post-state
variables). For such abstract domains, an algorithm for & provides an algorithm
for automatically synthesizing abstract transformers: given concrete transformer
T, encode the semantics of T as a formula - € L, and return a(p,) [31, 36, 34].

Let G1 =C <:> A; and Go =C <— As be two Galois connections. We

use Aq [Vi]x Ay [Vg] to denote the reduced product of the domains [8, §10.1], and
(A1; As) to denote an element of A;[V7] x As[Va].

4 Base Domains

All numeric-valued variables hold bit-vectors of bit-width w, and their values
range over the set Zgw = {0,...,2% — 1}. All arithmetic is integer arithmetic
modulo 2*. Let mm denote a memory map, and mm[t] denote the w-bit value at
memory address ¢. For instance, for Intel x86 machine code, mm[t] denotes (the
little-endian interpretation of) the four bytes in memory pointed to by term ¢
(cf. Ex. 1).

Bit-Vector Memory Domain (M). Domain M can capture a limited class
of invariants involving memory accesses. In particular, the domain is capable of
capturing the constraint that the value of a variable v equals the value of the
memory mm at address e: v = mm[e].

Definition 1. Given variables P and memory map mm, an element M of the bit-
vector memory domain M[(um, P)] is either (i) L, or (ii) a set of constraints,
where each constraint C; is of the form v, = mm[X;a;;v; + b, aij,b; € Zow,
v3,v5 € P. The concretization of M is

y(M) = {(mm, T) | Ag,epr(mm, 7) = Ci}.

O

The join and meet operation are defined as intersection and union of con-
straints, respectively. The join operation L, is: M Uy My = {C | C €
M; and C' € Ms}. The meet operation May is: MM Mo B {C|CeM orCEe
Ms}. The domain constructor for the bit-vector memory domain is defined as
Cm(Vi, Vo) = M[Vi 8 V3.

Bit-Vector Equality Domain (£). Domain £ can capture relational affine
equalities over bit-vectors [13].

Definition 2. Given wvariables V, an element E of the bit-vector equality
domain E[V] is either (i) L, or (ii) a set of affine equalities, where each equality
C; 1is of the form X;a;5v; +b; =0, a;5,b; € Zow, v; € V. The concretization of
E is

Y(E) = {7 | /\C,ieE v E Ci}.

8 Tushar Sharma, Aditya Thakur, and Thomas Reps

Elder et al. [13] introduced a normal form for representing elements of £[V], and
used the normal form to give polynomial-time algorithms for the operations of
join (Ug), meet (Mg), approximation order (Cg), and projection. The domain
constructor for the bit-vector equality domain is defined as €g(Vi, V) = E[V W
Val.

Bit-Vector Interval Domain (7). Domain Z can capture non-relational bit-
vector interval constraints.

Definition 3. Given variables V', an element I of the bit-vector interval do-
main Z[V] is either (i) L, or (ii) a set of interval constraints, where each con-
straint C; is of the form l; < v; < ug, i, u; € Zow,v; € V.. The concretization of
I s

(1) = {7 | /\Ciel7 F Cz'}-

O

The domain constructor for the bit-vector interval domain is defined as
def
¢z(V1, Vo) = IV

5 The View-Product Combinator

In this section, we define the view-product combinator V), and construct three
domains using different applications of V. V constructs a reduced-product of
domains A; and A, so that a set of shared view-variables communicates infor-
mation between the domains. ¥V makes use of two principles:

Principle 1: View-variables are constrained by view-constraints. Con-
sider abstract domain A;[V;], and let V4 N Vo = (). The variables in V5 are the
view-variables. V will use the domain A;[V1] ® Vo = A1[Vi W V2] (cf. §3). A
view-constraint C for Vo is an element of A[V; W V3] that serves to constrain the
variable set V5.

Principle 2: A view-constraint does not constrain the values of vari-
ables in V;. Given abstract domain A[V; W3], an acceptable view-constraint C
for V4 is an abstract value C' € A[V; W V3] such that C Ly, = T.

We are now in a position to describe how V works.

Arguments. V takes four arguments:
— A;[V1], an abstract domain defined over vocabulary Vi,
— V4, a vocabulary such that V; NV, = 0,
— C € A1 [V} W Vs, a view-constraint for Vs, and
— € 49, an abstract-domain constructor for abstract domain As,

Enforcement of view-constraint C. The view-constraint C' constrains the
variables in V5. Therefore, V should only consider those elements A[V; W V5] that
satisfy C; that is, only elements A € A[Vi W V3] such that A T 41,y C holds.
Put another way, the view-constraint C' can be seen as an integrity constraint.
The next definition formalizes this notion (for a general integrity constraint

D e A[V]):

An Abstract Domain for Bit-Vector Inequalities 9

Definition 4. Given an abstract domain A[V] and an element D € A[V], the
abstract domain A[V] modulo D, denoted by A[V] |, is an abstract domain
A'[V] that contains ezactly the elements DT A, A € A; that is,

AV)p ={DNA|De AV]}
O

Using the notation from Defn. 4, the domain that only contains elements
that satisfy view-constraint C'is A;[Vi W V3] |
Reduced product. Let A} [Vi W 13] be (A1[Vi] ® Va) |, where C' is the view-
constraint for view-variables V5. All that is left is to perform a reduced product
of A} and A,. However, for A} and Az to be able to exchange information, the
vocabulary of As should include at least the view-variables V5. This condition
is satisfied by the domain € 45(V2, V1) constructed using the abstract-domain
constructor for Ay supplied as the fourth argument to V (cf. §3).

Summing up, the reduced product performed by V creates As[Vy W V3] =
AL[V1 8 Va] % €5V, V2).

Definition 5 (View-Product Combinator (V)). Given

— A1 [V1], an abstract domain defined over vocabulary Vi,

— Vb, a vocabulary such that Vi N Vy = (),

— C € A41[V1 WVs), a view-constraint for Va, and

— €49, an abstract-domain constructor for abstract domain As,
the view-product combinator V[A;1[Vi],Va,C,€a5] constructs a domain
As[Vi & Vs such that

As[Vi 6 Vo] = (A [Vi] @ Va) lo* Caz(Va, V1)
O

Instantiations. We now describe three applications of V that use the bit-vector
domains defined in §4.

V applied to the bit-vector memory domain M and the bit-vector equality
domain &£ constructs the Bit- Vector Memory-Equality Domain BYME, a domain
of bit-vector affine-equalities over variables and memory-values.

Definition 6 (Bit-Vector Memory-Equality Domain (BYM¢E)).
BYME|[(mm, P W U)] = V[M|(um, P)], U, Cpp, €],

where
— M[(mm, P)], the bit-vector memory domain over memory map mm and vari-
ables P (cf. Defn. 1),
— U, a vocabulary of variables such that U NP = (),
Cp € M[(mm, PWU)], a view-constraint for U, and
- Ce(Vi,V2) Z &V V2],

10 Tushar Sharma, Aditya Thakur, and Thomas Reps

O

V applied to the bit-vector equality domain £ and the bit-vector interval
domain Z constructs the Bit-Vector Inequality Domain BVZ, a domain of bit-
vector affine-equalities over variables.

Definition 7 (The Bit-Vector Inequality Domain (BVI)).
BVI|PwS] < VIE[P],S,Cs, ¢z,

where
— E[P], the bit-vector memory domain over variables P (cf. Defn. 2),
— 8, a vocabulary of variables such that SN P = (),
— Cs € E[P YY), a view-constraint for S, and
- (1, Vo) = I[Vi].
O

The combinator V applied to the bit-vector memory-equality domain BY ME,
and a bit-vector interval domain Z constructs the Bit- Vector Memory-Inequality
Domain BYMZ, a domain of relational bit-vector affine-inequalities over vari-
ables and memory.

Definition 8 (Bit-Vector Memory-Inequality Domain (BYMZT)).

BYMI[(mm, P& U W S)] = V[BYME[(mm, P& U], S, Cs, €7]

where
— BYME[(mm, P W U)], the bit-vector memory-equality domain over memory
map mm and variables PW .S (cf. Defn. 6),
— S, a vocabulary of variables such that SN (PWU) =0,
— Cs € BVME[(mm, PWU)], a view-constraint for S, and

- ¢z(Vi, Vo) € Z[VA].

6 Synthesizing Abstract Operations for Reduced-Product
Domains

In this section, we first discuss a method for automatically synthesizing abstract
operations for a general reduced-product domain A3[V; W Va] := A1 [V;] * Aa[V2]
using the abstract operations of A; and Ao, which themselves may be automati-
cally synthesized. We then discuss some pragmatic choices that we made for the
reduced-product domains that the view-product combinator V creates.

Synthesizing Abstract Transformers. If (A;; A3) € A x A2 = Aj, then
$3(<A1,A2>) = al(Al) A ag(AQ), and 6[\3(()0) = <6é\1 (@),ag(gﬁ» AS mentioned in
83, for an abstract domain whose elements are abstractions of transition rela-
tions, an algorithm for & provides an algorithm for automatically synthesizing
abstract transformers: given concrete transformer 7, encode the semantics of 7

An Abstract Domain for Bit-Vector Inequalities 11

as a formula ¢, € L, and return a(p,). Moreover, as long as one of A; or Ay
is an abstract transition-relation domain, then so is As := A; x As. Thus, if we
are given 71, Qa, 72, and @3, we obtain 43 and a3, and as gives us a way to
synthesize abstract transformers for As.

Semantic Reduction. The semantic reduction of (Ay; As) € A1 x Ay = A3
can be computed as as (1), where ¥ is 41 (A1) A92(A2). Computing the semantic
reduction in this way can be computationally expensive. Instead we assume there
exists a weak semantic-reduction operator Reduce. Using this weak semantic-
reduction operator we can define the other abstract operations for the reduced-
product domain. Furthermore, because it can be expensive to determine whether
(A1; Ag) T (Ay; Ab) holds, we define a weaker approximation order C:

Definition 9. The weak approximation order C is defined as follows:
(Al; Ay) E(AY; AY) if and only if Af Ca, A and Ay Ca, A3, 0

It is easy to show that if (A}; AL) E(AY; AY), then (A% AL) T (AY: AY),
though the converse may not always hold.

We define quasi-join, an approximation to the join operator for reduced-
product domain, which is not guaranteed to return the least-upper bound, but
is sound and simple.

Definition 10. The quasi-join operator, denoted by L, is defined as follows:
(A; Ay) O(AY; AY) = Reduce((A] Ua, AY; A) Lig, A5)). o

Theorem 1. [Soundness of Quasi-Join] Let (Ay; Ap) = (A}; AL) O(AY]; AY).
Then y((A1; A2)) 2 v({A]; Ay)) U~ ((AT; AT)). q

The quasi-meet operation is similar in flavor to quasi-join:

Definition 11. The quasi-meet operator, denoted by 1, is defined as follows:
(A1; Ap) FI(AY; AY) = Reduce((A] M, AY; Aj Ma, A5)). 0

Theorem 2. [Soundness of Quasi-Meet] Let (Ay; Ag) = (A}; Ab) TI(AY; AY).
Then y((A1; A2)) 2 v({A]; Ay)) Ny ((AY; AT)). q

We now define weak semantic-reduction operators for each of the pairs of do-
mains used in our constructions. The algorithms for these specific domains have
not been stated explicitly in the literature, and are stated here for completeness.
(Previous work tackled the rational-arithmetic variants of these domains.)

Weak Reduce for M % £. Alg. 1 computes the weak semantic-reduction for
the bit-vector memory domain and bit-vector equality domain. Given (M; E) €
M([(mm, V')] % E[V], Reduce((M; E)) infers further equalities among V. The key
insight is to model the memory map mm as an uninterpreted function; that is,
t1 = to implies mm[t;] = mm[ts]. We are effectively approximating the theory
of arrays using the theory of uninterpreted functions with equality (EUF) [5],
thereby ensuring that the reduction operation is efficient. As shown in lines (3)
and (4), if e; = ey then the algorithm infers that v; = vo. The following example
illustrates the working of Alg. 1.

12 Tushar Sharma, Aditya Thakur, and Thomas Reps

Algorithm 1: Reducepe((M; E))

1 foreach constraint vi = mm[e;] € M do
2 foreach constraint v, = mml[es] € M do
3 if & Ce {61 = 62} then

4 E<—E|_|g{v1:1)2}

5 return (M; E)

Fig. 3: Algorithm for weak semantic-reduction for M[V] % E[V].

Ezample 5. Let V be {z,y,z,u1,uz}. Consider (M; E) := (u; = mm[x],up =
mn[y + 8];2 = y + 2z — 2,z = 10). From F we can infer that = y + 8. Thus,
mm[z] = mm[y + 8], and we can infer that u; = uo. Thus, E can be updated to
E Mg {u; = us}.

No further reduction is possible; thus, Reducepns({(M;E) = (u1 =
mm[z], ue = mm(y + 8J;u1 = ug, x =y + 2z — 2, z = 10). O

The following example shows a case when Reduce ¢ fails to find the most
precise answer.

Ezxample 6. Consider the situation when analyzing Intel x86 machine code. The
bit-width w is 32. The memory map mm is a map from 32-bit bit-vector to 8-
bit bit-vectors, and the addressing mode is little-endian (cf. Ex. 1). Let V be
{r,u1,uz,us}. Consider (M;E) := (u; = mm[r],ue = mm[r + 2],us = mm[r +
4];u; = 0,u3z = 0; T). Because neither » = r+2 nor r = r+4 hold, Alg. 1 cannot
infer any further equalities among u1, ug, and ug. Thus, Reducepe((M; E)) =
(M; E).

However, (M; E) is not the best reduction possible. Because u; = 0 and
uz = 0, we can infer that mm[r] and mm[r 4 4] are 0. Thus, the bytes at addresses
r through r + 7 are all 0, because we assumed little-endian addressing. Con-
sequently, mm[r + 2] = 0, and uz = 0. Thus, the best reduction for (M;E) is
(up = mm[r],ue = mmr 4+ 2|, us = mm[r + 4];u1 = 0,u2 = 0,u3 = 0). The reason
the Reduce ¢ algorithm was unable to deduce this was because the algorithm
treats the memory map as an uninterpreted function. Thus, though sound, Alg. 1
is not always able to deduce the best possible reduced value. ad

Theorem 3. [Soundness of Alg. 1] Let (M';E') = Reducene((M;E)).
Then v((M"; E")) = v({M; E)), and (M'; E') T(M; E)). 0

Weak Reduce for £ xZ. Alg. 2 computes a weak semantic-reduction for the
bit-vector equality domain and the bit-vector interval domain. Given (FE;I) €
E[P W S)xZ[S], Reduces,z({E;I)) infers tighter interval bounds on the variables
in S. Reduction is performed by first projecting E onto S to determine the affine
relations E’ that hold among the variables in S (line (1)). These affine relations
are used in lines (2)—(5) to infer tighter intervals for the variables in S. “[expr]”
denotes the evaluation of expression expr over interval domain 7 via interval
arithmetic. New interval constraints are identified by evaluating expressions of

An Abstract Domain for Bit-Vector Inequalities 13

Algorithm 2: Reduceg,z((F; 1))

E « E s
foreach s € S do
foreach constraint (s =c+ 3, 5., att) € E’ do
L e+ ZteS/\t;&s ait](I)
I+ 1Nz T[s €]
return (E;I)

o U A W N =

Fig.4: Algorithm for weak semantic-reduction for E[P W S| x Z[S].

Program Measures of Size Performance (sec.)|| Precision (BVI C €)
Name |/Instrs| CFGs|BBs|Branches & BVI ||Control-Point| Procedure
Invariants |Summaries
finger 532| 18| 298 48 185 639 24/48 3/18
subst 1093| 16| 609 74 303 1151 11/74 3/16
label 1167 16| 573 103 236 986 24/103 2/16
chkdsk || 1468 18| 787 119 631 1675 12/119 3/18
convert | 1927 38[1013 161 441 1744 101/161 0/38
route 1982| 40| 931 243 749 2497 78/243 2/39
comp 2377 35|1261 224 849 2740 22/224 0/35
logoff 2470| 46(1145 306 861 3253 124/306 13/46

Table 1: Machine-code analysis using BVZ. Columns 6-9 show the times (in
seconds) for the £-based analysis, and for the BYZ-based analysis; and the degree
of improvement in precision measured as the number of control points at which
BYVI-based analysis gave more precise invariants compared to £-based analysis,
and the number of procedures for which BVZ-based analysis gave more precise
summaries compared to £-based analysis.

the form ¢ + 7, g, aet over Z using the current interval value I (line (4)).
These constraints are then incorporated into I via meet (line (5)).

Ezample 7. Let P := {z,y}, and S := {s1, s2}, where the bit-width of the bit-
vector is 4. Consider (E;I) := (s1 =2z +2y,s2 = x +y; 81 € [4,9],52 € [3,5]).
By projecting E onto the variables S := {s1,s2}, we obtain E' = {s; = 2s2}
on line (1). On line (4), we have ¢ = [2s2](I) = [6,10]. Using this equation, I
is updated on line (5); that is, I = {s1 € [4,9],s2 € [3,5]} M {s1 € [6,10],s2 €
T} ={s1€[6,9],s2 € [3,5]}. No further reduction is possible.

Thus, Reduceg,z((E;I)) = (s1 =22+ 2y, = x + y; 51 € [6,9], 82 € [3,5]).
Note that Alg. 2 is not guaranteed to deduce the best possible interval con-
straints. The best possible reduction of (E;I) is (s1 =2z 4+ 2y,s2e =z + y; 51 €

6,8], 52 € [3,4]). O
Theorem 4. [Soundness of Alg. 2] Let (E';1") = Reduceg,z({E;I)). Then
V(B 1)) = A((B; 1)), and (E; T) E(B; 1)), 0

7 Experimental Evaluation

In this section, we compare the performance and precision of the bit-vector equal-
ity domain £ with that of the bit-vector inequality domain BVZ. The abstract

14 Tushar Sharma, Aditya Thakur, and Thomas Reps

transformers for the BYZ domain were synthesized using the approach given in
Section 6. The weak semantic-reduction operator described in Alg. 2 was used in
the implementation of the compose operation needed for interprocedural analy-
sis.

Experimental Setup. We analyzed a corpus of Windows utilities using the
WAL [19] system for weighted pushdown systems (WPDSs). Tab. 1 lists sev-
eral size parameters of the examples (number of instructions, procedures, basic
blocks, and branches).> The weight on each WPDS rule encodes the abstract
transformer for a basic block B of the program, including a jump or branch to a
successor block. A formula ¢p is created that captures the concrete semantics of
B, and then the weight for B is obtained by performing a(pp). We used EWPDS
merge functions [22] to preserve caller-save and callee-save registers across call
sites. The post” query used the FWPDS algorithm [21].

View-selection Heuristic. Given the set of machine registers P, the view-
constraints Cy were computed as Cy := UmeP{sil = 74,800 = r; + 231} In
particular, the view-variable s;» allows us to keep track of whether r;, when
treated as a signed value, is less-than or equal 0.

Performance. Columns 6 and 7 of Tab. 1 list the time taken, in seconds, for
E-based analysis, and the BVZ-based analysis. On average (geometric mean),
BVI-based analysis is about 3.5 times slower than £-based analysis.

Precision. We compare the procedure summaries, and the invariants for each
control point—i.e., the point just before a branch instruction. Column 8 lists
the number of control points at which BYVZ-based analysis gave more precise
invariants compared to £-based analysis. BVZ-based analysis gives more precise
invariants at up to 63% of control points, and, on average, BVZ-based analysis
improves precision for 29% of control points. Column 9 lists the number of
procedures for which BVZ-based analysis gave more precise summaries compared
to E-based analysis. BYZ-based analysis gives more precise summaries for up to
17% of procedures, and, on average BVZ-based analysis gave better summaries
for 9.3% of procedures.

8 Related Work

To construct bit-vector inequality domains, we made use of &, a relational ab-
stract domains for affine equality constraints over modular arithmetic, originally
defined by King and Sgndergaard [20] and later improved by Elder et al. [13].
The main reason for using £, as opposed to other abstract domains that can cap-
ture affine equality constraints over modular arithmetic, such as the domains of
Miiller-Olm and Seidl [27] and Granger [17,16], is that we know how to perform
@ for &€ [13], but do not know how to perform @ for the other domains cited.
Other work on identifying bit-vector-inequality invariants includes Brauer
and King [3,4] and Masdupuy [25]. Masdupuy proposed a relational abstract

3 Due to the high cost of the WPDS construction, all analyses excluded the code for
libraries. Because register eax holds the return value from a call, library functions
were modeled approximately (albeit unsoundly, in general) by “havoc(eax)”.

An Abstract Domain for Bit-Vector Inequalities 15

domain of interval congruences on rationals. One limitation of his machinery
is that the domain represents diagonal grids of parallelepipeds, where the di-
mension of each parallelepiped equals the number of variables tracked (say n).
In our work, we can have any number of view-variables, which means that the
point-spaces represented can be constrained by more than n constraints.

Brauer and King employ bit-blasting to synthesize abstract transformers
for the interval and octagon [26] domains. One of their papers uses universal-
quantifier elimination on Boolean formulas [3]; the other avoids quantifier elimi-
nation [4]. Compared with their work, we avoid the use of bit-blasting and work
directly with representations of sets of w-bit bit-vectors. The greatly reduced
number of variables that comes from working at word level opens up the possi-
bility of applying our methods to much larger problems; as discussed in §7, we
were able to apply our methods to interprocedural program analysis. The equal-
ity domain £ that we work with can capture relations on an arbitrary number
of variables, and thus so can the domains that we construct using V. Compared
with octagons, which are limited to two variables and coefficients of +1, the
advantage is that our domains can express more interesting invariants and pro-
cedure summaries. In particular, Octagon-based summaries would be limited to
one pre-state variable and one post-state variable.

The view-product combinator V is a compositional generalization of the con-
struction used in SubPoly. SubPoly is constructed as a reduced product of an
affine-equality domain K over rationals [18], and an interval domain J over ra-
tionals [7] with slack view-variables S to communicate between the two domains.
SubPoly can be constructed by applying V to K and J, as follows:

SubPoly[P S] = VI[K[P], S, Cs, 3], (1)
where C, is the view-constraint for S and J(Vi, V) = J[Vi].

When an analysis system works with two or more reasoning techniques, there
is often an opportunity to share information to improve the precision of both. The
principle is found in the classic papers of Cousot and Cousot [8] and Nelson and
Oppen [28]. In practice, there are a range of choices as to what might be shared,
and our work represents one point in that design space. The algorithms for weak
semantic-reduction (Algs. 1 and 2) adapt techniques for theory combination that
have been used in Satisfiability Modulo Theory (SMT) solvers [12, 14].

The work of Chang and Leino [6] is similar in spirit to ours. They developed a
technique for extending the properties representable by a given abstract domain
from schemas over variables to schemas over terms. To orchestrate the commu-
nication of information between domains, they designed the congruence-closure
abstract domain, which introduces variables to stand for subexpressions that are
alien to a base domain; to the base domain, these expressions are just variables.
Their scheme for propagating information between domains is mediated by the
e-graph of the congruence-closure domain. In contrast, our method can make
use of past work on synthesizing best abstract operations [31,34] to propagate
information between domains. As discussed in §6, we also employ less precise,
more pragmatic procedures that use information in one domain to iteratively

16 Tushar Sharma, Aditya Thakur, and Thomas Reps

refine information in another domain. Cousot et al. [9] have recently studied
the iterated pairwise exchange of observations between components as a way to
compute an overapproximation of a reduced product.

9 Conclusion

The key contribution of the paper is to show that once you solve a lot of fun-
damental problems (bit-vector equality domain, bit-vector interval domain, bit-
vector memory domain, automatic synthesis of abstract transformers), you can
use the view-product combinator to solve the complex problem of designing a
bit-vector domain that (i) models memory and (ii) can capture affine inequalities.

Preliminary experimental results based on the BVZ domain illustrate the
practical benefits of our approach. In the future, we intend to evaluate the

BYME and BY MZ domains.
References

1. G. Balakrishnan and T. Reps. WYSINWYX: What You See Is Not What You
eXecute. TOPLAS, 2010.

2. J. Bloch. Extra, extra - read all about it: Nearly all binary searches and mergesorts
are broken. “googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-
nearly.html”.

3. J. Brauer and A. King. Automatic abstraction for intervals using Boolean formulae.
In SAS, 2010.

4. J. Brauer and A. King. Transfer function synthesis without quantifier elimination.
In ESOP, 2011.

5. J. Burch and D. Dill. Automatic verification of pipelined microprocessor control.
In CAV, 1994.

6. B.-Y. Chang and K. Leino. Abstract interpretation with alien expressions and
heap structures. In VMCAI, 2005.

7. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. 2nd. Int. Symp on Programming, Paris, Apr. 1976.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, 1979.

9. P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of abstract domains
and the combination of decision procedures. In FOSSACS, 2011.

10. P. Cousot and N. Halbwachs. Automatic discovery of linear constraints among
variables of a program. In POPL, 1978.

11. dspace targetlink. “www.dspaceinc.com/en/inc/home/products/sw/pcgs/targetli.cfm”.

12. B. Dutertre and L. de Moura. A fast linear-arithmetic solver for dpll(t). In CAV,
2006.

13. M. Elder, J. Lim, T. Sharma, T. Andersen, and T. Reps. Abstract domains of
affine relations. In SAS, 2011.

14. V. Ganesh and D. Dill. A decision procesure for bit-vectors and arrays. In CAV,
2007.

15. H. L. Garner. Theory of computer addition and overflow. IEEE Trans. on Com-
puters, C-27(4), Apr. 1978.

16. P. Granger. Static analysis of arithmetic congruences. Int. J. of Comp. Math.,
1989.

17

18.
19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

An Abstract Domain for Bit-Vector Inequalities 17

P. Granger. Analyses Semantiques de Congruence. PhD thesis, Ecole Polytech-
nique, 1991.

M. Karr. Affine relationship among variables of a program. Acta Inf., 6, 1976.

N. Kidd, A. Lal, and T. Reps. WALi: The Weighted Automaton Library, 2007.
www.cs.wisc.edu/wpis/wpds/download.php.

A. King and H. Sgndergaard. Automatic abstraction for congruences. In VMCAI,
2010.

A. Lal and T. Reps. Improving pushdown system model checking. In CAV, 2006.
A. Lal, T. Reps, and G. Balakrishnan. Extended weighted pushdown systems. In
CAV, 2005.

V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer
linear inequalities. In VM CAI, 2009.

J. Lim and T. Reps. A system for generating static analyzers for machine instruc-
tions. In CC, 2008.

F. Masdupuy. Array abstractions using semantic analysis of trapezoid congruences.
In ICS, 1992.

A. Miné. The octagon abstract domain. In WCRE, 2001.

M. Miiller-Olm and H. Seidl. Analysis of modular arithmetic. In ESOP, 2005.

G. Nelson and D. Oppen. Simplification by cooperating decision procedures.
TOPLAS, 1(2), 1979.

T. Reps, G. Balakrishnan, and J. Lim. Intermediate-representation recovery from
low-level code. In Part. Eval. and Semantics-Based Prog. Manip., 2006.

T. Reps, J. Lim, A. Thakur, G. Balakrishnan, and A. Lal. There’s plenty of room
at the bottom: Analyzing and verifying machine code. In CAV, 2010.

T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer.
In VMCAI 2004.

R. Sen and Y. Srikant. Executable analysis using abstract interpretation with
circular linear progressions. In MEMOCODE, 2007.

A. Simon and A. King. Taming the wrapping of integer arithmetic. In SAS, 2007.
A. Thakur, M. Elder, and T. Reps. Bilateral algorithms for symbolic abstraction.
In SAS, 2012.

A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and
T. Reps. Directed proof generation for machine code. In CAV, 2010.

A. Thakur and T. Reps. A method for symbolic computation of abstract opera-
tions. In CAV, 2012.

H. Warren, Jr. Hacker’s Delight. Addison-Wesley, 2003.

