
Overview of the IA-64 Architecture
Karthik Swaminathan

Table Of Contents

Abstract & Introduction:..2
Architecture Design:..3

1. Support for two Operating System Environments: ... 3
2. Ability to handle IA-32 Instruction sets in the IA-64 operating environment: 3
3. Unique Instruction Format aka “Bundling”: ... 4
4. Instruction set features & Instruction Sequencing: ... 4
5. Registers: .. 6

5.1. Application State Registers and their usage:... 6
5.2. System State Registers and their usage:.. 8

6. Register Stack: .. 10
7. Memory and Addressing:.. 11
8. Processor to Compiler interaction (& vice versa): .. 12
9. Interruption Handling: .. 14

In Comparison to RISC/CISC processors & areas of use:16
Comparison to Sun Microsystems’ SPARC:...18
Conclusion: ..19
Bibliography: ...20
List of Figures:...21

Abstract & Introduction:

For the purpose of this assignment, I have chosen to document one of the most recent
developments in the microprocessor industry. The architecture known as EPIC (Explicitly
Parallel Instruction Computing) as applied particularly to IA-64, Intel’s 64-bit microprocessor
architecture, is going to be the object of my discussion. Throughout the course of this paper I
shall be using the terms IA-64 and “Itanium” (the first processor in this series) synonymously.

Existing architectures are based on an out-of-order execution model, which require

increasingly complex hardware mechanisms. Performance limiters such as branches and memory
latency increasingly impede these processors.

Intel’s IA-64 processor architecture is designed to overcome these limitations. In

addition, the IA-64 architecture provides additional performance headroom and scalability needed
for future computation-intensive applications. The IA-64 architecture features a revolutionary 64-
bit instruction set architecture (ISA), which applies a new processor technology called EPIC.
Jointly defined with Hewlett-Packard Company, EPIC embodies a set of advanced computer
architecture techniques such as explicit parallelism, predication, and speculation. These
techniques enable IA-64 processors to execute more instructions per clock cycle to deliver
superior performance relative to today’s out-of-order based RISC processors. The EPIC technique
eliminates much of the dependency checking and grouping logic that consumes an increasingly
large portion of advanced RISC and x86 processors. EPIC’s flexible grouping mechanism solves
VLIW based processors’ two fatal flaws: excessive code expansion and lack of scalability.

This paper is organized into the following sections:
• Architecture Design – Key features of the IA-64 architecture and their explanation.
• Performance Comparison to RISC/CISC processors.
• Comparison to Sun Microsystems’ SPARC series – This comparison is done at a high

level and not at a feature level.
• Conclusion.
• Bibliography.
• List of Figures that highlight some of the architectural details.

Architecture Design:

I was able to locate some information about the IA-64 architecture and its programming

model. In this section I shall try to condense, what in my opinion are, the most of the critical
pieces of the IA-64 architecture. Please refer to Figure 1, in the List of Figures, for a diagram that
depicts the high level “Itanium” architecture and exposes the synergy between software and
hardware.

1. Support for two Operating System Environments:

IA-64 handles two operating system environments within a single architecture: The IA-

32 environment that supports 32 bit operating systems and IA-64 (native) environment that
supports 64 bit operating systems.

The IA-32 system environment, which includes full support for the IA-32 instruction set,

can be used for IA-32 Protected Mode, Real Mode, and Virtual 8086 Mode applications and
operating systems. This environment makes the IA-64 architecture backward compatible with the
“Pentium” series of processors.

The IA-64 system environment can be used to run IA-32 Real Mode, Protected Mode,

and Virtual Mode applications if supported by the 64-bit operating system. It naturally includes
support for 64 bit applications. This way this is implemented is elaborated in the next.

2. Ability to handle IA-32 Instruction sets in the IA-64 operating
environment:

The IA-64 operating environment allows the execution of full 32-bit binaries compiled on
IA-32 systems provided the required platform and firmware support exists on the system.

This operating environment also gives the application developer the ability/power to

intermix older x86 instruction sets with the native instruction sets. Moreover, “Itanium” can
convert x86 instructions into internal native-mode instructions before executing them. Further, it
can accept these native mode instructions directly from memory thereby eliminating the
inefficiencies of hardware translation that asserts the fact that the processor will be optimized
for native-mode execution rather than x86 mode execution.

From several technical publications, it can be gleaned that “Itanium” will allow x86 and

IA-64 instructions to commingle at all levels of the memory hierarchy, including the on-chip
cache, off-chip cache, and main memory. This method allows the chip to maintain a single system
interface that knows how to fetch instructions into the CPU. A “mode” bit is present on the chip
that will direct the instructions to either the x86 decoder or a native decoder. The presence of this
bit avoids the need for encoding at the instruction level. Using this mechanism, the load can be
placed as early as possible in the code, as long as the address can be computed. If the data is
never checked, no exception will be triggered; if an exception occurs when the data is needed, the
exception will be recognized in the load’s original “home block”. Speculative loads thus provide
the compiler with maximum flexibility to hide cache latency.

Three special instructions and interruptions are defined to transition the processor
between the IA-32 and IA-64 instruction sets. Also refer to Figure 2, in the List of Figures, for an
illustration.

• jmpe (IA-32 instruction) – Jump to an IA-64 target instruction, and change the

instruction set to IA-64.
• br.ia (IA-64 instruction) – IA-64 branch to an IA-32 target instruction, and change

the instruction set to IA-32.
• rfi (IA-64 instruction) – Return from interruption. It has been defined to return either

an IA-32 or IA-64 instruction when resuming from an interruption.
• Interruptions transition the processor to the IA-64 instruction set for all interruption

conditions.

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control
between instruction sets. These primitives are typically incorporated into “thunks” or “stubs” that
implement the required call linkage and calling conventions to call dynamically or statically
linked libraries.

3. Unique Instruction Format aka “Bundling”:

The IA-64 instructions use a unique format that allows the compiler to direct hardware

execution without severely bloating the software. A single 128-bit aligned container called
“bundle” contains three 41-bit IA-64 instructions along with the 5-bit “template” information
about the “bundle”.

The “template” field, in my opinion, seems to be the most interesting sequence of bits in

the “bundle”. This field stores, what are referred to as, architectural stops. These stops indicate
that one or more instructions before the stop may have certain kind of dependencies with one or
more instructions after the stop. Thus it indicates whether the instructions in the “bundle” can be
executed in parallel or if one or more instructions must be executed serially, due to register
dependencies. The template also indicates whether the bundle can be executed in parallel with the
following “bundle”. In addition to storing the location of stops the “template” field also specifies
the mapping of instruction slots to execution unit types. “Bundles” can be chained to form
Instruction Groups of any length. Figure 3, in the List of Figures, depicts an IA-64 “bundle”.

“Bundles” are ordered from lowest to highest memory address. Instructions in “bundles”

with lower memory addresses are considered to precede instructions in “bundles” with higher
memory addresses. The byte order of each “bundle” in memory is little-endian (the template
field is contained in byte 0 of a bundle). Within a “bundle” instructions are ordered from
instruction slot 0 to instruction slot 2 as specified in Figure 3.

4. Instruction set features & Instruction Sequencing:

There are basically 6 instruction types – ALU (A), Integer (I), Memory (M), Floating-
point (F), Branch (B), and Long/Extended (L). All instructions in the instruction set of the
“Itanium” implementation are 41 bits in length. The leftmost 4 bits (40:37) of each instruction are

the major opcode. Opcode assignments for each instruction type are given in the “IA-64
application developers guide” that has been published by Intel. A basic IA-64 instruction has
the following syntax:

[qp] mnemonic [.comp] dest=srcs ,where,

“qp” specifies a qualifying predicate register. When the value of the register is true, the
instruction executes, its results are committed, and any exceptions that occur are handled as usual.
At a false value nothing is committed and no exceptions are handled.

“mnemonic” uniquely identifies an IA-64 instruction by name.
“comp” specifies one or more instruction completers, which indicate optional variations

on a base instruction mnemonic.
“dest” represents the destination operand(s) and “srcs” represent source operands. Most

IA-64 instructions have at least two input source operands.

Instruction execution consists of four phases: Reading the instruction from memory

(fetch), Read architectural state, if necessary (read), Perform the specified operation (execute),
and finally Update architectural state, if necessary (update). If the instructions in an “instruction
group”, defined in the previous section, meet all the resource dependency requirements then the
behavior of a program will be as though each individual instruction is sequenced through these
phases in the order listed afore.

The instruction sequencing rules, given below, prescribe the order of a phase of a given

instruction relative to any phase of a previous instruction.
• Since there is no a priori relationship between the “fetch” of an instruction and the

“read”, “execute”, and “update” of any previous instruction, the “sync.i” and “srlz.i”
(synchronize and serialize) instructions can used to enforce a sequential relationship.

• Every instruction will behave as if its “read” occurred after the “update” of memory

and ALAT state of all instructions from the previous instruction group and all
instructions within the same instruction group. Moreover, within an instruction
group, every instruction will behave as though its read of the register state occurred
before the update of the register state by any instruction; prior or later. This
eliminates WAR data dependencies.

• All instructions have unit latency and instructions on opposing sides of a “stop” are

separated by at least one unit of latency.

Apparently, the “Itanium” hardware puts the instruction “bundle” through a 10-stage in-
order hardware pipeline. I could not locate much information on the pipeline except in an
old presentation by Mr. Harsh Sarangpani, Principal Architect of the IA-64 micro-
architecture. Intel has not yet released any technical documents on the working of the pipeline
and hence I shall not be taking about it further.

Suffice it to note that the front-end pre-fetch and fetch stages of the pipeline will allow

the pre-fetching of upto 8 bundles (storing them in a decoupled buffer upon fetch). This buffer
allows the front-end to fetch even when the backend is stalled. The buffer also hides instruction
cache misses and branch bubbles thereby augmenting performance.

The issue logic, a hardware implementation, incorporated into the pipeline issues the

instruction to the CPU. This piece of hardware is designed in a manner that will promote binary
compatibility across current and future IA-64 implementations. This issue logic makes an IA-64

processor more complex than a pure VLIW design, but the ability to have binary compatible
processors is well worth the effort of incorporating this extra logic. The issue logic in the IA-64 is
much less complicated than out-of-order superscalar processors, however

I could not find documentation on supported addressing modes. I assume that IA-64 will

be supporting the same addressing modes as its IA-32 predecessors (extrapolated, however, for
handling the Very Large Memory model). These addressing modes, as a refresher, are absolute,
register indirect, based, indexed, based indexed with displacement, based with scaled index,
and based with scaled index and displacement.

5. Registers:

The “Itanium” processor and in general the IA-64 family is going to be massively
resourced. Registers are a critical component in a processor’s performance. With this in mind the
Intel architects have endowed “Itanium” with two distinct register groups viz. Application State
Registers and System State Registers. These groups are further subdivided into several register
name spaces. I have strived to describe them below; highlighting what I thought was interesting
information.

Along with the Application State Registers is intertwined the functionality of the

Register Stack Engine, and Register Rotation. I have devoted the next section to the Register
Stack (and its usage and manipulation by the RSE) but will defer the definition and application
of Register Rotation till I describe the close co-ordination between the compiler and the
processor.

At this point I would like to bring to attention the fact that for all of the application level

resources (eg. Application State Registers) the processor guarantees serialization in order to
observe data and execution dependencies between subsequent instructions. This is done using
“srlz.i” (serialize instruction), “rfi” (return from instruction), or “srlz.d” (serialize data). “srlz.i”
and “rfi” serializes the application’s processor resource that was modified by an instruction in the
current instruction group and ensures that the changes are visible to the subsequent instruction
group. “srlz.d” comes into play when data memory needs to be serialized as well. In the case of
system level resources (eg. System State Registers), in order to eliminate hardware serialization
overhead, explicit instruction and data serialization is required of the executing software.

5.1. Application State Registers and their usage:
• General Registers – 128 64-bit registers are made available as a central resource for all

integer and integer multimedia computation. Numbered GR 0-GR 127, these are available at
all privilege levels. Each of these has an extra 65th bit that acts to record the deferred
speculative exceptions. This bit is called the NaT (Not a Thing) bit.

The GR’s are partitioned into two subsets: GR 0- GR 31 are called the static register set and
GR 32 – GR 127 are termed as the stacked register set. GR 0 is always 0 (when sourced as
an operand) and writing to it causes an Illegal Operation Fault. The Register Stack Engine
(RSE) uses the stacked register set to accelerate process performance. This mechanism is

called the “Register Stack Mechanism”. I shall explain this further in the Register Stack &
Renaming sub-section.

• Floating Point Registers – 128 81-bit registers are provided to handle intensive FLOPS

(floating point operations). As above FR 0- FR 31 are static and FR 32- FR 127 are rotating
and are accessible at all privilege levels. An extra 82nd bit provides the NaTVal (Not a Thing
Value). FR 0 is always +0.0 and FR 1 is always +1.0 and they cannot be written to. FR 8 –
FR31 will handle IA-32 FLOPS and multimedia instructions.

• Predicate Registers – 64 1-bit registers holds the result of IA-64 compare instructions and

will be accessible at all privilege levels. As above, PR 0-15 are static and PR 16-63 are
rotating.

• Branch Registers – 8 64-bit registers are employed to hold all the IA-64 branching

information. Numbered BR 0-7, they are available at all privilege levels. These are only
used for specifying the target address for “indirect branches”. “IP relative branches” and
“Long branches” use a 21-bit and 60-bit displacement respectively to calculate the target
address relative to the IP of the bundle containing the branch instruction.

• Instruction Pointer – The IP holds the address of the bundle that contains the current

executing instruction. The IP can be read directly but cannot be written to directly. The 4
LSB of the IP are always 0 since IA-64 instruction bundles are 16 bytes long and are
consequently 16 byte aligned. Also, IP will hold the 32-bit virtual linear address of the
executing IA-32 instruction.

• Current Frame Marker – The CFM is a 38-bit register that holds the state of the current

stack frame. The CFM cannot be directly read or written. I shall explain this further in the
sub-section on the Register Stack.

• Application Registers – 128 64-bit application registers are available for application-visible

processor functions for both the IA-32 and IA-64 instruction sets. These can be accessed by
either an M (Memory) or an I (Integer) execution unit.

Of these the most interesting ones, IMHO, are AR 0-7, BSP, BSPSTORE, PFS, RNAT,
FPSR, LC, EC & ITC. AR 0-7 are called Kernel Registers and they make kernel data
structures available to application programs. I shall explain the BSP (Backing Store Pointer)
and BSPSTORE (Backing Store Pointer for Memory Stores) and RNAT (RSE NaT
collection Register), and PFS (Previous Frame Marker) further when describing the Register
Stack.

FPSR (Floating Point Status Register) controls traps, rounding mode, precision control, flags,
and other control bits for IA-64 FLOPS. I have explained the use of ITC in the System State
Registers. LC (Loop Counter) is used in counted IA-64 loops. EC (Epilog Counter) is a 6-bit
register is used for counting in the final stages (Epilog Stages) of IA-64 modulo-scheduled-
loops, which I have described in the sub-section on Processor to Compiler
communication.

• Performance Monitor Data Registers (PMD) – A set of performance monitoring registers

are used to contain sampled performance data from within an application. These can be
configured for access at all privilege levels and can also be secured to restrict access. They

are available for both IA-32 and IA-64 instructions. The number of these registers is variable
(i.e. implementation specific).

• User Mask – This is a 5-bit subset of the PSR that is accessible to IA-64 applications

programs. The bits are:
Bit 0 – rv – reserved.
Bit 1 – be – when 1 (0) enables “Big Endian” (“Little Endian”) accesses
Bit 2 – up – when 1 enables access to PMDs
Bit 3 – ac – Enable/Disable Alignment Checks on IA-32/64 data memory references.

 Bit 4 – mfl – Becomes 1 when FR 2-31 are written to. This is a sticky bit.
Bit 5 – mfh – Becomes 1 when FR 32-127 are written to. This is also a sticky bit.

• Processor Identifiers – CPUID 4 is the most interesting of this set and a value of 0 in this

register the implementation of all the defined features.

5.2. System State Registers and their usage:
• Processor Status Register (PSR) – This is a 64-bit register that maintains control

information for the currently running IA-64 or IA-32 process.

The PSR is divided into four overlapping regions (User Mask Bits, System Mask Bits, the
lower half, and the entire PSR). Of these, the User Mask Bits of the PSR (PSR(5:0)) are
visible to the application programs. All other parts of the PSR require “privileged access”.

The processor implicitly serializes the User Mask manipulation instructions (sum, rum, &
mov psr.um=gsr[32]). All other PSR manipulation instructions require explicit serialization
by the software.

• Control Registers (CR) - This register name space contains 128 64-bit registers that capture

the state of the processor on an interruption, enable system-wide IA-64 or IA-32 features, and
specify global processor parameters for interruptions and memory management. Only “mov”
to/from operations can be performed to these registers at a privilege level 0 (the highest) and
reads from any of these registers must be data serialized with prior writes to the same
register.

• Interrupt Registers - Control Registers CR 64-CR 81 are used for interrupt handling. These

include the LID (Local Identifier Register), TPR (Task Priority Register), IVR (External
Interrupt Request Vector), IRR’s (External Interrupt Request Registers), LRR’s (Local
Redirection Registers), and PMV (Performance Monitoring Vector). They are used to
prioritize and deliver external interrupts, program external interrupt vectors for processor-
internal interrupt sources such as interval timer, performance monitoring, corrected machine
check, and also to assign vectors and redirect internal interrupts.

• Interval Timer Facilities - Two 64-bit registers (ITC and ITM) are provided for privileged

and non-privileged use and as a time base for performance measurements.

The Interval Time Counter (ITC) and Interval Timer Match (ITM) register support fine-
grained time stamps and elapsed time notification.

The ITC (Application Register AR 44) is a free-running 64-bit counter that counts up at a
fixed relationship to the processor clock. The ITC counting rate is not affected by power
management mechanisms. The ITC can be read at any privilege level iff PSR.si is zero;
otherwise only at privilege level 0.

The ITC can be read by the IA-32 rdtsc (read time stamp counter) instruction. When the value
in the ITC is equal to the value in the ITM (Control Register CR 1) an Interval Timer
Interrupt is raised. Once the interruption is taken by the processor and serviced by software,
the ITC may not necessarily be equal to the ITM. The ITM is accessible only at privilege
level 0.

• Debug Breakpoint Registers (DBR/IBR) - 64-bit Data and 64-bit Instruction Breakpoint

Register pairs (DBR, IBR) can be programmed to fault on reference to a range of virtual and
physical addresses generated by either IA-64 or IA-32 instructions. The minimum number of
DBR register pairs and IBR register pairs is 4 in any implementation. On some
implementations, a hardware debugger may use two or more of these register pairs for its
own use.

• Performance Monitor Configuration/Data Registers (PMC/PMD) - Multiple performance

monitors can be programmed to measure a wide range of user, operating system, or processor
performance values. Performance monitors can be programmed to measure performance
values from either the IA-32 or IA-64 instruction set. The minimum number of generic
PMC/PMD register pairs in any implementation is 4.

• Banked General Registers - 16 of the 32 static Registers (GR 16- GR 31) are available as

immediate temporary storage for register context when operating low-level interruption
handlers (e.g. speculation and TLB miss handlers). Of these, GR 24 – GR 31 are volatile as
their contents are preserved only when PSR.ic is 1. Upon interruption, the processor switches
the 16 general-purpose registers (GR16 to GR31) to register bank 0 while preserving register
bank 1’s contents.

Operating systems should ensure that IA-32 and IA-64 application code is executed
within register bank 1. If IA-32 or IA-64 application code executes out of register bank 0,
the IA-32 or IA-64 application register state will be lost on any interruption. During
interruption processing the operating system uses register bank 0 as the initial working
register context.

When PSR.bn is 1, bank 1 for registers GR16 to GR31 is selected; when 0, bank 0 for
registers GR16 to GR31 is selected. Banks are switched when an interruption selects bank 0,
or “rfi” switches to the bank specified by PSR.bn, or “bsw” switches to the specified bank.

• Region Registers (RR) - Eight 64-bit region registers specify the identifiers and preferred

page sizes for multiple virtual address spaces. Their usage will be described further in the
Memory Sub-Section of this paper.

• Protection Key Registers (PKR) - At least sixteen 64-bit protection key registers contain

protection keys and read, write, execute permissions for virtual memory protection domains.
Their usage will also be described further in the Memory Sub-Section of this paper.

• Translation Lookaside Buffer (TLB) - Holds recently used virtual to physical address
mappings. The TLB is divided into Instruction (ITLB), Data (DTLB), Translation Registers
(TR) and Translation Cache (TC) sections. TRs are software-managed portions of the TLB
and the processor directly manages the TCs section of the TLB. At the risk of sounding
repetitive, the TLB usage will also be described further in the Memory Sub-Section of this
paper.

• Machine Specific Registers (MSR) - This register file is privileged and all aspects of its

content and operation is machine specific (i.e. it is used for test and diagnostics). This register
file is accessed using the indirect “mov” instruction. A Privileged Operation fault is raised
if the privilege level is not zero when this register is accessed.

6. Register Stack:

IA-64 avoids unnecessary spilling and filling of registers at procedure call and return
interfaces through compiler-controlled renaming. The GRs (32-127), FRs (32-127), and the PRs
(16-63) are the affected registers by this process. These are also known as the stacked subset of
registers. The static subset of these register name spaces must be explicitly saved by software
convention while the RSE takes care of saving and re-instating the stacked subset. The register
stack operation is disabled during IA-32 execution mode.

I shall explain the mechanism with respect to the GRs. This principle just needs to be

extended as is to the FRs and PRs. When a procedure is executing in the CPU, it is assigned a set
of stacked GRs. This is known as the stack frame. The CFM.sol stores the size of the local area
and the CFM.sof stores the size of the entire frame. The local area is the scratch pad for the
current procedure. (CFM.sof - CFM.sol) gives us the size of the output area in the stack frame.

When the procedure is called, the RSE assigns a stack frame with only an output area.

This area contains all the actual parameters passed to the procedure and also has space to hold the
return parameter. Moreover this area overlaps with the output area of the callee. This overlap
permits all parameter passing and inter-procedure communication to take place entirely through
registers. The procedure can then allocate a local area using the “alloc” instruction that specifies
immediates for the size of locals and the size of frame.

The caller’s CFM is saved to the PFM (previous frame marker) field in the PFSR

(Previous Function State Register) before the call is actually made. The RSE ensures that when
a stack frame is assigned to a callee the starting register (which is the first output register of
the caller) is always (re)named GR32.

When a return-type branch is executed, CFM is restored from PFM and the register

renaming is restored to the caller's configuration. The PFM is procedure local state and must be
saved and restored by non-leaf procedures. The CFM is not directly accessible in application
programs and is updated only through the execution of calls, returns, “alloc”, and “clrrrb”.

When procedure calling is interleaved at more than 1 level and the register resources start

to exhaust, then the RSE takes the onus of spilling the contents of some of the registers to the
memory. IA-64 calls this memory store the “backup store”. The “backup store” is handled by two
ARs viz. BSP (Backup Store Pointer) and the BSPSTORE (Backup Store Pointer for

memory stores). The BSPSTORE contains the address in memory where the current frame must
start spilling its contents. The BSP contains the address in memory where next spill of any of the
previous frames’ registers must occur. BSP can be read whereas BSPSTORE is inaccessible to
application programs. The exhaustion of register resources can lead to stack overflow (when the
callee has no registers available and the pipeline stalls) – when a spill is imminent – or stack
underflow (when the caller’s registers have to be restored) – fill is imminent. Both spill and fill
occur at the best opportunity possible (independent of the calling and called procedures).

7. Memory and Addressing:

Objects in memory and I/O occupy a common 63-bit physical address space that is

accessed using byte addresses. The accesses can be done either using direct physical addressing
or through virtual addresses mapped to the physical address space. The current implementation,
page table formats to be more specific, limit the mapping of virtual addresses to 50 bits of
physical addresses.

Physical Addressing is enabled for instruction references when PSR.it is 0, for data

references when PSR.dt is 0, and for stack references when PSR.rt is 0. Instruction references to
unimplemented physical addresses result in an “Unimplemented Instruction Address Trap”.
Similarly, data references to unimplemented physical addresses result in an “Unimplemented
Data Address fault” and memory references to an unpopulated address range results in an
“Asynchronous Machine Check Abort”.

Virtual Addressing model in IA-64 is fundamentally a flat 64-bit linear virtual address

space. 64-bit GRs are used as pointers into the address space. Figure 4 shows the mapping of a
virtual address into a physical address. Virtual Address is composed of the Virtual Region
Number (VRN), Virtual Page Number (VPN), and the Page Offset (PO). The VRN is
computed from the upper 3 bits of the 64-bit virtual address. This gives us a possible set of 8
regions, each region containing 261 bytes. These 3-bits are used to select one of the 8 “Region
Registers” (RRs), defined in the previous section. The least significant bits of the 64-bit virtual
address forms the PO and the remaining bits form the VPN.

The RR contains a 24-bit value that chooses one of a possible 224 virtual address spaces.

Thus the IA-64 can consequently access 8 such address spaces. The 24-bit RR can also be
considered as the upper 24 bits of an 85-bit global address space in a “Single Address Model”.
This 24-bit value also serves as the unique address space number for the region (region identifier
aka RegionID). Each Region is split into several pages (page level addressing); varying in size
from 4K to 256M bytes. The RegionID is hashed with the VPN to give a key that is used to
search the TLB, defined in the previous section, to obtain a Physical Page Number (PPN).

The processor maintains two architectural TLBs, the instruction TLB (ITLB) and the

data TLB (DTLB). As their name indicates each services translation requests for IA-64 and IA-
32 instruction and data memory references. The DTLB also services translation requests from the
RSE and the VHPT (Virtual Hash Page Table).

On a memory reference, the VRN bits select a RegionID from one of the 8 RRs. The

TLB is then searched for a translation entry with a matching VPN and RegionID value. If a
matching translation entry is found, the entry’s PPN is concatenated with the PO to form the
physical address. Matching translations are qualified by page-granular privilege level and access

right checks and optional protection domain checks by verifying that the translation’s key
(a 24-bit value) is contained within a set of PKR’s, defined in the previous section, and that
read, write, and execute permissions are granted.

If the required translation is not resident in the TLB, then the processor may search the

VHPT structure in memory. This is done based on the value contained in the Page Table
Address (PTA) register. The value in this register defines both the base address of the VHPT
(PTA.base) and the size of the VHPT (2PTA.size). If the entry is found in the VHPT, the processor
will install it in the TLB; a TLB miss fault will be raised otherwise to request the operating
system to supply the translation. Once the operating system installs the translation in either the
TLB or the VHPT, the faulting instruction will be restarted and execution resumed.

IA-64 supports 32-bit virtual addressing in three models: zero-extension, sign-extension,

and pointer swizzling. In zero-extension the software ensures that the upper 32-bits of the virtual
address are always 0’s. This implies that only virtual region 0 is accessible (i.e RR0). Similarly in
sign-extension, the upper 32-bits of the virtual address are made equal to bit 31. This implies that
the 32-bit address space is split into two halves contained within 231 bytes of virtual regions 0 and
7. Pointer swizzling is shown in Figure 5. This scheme divides the 32-bit virtual address space
into 4 sections that are spread into 230 bytes of virtual regions 0 to 3 within the 64-bit virtual
address space. In pointer swizzling, mappings within each region do not necessarily start at offset
0 since the upper 2-bits of a 32-bit address serve as both the virtual region number and an offset
within each region. Also, virtual address bits 62 & 61 do not participate in address addition and
hence may lead to some regions being larger than 230 bytes (due to the addition of a 32-bit offset
and lack of a carry into bits 62 & 61).

8. Processor to Compiler interaction (& vice versa):

The IA-64 architecture provides mechanisms, such as instruction templates, branch hints,
and cache hints to enable the compiler to communicate compile-time information to the
processor. In addition, IA-64 allows compiled code to manage the processor hardware using run-
time information. These communication mechanisms are vital in minimizing the performance
penalties associated with branches and cache misses.

Every memory load and store in IA-64 has a 2-bit cache hint field in which the compiler

encodes its prediction of the spatial and/or temporal locality of the memory area being accessed.
An IA-64 processor can use this information to determine the placement of cache lines in the
cache hierarchy. This leads to better utilization of the hierarchy since the relative cost of cache
misses continues to grow.

The compiler also uses techniques such as speculation, predication, and software

pipelining to improve IA-64’s performance by exposing Instruction Level Parallelism (ILP).

Speculation is employed by the compiler to issue an operation speculatively iff the

operation is statistically frequent enough that the probability that it will require recovery is small,
and issuing the operation will expose further ILP enhancing optimization. Speculation is further
divided into Control and Data Speculation. In control speculation the compiler executes an
operation before a branch that guards it; exceptions, if they occur, are handled in the instruction’s
home block. For that to occur, the compiler leaves a check operation in the home block of the
instruction that activates the recovery code upon exception. In data speculation, a memory load

is performed before a memory store that may potentially alias with it. Data speculative loads are
also referred to as “Advanced Loads” and the ALAT (Advanced Load Address Table) is used
for this purpose. Just as in control speculation, the compiler puts a check, in the load’s home
block, to handle address overlap exceptions and to start recovery.

Control Speculation will translate the code sequence:
 if (a > b) load(ld_addr1, target1)
 else load(ld_addr2, target2)
To
 /* control speculation moves instruction before branch */
 sload(ld_addr1, target1)
 sload(ld_addr2, target2)

 /* checks are inserted, in original instructions’ home blocks */
 /* to handle exceptions */
 if (a > b) scheck(target1, recovery_addr1)
 else scheck(target2, recovery_addr2)

Data Speculation will translate the code sequence:
 store(st_addr, data)
 load(ld_addr, target)
 use target
To
 /* data speculation moves load before store */
 load(ld_addr, target)

 /* checks are inserted, in original instructions’ home blocks */
 /* to handle exceptions */
 store(st_addr, data)
 acheck(target, recovery_addr)
 use target

Predication is employed by the compiler to remove branches resulting in larger basic

blocks and the elimination of associated mispredicts. This is even more highlighted given the fact
that IA-64 has a deep 10-stage in-order pipeline. Predication also simplifies compiler
optimizations by converting control dependence into data dependence. The PRs (Predicate
Registers) are used for handling predicates.

Predication converts a code such as:
 if (a > b) c = c+1
 else d = d+1
To
 /* result of comparison stored in PRs pT and pF */
 pT, pF = compare (a,b)

 /* a control dependence on (a > b) is reduced to a */

/* data dependence on compare (a,b) */
 if (pT) c = c+1
 if (pF) d = d+1

Software Pipelining is a technique that is employed by the compiler that seeks to overlap
loop iterations in a manner that is analogous to hardware pipelining of a functional unit. Each
iteration is partitioned into stages with 0 or more instructions in each stage. The number of cycles
between the start of successive iterations is called the Iteration Interval (II). Each stage of a
pipelined iteration is II cycles long. IA-64 uses Modulo Scheduling, a form of software
pipelining to handle floating point/multimedia loops. In modulo scheduling II is a constant and
every iteration of the loop has the same schedule. Software pipelined loops have three phases:
prolog, kernel, and epilog.

During the prolog phase, a new loop iteration is started every II cycles to fill the

pipeline. During the first cycle of the prolog, stage 1 of the first iteration executes. During the
second cycle, stage 1 of the second iteration and stage 2 of the first iteration execute and so on.
This happens till the pipeline gets full i.e. if the loop has 4-stages, then the pipeline has the fourth
iteration in its first stage, third iteration in its second stage and so on. This takes the loop into its
kernel phase. In this phase, a new loop iteration is started every II cycles and one is completed at
the same time. Once there are no new iterations to be started, the pipeline starts to drain and the
loop enters its epilog phase. The EC (Epilog Count Register) is used for the final stages of the
Modulo Scheduled loops.

This concurrent multiple execution of iterations traditionally required loop unrolling and

software register renaming. Since IA-64 hardware allows the renaming of registers to provide
each iteration with its own set of registers (a concept also termed as Register Rotation),
Modulo Scheduled loops can be chosen over traditional loop unrolling methods, which cause
code expansion and ask for the scheduling of multiple loop bodies.

9. Interruption Handling:

Interruptions are classified as IVA-based interruptions and PAL-based interruptions
depending on how they are serviced. IVA-based interruptions are serviced by the operating
system. These interruptions are vectored into the IVT (Interruption Vector Table) pointed to by
the IVA control register (CR2). PAL-based interruptions are serviced by the PAL firmware,
system firmware, and possibly the operating system. These interruptions are vectored through a
set of hardware entry points directly into the PAL firmware.

Interruptions could be of 4 types: Aborts, Interrupts, Faults, and Traps. Aborts are

PAL-based interruptions that could be synchronous or asynchronous with respect to the
instruction stream. It may cause the processor to suspend the instruction stream at an
unpredictable location with partially updated register and memory state. Aborts come in two
flavors: Machine Check Aborts (MCA - due to the detection of a hardware failure) and Processor
Reset (RESET – during power-on or reset request).

When an external or independent entity like an I/O device, a timer event, or another

processor requires attention, Interrupts are triggered. They are asynchronous with respect to the
instruction stream and come in 3 flavors viz. Initialization Interrupts (INIT – A PAL-based
interrupt that signals the processor having received an initialization request), Platform
Management Interrupts (PMI – A PAL-based interrupt that signals the processor having
received a request to perform functions such as platform error handling, memory scrubbing, or
power management), External Interrupts (INT – An IVA-based interrupt that signals the

processor receiving requests from external devices). External Interrupts can be non-maskable
(NMI) or external controller interrupts (ExtINT).

Faults are triggered when an IA-32 or IA-64 instruction requests an action, which cannot

and should not be carried out. These are synchronous with respect to the instruction stream and
are IVA-based. The processor completes state changes that have occurred in instructions prior to
the faulting instruction and subsequent instructions have no effect on the machine state. Traps
indicate that the instruction that just executed requires system intervention. These too are
synchronous with respect to the instruction stream and are IVA-based.

In Comparison to RISC/CISC processors & areas of use:

Frequency (MHz) will no longer be the primary decision point in the choice of CPU

architecture. Instead, instructions per clock cycle (IPC) will become a more important measure of
system efficiency and power as calculated with the frequency.

With the IA-64, the users must focus on IPC and the clock frequency to arrive at a quick

and dirty performance comparison number vis-à-vis the traditional RISC/CISC processor. The
users must also take into account that the IA-64 hardware is simpler because the compilers
that target the IA-64 processors will be designed to simplify and optimize the instructions
specifically for that target.

EPIC enables “Itanium” to handle more IPC’s than previous microprocessors, and to

feed these instructions to multiple on-chip functional units for execution on every clock cycle.
The architects of IA-64 have designed considerable performance headroom into the architecture
allowing them the leeway of cramming in more IPC’s in the future releases. The traditional
architectures are limited on performance and scalability because the architecture feeds
instructions and data to the CPU too slowly to fully stretch the ability to make data parallel.
Hence, in today’s processors, the CPU has the additional task of parallelizing instructions
on the fly – a task that consumes valuable real estate and processing power on the CPU – aka
“Pure Hardware Pipelining”.

Today’s processors attempt to guess which branch to execute after a decision point. To

avoid predicting incorrectly the current RISC/CISC processors attempt to guess more intelligently
(“branch prediction”), run both instruction streams in different pipelines (“speculative
execution”), or execute one or both branches when the CPU is underutilized (“out-of-order
execution”). Most of the time these techniques donot fully leverage CPU parallelism and can
result in “mispredicts” (executing the wrong instruction stream) that cost up to 40% in CPU
performance. Predication – IA-64’s method, explained earlier in the paper – takes a new
approach to the problem by looking ahead in the compiler before the CPU even receives the code.
Predication can remove branches wherever possible and IA-64 can also tell the CPU more about
each branch. If predication fails the CPU can revert back to its ancestral techniques: owing
to more real estate “Itanium” can do this even better than the current processors. According
to a study based on popular software benchmarks (ISCA ’95, S. Malhlke et al.), predication can,
on average, reduce the number of branches by more than 50% and reduce mispredicts by
as much as 40%.

As a 64-bit architecture, “Itanium” will be especially appropriate for new and high-end

applications. “Itanium” is expected to deliver performance and scalability beyond older
architectures in certain key application areas, particularly the following:

• Business Intelligence – “Itanium” is expected to extend support for terabyte-and-
beyond data warehousing and data mining that need VLM. Moreover, Level 3 cache
speeds CPU processing of large datasets by reducing time-to-load from memory
for a larger amount of data versus disk I/O speeds.

• The Internet – The Internet involves both multimedia and exceptionally rapid

variation and increase in transactions (queries and OLTP). Thus processors need to
scale rapidly for both decision support and e-commerce. “Itanium” also provides
specific features for Internet applications viz. Security (encryption algorithm support)

and streaming media (floating point performance improvements and support for
applying a single instruction to multiple larger scale data streams).

• New Line of Business Applications – “Itanium’s” large register set allows for

greater parallelism in small-size data thus increasing performance in many key LOB-
application operations.

• Technical/Scientific applications – The “Itanium” processor is built to handle

intensive computations; scientific or otherwise.

Comparison to Sun Microsystems’ SPARC:

In this section I strive to compare the “Itanium” processor with Sun’s SPARC albeit at a

high level. Benchmark performance results between SPARC and “Itanium” are still not available
(at least I was not able to get a hold of it). The comparison has been performed based on the
following criteria.

• Technology: Sun’s SPARC is a RISC processor while “Itanium” is an EPIC processor. This

implies that all the comparison details mentioned in the prior section will hold.

• Availability: SPARC is available in the market today while “Itanium” has been delayed till

the latter part of this year.

• Market share: Since SPARC has been in the 64-bit market for 3 years it has already
established a niche for itself while Intel has a totally unproven ground to tread.

• Compatibility on ISA: Sun has retained its V9 ISA in its SPARC processor; maintaining

binary compatibility at the same time. Intel is changing its ISA to achieve Instruction Level
Parallelism (ILP) and the IA-32 bit compatibility.

• OS: Sun is retaining its robust SunOS operating systems’ suite and application base. The

“Itanium” on the other hand requires a whole new OS, new applications, and a new
middleware. My understanding of Intel’s strategy is that they are moving away from the
traditional Intel-Microsoft pact. They want IA-64 to host a wide range of 64 bit OS’s and
hence they are wooing 64-bit compiler writers to target the IA-64 platform/architecture. This
also explains their deal with Hewlett-Packard in coming up with the EPIC “formula”.

• Compilers: While the UltraSPARC series uses existing and proven compilers, tweaked to

optimize performance, “Itanium” requires completely new compilers. Moreover Sun is in the
business of writing compilers while Intel is not in that ball game. “Itanium” relies heavily
on compiler to processor communication (in the sense of software pipelining, branch
predication, and speculation) and hence shifts a lot of optimizing and efficiency burden to
the compiler vendors while SPARC still relies a lot on hardware optimizations. This is
going to be an empirical battle for cost to performance tradeoff.

• Scalability: Sun makes changes at the micro-architecture level to enhance scalability to a

level of upto 1000 processors in a single system. For Intel, and the IA-64, this is once again
an untreaded ground.

• Testing: Sun is much ahead of Intel in this arena too. They entered the market when they

tested their first 64-bit architecture in 1995. Intel is yet to conduct one; lagging behind due to
complexity issues.

• Expertise and Experience: Clearly, Sun’s technical expertise extends well beyond the realm

of processors and into the realm of OS and system design. In Intel’s case, however, there
seems to be an unclear coordination between the OS manufacturer, system designer, and
processor designer.

Conclusion:

All in all, this venture is going to be an uphill battle for Intel but with their fundamentals
set right they should be able to get the “Itanium” implementation into the market later this year.

 I have tried as best as possible, with the set of documentation available, to paint a picture
of the IA-64 architecture. This paper certainly does not carry a comprehensive explanation of the
IA-64 architecture but I have tried to cover as many critical pieces as possible in a term paper.

Bibliography:

[1] Intel ItaniumTM Processor Micro-architecture Overview: by Harsh Sharangpani
- Obtained from Intel’s website. This overview was presented to the microprocessor

forum in October of 1999.

[2] Inside ItaniumTM – A white paper by the Aberdeen Group, based in Boston
- Obtained from Intel’s website.

[3] Intel IA-64 Architecture Software Developer’s Manual
- Obtained from Intel’s website.

[4] The IA-64 Instruction Set Architecture Guide
- Obtained from HP’s developer resource website.

[5] IA-64 Instruction set goes beyond traditional RISC, VLIW: by Linley Gwennap
- Obtained from MDROnline’s website.

[6] A white paper on IA-64 and the competitive advantages for HP’s customers: by
David Scott
- Obtained from HP’s website.

[7] Computer Architecture, A Quantitative Approach: by Patterson & Hennesey
- A very handy reference for the details of computer architecture.

[8] Other press releases and articles related to IA-64.
- Results of endless hours of web searches.

List of Figures:

Figure 1:

Micro-architecture features in hardware:

 “Itanium” Micro-Architecture: one that synergizes software and hardware

Architecture features programmed by the compiler:

Branch hints Explicit Parallelism Register Stack Predication Data &Control Memory Hints
 & Rotation Speculation

 Fetch

Inst-ruction
cache &
branch
predictors

Issue

Fast,
Simple
6-Issue

 Register
 Handling

Massive
Register
resources,
register
rotation &
the RSE

 Control

Bypasses
&
dependen
cies

Parallel
Resource

4 Integer,
4 MMX
units.

2 FMAC
2 LD/ST
units.

32 entry
ALAT

Memory
Sub-
System

Three
levels of
cache
L1, L2,
L3.

 Speculation Deferral Management

Figure 2:

Figure 3:

127 0

 Each instruction contains:

1. Opcode
2. Predicate Register (6 bits)
3. Source 1 (7 bits)
4. Source 2 (7 bits)
5. Destination Register (7 bits)
6. Opcode extension/ branch target/ misc.

 jmpe

 br.ia

 rfi

 Intercepts,

 Exceptions, Software Interrupts
 Interruptions

 The IA-64 System Environment

 IA-32 Instruction
 Set

 IA-64 Instruction
 Set

 Instruction 2 Instruction 1 Instruction 0 Template

Figure 4:

 Figure 5:

 TC
 install

 RegionID VPN

 PTA.base

 Virtual Memory Addressing Scheme

Virtual Address (64-bits)

Region
Registers
(24-bits)

 TLB

 VHPT

(2PTA.size)

 Hashing Function

 PTA

Optional
collision search
chain

Optional
operating
system page
tables

63 32 30 0 63 32 31 0

 63 62 61 60 32 31 0

 Pointer Swizzling

0 000000

 +

