
Handbook of Recursive Mathematics, vol. 1
Chapter 1: Pure Computable Model Theory

Valentina S. Harizanov ∗

Department of Mathematics
George Washington University

harizanv@gwu.edu

Contents
1 Introduction 2

2 History 3

3 Notation and Basic Definitions 5

4 Decidable Theories, and Computable and Decidable Models 7

5 Effective Completeness Theorem 13

6 Model Completeness and Decidability 14

7 Omitting Types and Decidability 18

8 Decidable Prime Models 19

9 Computable Saturated Models and Computably SaturatedMod-
els 27

10 Decidable Homogeneous Models 30

11 Vaught’s Theorem Computably Visited 39

12 Decidable Ehrenfeucht Theories 43

13 Decidable Theories with Countably Many Countable Models 46

14 Indiscernibles and Decidability 49
∗This work was partially supported by the NSF RP grant DMS-9210443.

1



15 Degrees of Models 54

16 Automorphisms and Computable Models 61

17 Acknowledgments 72

1 Introduction
Exploiting the fundamental concepts of computability theory, computable model
theory introduces effective analogues of model theoretic notions. By combining
methods from both fields, it has enabled the development of machinery for
investigating the effective content of model theoretic constructions. While some
model theoretic constructions can be replaced by effective ones, for others such
replacement is impossible. Thus, another important objective for computable
model theory is the discovery of effective counterexamples to model theoretic
results. For instance, Vaught’s theorem (no complete theory has exactly two
non-isomorphic countable models) cannot be effectivized.
The article begins with the foundations of computable model theory: the

definitions and examples of decidable theories, and computable and decidable
models. It then presents the effective completeness theorem and the effective
omitting types theorem; and characterizations of decidable theories with decid-
able prime models, and then with decidable saturated models. The next sections
characterize decidable homogeneous models, and give examples of decidable the-
ories with exactly two non-isomorphic decidable models. The following sections
present the results on decidable theories with only finitely many, and on de-
cidable theories with only countably many, non-isomorphic countable models,
and investigate the model theoretic nature and the computability theoretic com-
plexity of models of such theories. Later sections study indiscernibles from the
computability theoretic point of view, and the degrees of models. Finally, we
consider the isomorphisms of effective models and related subtopics, such as in-
trinsically c.e. relations, computably stable models, and computably categorical
models.
Computable model theory was developed simultaneously and for the most

part independently in the West, mainly in the United States and Australia,
and in Russia. Because of poor communication between the two groups, many
results were independently discovered by both groups. This article looks at
computable model theory from the Western perspective. (There are articles in
this volume on the Russian approach.) However, the article also presents some
results of the Russian group, and often emphasizes the connections with and
gives references to their results.
Almost every section contains a detailed proof with a survey of the com-

putability theoretic and model theoretic background needed. The bibliography
contains both Western and Russian papers in pure computable model theory,
but not papers in computable algebra nor in computable combinatorics. An-
other survey article on this subject has been recently and independently written
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by Millar [149].

2 History
The goal of computable mathematics is to find the extent to which certain
classical results of mathematics are effectively true. Although many consider
the modern study of computability of algebraic constructions to have started
with Fröhlich and Shepherdson in 1955—56 and Rabin in 1958—60, even van der
Waerden in his book [202] from 1930, see also [203], discussed the problem of
carrying out certain field-theoretic procedures effectively. He also defined an
explicitly given field as one whose elements are uniquely represented by distin-
guishable symbols with which one can perform the field operations effectively.
In a pioneering paper from 1930, van der Waerden [201] proved that there does
not exist a splitting algorithm applicable to every explicit field. Fröhlich and
Shepherdson [62, 63] used the precise notion of a computable function to obtain
a collection of results and examples about explicit fields.
Rabin [177, 178] did a systematic study of computable groups and computable

fields. In Russia, a systematic study of constructive algebraic systems and their
enumerations was initiated by Mal’cev [125] in the 1960’s, and continued by
Ershov and his collaborators, see [56, 57].
In the 1970’s, Nerode and his collaborators revived the study of computabil-

ity of algebraic constructions. At the 1974 Recursive Model Theory Symposium
at Monash University (Melbourne, Australia), Metakides and Nerode announced
that, in addition to other computability theoretic tools, they started using the
priority method as an important tool in the algorithmic part of computable
mathematics, see [129]. Thus, they founded in the West the field of the post-
Friedberg-Muchnik computable mathematics. Metakides and Nerode used the
priority method in their systematic study of the effective content of specific
structures, such as vector spaces [130], fields [131], and structures with a depen-
dence relation [132]. For more information on the development of computable
mathematics see [38, 133, 184]. In Russia, the post-Friedberg-Muchnik con-
structive mathematics was founded by Nurtazin and Goncharov in the 1970’s
[79, 160].
In the West, the computability of ordered sets has also been studied by

Ash, Case, Chen, Crossley, Downey, Feiner, Feldman, Fellner, Hay, Hingston,
Hird, Jockusch, Kierstead, Knight, Lerman, Manaster, Metakides, McNulty,
Moses, Remmel, Richter, Rosenstein, Roy, Schmerl, Schwarz, Soare, Tennen-
baum, Trotter and Watnick; the computability of vector spaces by Ash, Guhl,
Guichard, Dekker, Downey, Hamilton, Kalantari, Remmel, Retzlaff, Shore,
Smith andWelch; the computability of rings and fields by Ash, Hodges, Jockusch,
MacIntyre, Madison, Marker, Mines, Rosenthal, Seidenberg, Shlapentokh, Smith,
Staples, Tucker and van den Dries; the computability of the structures with
a dependence relation by Baldwin, Downey and Remmel. The computabil-
ity in other mathematical structures is also extensively studied: in groups by
Ash, Barker, Ge, Kent, Knight, Lin, Oates, Richards, Richman and Smith;
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in graphs by Aharoni, Bean, Beigel, Burr, Carstens, Gasarch, Golze, Kierstead,
Lockwood, Manaster, Magidor, Päppinghaus, Remmel, Rosenstein, Schmerl and
Shore; in Boolean algebras by Carroll, Feiner, LaRoche, Remmel and Thurber;
in topological spaces by Kalantari, Legett, Remmel, Retzlaff and Weitkamp.
Computable Ramsey’s theory has been studied by Clote, Hummel, Jockusch,
Seetapun, Simpson, Solovay and Specker. Computability in analysis and physics
has also been studied, see [176].
The generalization of the definition of a particular computable algebraic

structure to an arbitrary model yields one of the basic concepts of pure com-
putable model theory, an area of logic developed in the last twenty-five years.
That is, the notion of a computable model, and a stronger notion of a decidable
model. Lerman and Schmerl have given examples of theories with computable
models. The first general results in computable model theory have been obtained
by following the fundamental notions and results of classical model theory. For
example, Millar has obtained the effective version of the omitting types the-
orem, and Harrington, Goncharov and Nurtazin have found when a complete
decidable theory with a prime model has a decidable prime model. Millar and
Morley have characterized decidable theories with decidable saturated mod-
els, and Goncharov and Peretyat’kin have characterized decidable homogeneous
models. Barwise, Schlipf and Ressayre have introduced the notion of a com-
putably saturated model. Although developed in the context of admissible sets
and admissible fragments of infinitary logic, computably saturated models have
also provided a useful tool for research and exposition in classical model theory.
In the West, Millar has further produced an extensive body of work on topics

including effective Vaught’s theorem, the structure of types in decidable models,
decidability and prime, saturated and homogeneous models, decidable theories
with finitely many and decidable theories with countably many non-isomorphic
countable models. Reed has also studied decidable theories with finitely many
non-isomorphic countable models. Kierstead and Remmel have investigated
the degrees of sets of indiscernibles in decidable models. Ash, Knight, Macin-
tyre, Marker, Nadel, Nies, Richter, Jockusch, Lachlan, Scott, Shoenfield, Shore,
Soare and Tennenbaum have studied the degrees of models of various theories,
including the theory of linear orders, Peano arithmetic, true arithmetic, and the
theory of Boolean algebras.
The whole spectrum of questions involving the isomorphisms of abstract

computable models has been investigated by Ash, Barker, Chisholm, Cholak,
Crossley, Downey, Eisenberg, Guichard, Harizanov, Hird, Khoussainov, Knight,
Manasse, Manaster, Millar, Moses, Nerode, Remmel, Shore, Slaman andWehner.
The lattices of computably enumerable submodels have been studied by Ash,
Guichard, Carroll, Downey, Metakides, Nerode, Remmel and Smith. More re-
cently, Nerode, Remmel and Cenzer [31, 158] have been developing feasible
model theory (as a part of feasible mathematics), the theory of models with
bounded space and time resources. They have investigated how feasible models
differ from computable models. The feasible models studied include Boolean
algebras, abelian groups, linear orders, models of arithmetic, and graphs.
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3 Notation and Basic Definitions
The set {0, 1, 2, . . .} of all natural numbers is denoted by ω. Unless explicitly
stated otherwise, it is assumed that all languages considered are first-order and
computable (hence at most countable), and that the domains of the considered
models are subsets of ω. For a set of sentences T , by L(T ) we denote its
language. A set of sentences T is deductively closed if T contains every sentence
σ of L(T ) such that T ` σ. A consistent deductively closed set of sentences is
called a theory.
Models are denoted by script letters, and their domains by the corresponding

capital Latin letters. By A ⊆ B we denote that A is a submodel of B, and by
A ¹ B that A is an elementary submodel of B. By A ≡ B we denote that A and
B are elementarily equivalent, and by A ∼= B that A and B are isomorphic. A
model is prime if it can be elementarily embedded in every model of its theory.
Hence a prime model for a countable language must be countable. Two prime
models of the same complete theory are isomorphic.
Let A be a model (with domain A) for L. By Th(A) we denote the theory

of A. For X ⊆ A, let LX be the language L ∪ {a : a ∈ X}, L expanded by
adding a constant a for every a ∈ X. Let AX = (A, a)a∈X be the expansion
of A to the language LX such that for every a ∈ X, a is interpreted by a. The
atomic diagram of A is the set of all atomic and negated atomic sentences of
LA which are true in AA. It is denoted by ∆A. The complete diagram of A is
the set of all sentences of LA which are true in AA. The complete diagram of
A is often called an elementary diagram of A.
A sequence of variables displayed after a formula or after a set of formulae

includes all the free variables occurring in any of the formulae. For two sequences
x and y of the same length k, by writing x/y after a formula or a set of formulae,
we denote the result of replacing every occurrence of y(i) by x(i) for i < k. To
simplify the notation, instead of θ(y)(x/y) we often write only θ(x). For a set
of formulae Θ, ∧Θ is the conjunction of all formulae in Θ. For a formula θ, let
θ1 =def θ and θ0 =def ¬θ.
A formula is in a Σ00 = Π

0
0 form if it contains no quantifiers. For n > 0, a

formula is in a Σ0n (Π
0
n, respectively) form if it is logically equivalent to a formula

in a prenex normal form which begins with an existential (universal) quantifier
and has n−1 alternations of quantifiers. Σ01 (Π01, respectively) sentences are also
called existential (universal, respectively). T∃ (T∀, respectively) denotes the set
of all existential (universal, respectively) sentences in T . For infinite cardinals
κ and λ, Lκλ denotes the infinitary logic which has κ individual variables, allows
conjunction and disjunction of a set of < κ formulae, and allows universal and
existential quantification over a set of < λ individual variables. In particular,
Lωω is classical first-order logic, and Lω1ω allows countable conjunctions and
disjunctions but only finite quantification. For more information on infinitary
logic see [99].
A type of a theory T in variables x0, . . . , xn−1 is a maximal consistent set

of formulae containing T , with free variables among x0, . . . , xn−1. To empha-
size its maximality, it is often called a complete type in the literature. An
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n—type is a type in n variables, and a (finite) type is an n—type for some
n ∈ ω. If Γ(x0, . . . , xn−1) is a type and xi0 , . . . , xik−1 ∈ {x0, . . . , xn−1}, then
Γ ¹ {xi0 , . . . , xik−1} is the subtype of Γ in variables xi0 , . . . , xik−1 . A formula
θ(x0, . . . , xn−1) is complete in T if for every formula ψ(x0, . . . , xn−1), exactly
one of

T ` (∀x0) . . . (∀xn−1)[θ(x0, . . . , xn−1)⇒ ψ(x0, . . . , xn−1)],

T ` (∀x0) . . . (∀xn−1)[θ(x0, . . . , xn−1)⇒ ¬ψ(x0, . . . , xn−1)]
holds. That is, there is exactly one (complete) type of T in x0, . . . , xn−1 which
contains θ. A type which contains a complete formula is called principal. The
set of all (complete finite) types realized in a model A is called the type spectrum
of A. A type spectrum of a theory is the type spectrum of one of its models.
Let X be a set. |X| denotes the cardinality of X. X is countable if |X| = ω.

X is at most countable if |X| ≤ ω. Let κ be an infinite cardinal, and let T be
a complete theory in a countable language. T is called stable in power κ, or
κ—stable, if for an arbitrary model U of T , for every subset X of U with |X| = κ,
the model UX realizes exactly κ many 1-types. T is called stable if it is stable
in some power. If T is ℵ0—stable, then T is stable in every infinite power (see
Chapter VII of [32]). T is called superstable if it is κ—stable for every κ ≥ 2ℵ0 .
For more information on stability theory see [22, 121, 175].
The quantifier ∃!x abbreviates “there exists a unique x”. The empty set is

denoted by ∅. For a set X, P(X) is its power set. If f is a partial function,
then dom(f) is the domain of f , rng(f) is the range of f , and f(a) ↓ denotes
that a ∈ dom(f). The length of a sequence x is denoted by lh(x). If x =
(x0, . . . , xn−1) and f is a unary function, then f(x) =def (f(x0), . . . , f(xn−1)).
The concatenation of sequences is denoted byb. A set T of sequences of numbers
is a tree if it is closed under subsequences. The empty sequence is the root of
T . Elements of T are also called nodes. A branch of T is a maximal linearly
ordered subset of T . The terminal node of a finite branch of T is a leaf.
Let φ(n)0 , φ

(n)
1 , φ

(n)
2 , . . . be a fixed effective enumeration of all n—ary partial

computable functions. IfX ⊆ ω, let φ(n),X0 , φ
(n),X
1 , φ

(n),X
2 , . . . be a fixed effective

enumeration of all n—ary X—computable functions. The superscripts are usually
omitted for n = 1 or when it is clear from the context. φe (φ

X
e ) is also denoted

by {e} ({e}X), and e is called the Gödel number or index of φe. We write
φe,s(n) = m if e, n,m < s and m is the output of φe(n) after < s steps in the
corresponding computation. Let We =def dom(φe) and We,s =def dom(φe,s).
Thus,W0,W1,W2, . . . is a computable enumeration of all c.e. sets. We fix h · , · i
to be a computable bijection from ω2 onto ω, which is strictly increasing with
respect to both arguments. For X ⊆ ω and i ∈ ω, we define X [i] = {k : hk, ii ∈
X}.
Let X ⊆ ω and Y ⊆ ω. The join X ⊕ Y is

{2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y }.

By X ≤T Y we denote that X is Turing reducible to Y . X <T Y denotes
X ≤T Y but Y £T X. X ≡T Y if X ≤T Y and Y ≤T X. deg(X) denotes
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the Turing degree of X. Let 0 =def deg(∅). If x = deg(X) and n ≥ 1, then
x(n) =def deg(X

(n)), where X(n) is the n-th jump of X. Define X(ω) = {hk, ni :
k ∈ X(n)∧k, n ∈ ω} and x(ω) = deg(X(ω)). A degree x is low if x0 = 00. Turing
degrees x and y form a minimal pair if they are nonzero and for every Turing
degree z,

(z ≤ x ∧ z ≤ y) =⇒ z = 0.

The set of all Turing degrees is denoted by D. For more information on classical
computability theory see [109, 161, 98, 196]. An ordinal is computable if it is
finite or is the order type of a computable well-ordering on ω. The computable
ordinals form a countable initial segment of the ordinals. Kleene’s O is the set of
notations for computable ordinals, with the corresponding partial ordering <O,
see [98, 189]. The least non-computable ordinal is denoted by ωCK1 , where CK
stands for Church-Kleene. To obtain hyperarithmetic sets, we define the repre-
sentative sets in the hyperarithmetic hierarchy, Ha for a ∈ O. The definition is
recursive, and is based on iterating the Turing jump:

H1 = ∅,

H2a = (Ha)
0,

H3·5e = {2x · 3n : x ∈ H{e}(n)}.
A set of natural numbers X is hyperarithmetic if (∃a ∈ O)[X ≤T Ha]. The
hyperarithmetic sets coincide with the ∆11 sets.

4 Decidable Theories, and Computable and De-
cidable Models

Computable model theory explores the effectiveness of constructions and the-
orems in model theory, see [32, 44, 92, 188], and in universal algebra, see
[37, 80, 126]. It begins by defining effective analogues of classical concepts
of algebra and model theory. Three of its fundamental concepts are: decidable
theories, computable models and decidable models. One of the basic problems
is determining whether computable or decidable models satisfying certain con-
ditions exist.

Definition 4.1. (i) A theory T is decidable if T is a computable set of sentences.
(ii) A model A is computable if its domain A is computable and its relations

and functions are uniformly computable. That is, A is computable if A is
computable and there is a computable enumeration (ai)i∈ω of A such that the
atomic diagram of A is decidable.
(iii) AmodelA is decidable if A is computable and there is a computable enu-

meration (ai)i∈ω ofA such that the complete diagram ofA (that is, Th((A, ai)i∈ω))
is decidable.
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We assume that a formula is identified with its Gödel number, so a set of
formulae is thought of as a subset of ω. Thus, a theory is decidable (resp. be-
longs to P, where P is a complexity class) if the set of Gödel numbers of its
sentences is computable (resp. belongs to P). Hence, if Ax is a set of axioms
of a theory T , then T is decidable if there is an algorithm which determines for
every sentence σ of L, whether Ax ` σ. Clearly, a computably axiomatizable
theory is computably enumerable. Hence a complete computably axiomatiz-
able theory is decidable. In particular, a complete finitely axiomatizable theory
is decidable. An example of such a theory is the theory of dense linear or-
der. Peretyat’kin [168, 169, 170, 171, 172, 173, 174] has developed intricate
methods for constructing finitely axiomatizable theories satisfying various ad-
ditional properties. In [168], he constructed a complete, finitely axiomatizable,
ℵ1—categorical theory which is not ℵ0—categorical. Well-known and important
examples of decidable theories in mathematics include the theory of equality,
the theory of unary predicates, the additive number theory, the theory of the
field of real numbers, the theory of the field of complex numbers, the theory of
algebraically closed fields, the theory of real-closed fields, the theory of p-adic
fields, the theory of Boolean algebras, the theory of linear order, the theory
of abelian groups, and the theory of free commutative algebras. Well-known
and important examples of undecidable theories in mathematics include num-
ber theory, the theory of simple groups, the theory of semigroups, the theory
of rings, the theory of fields, the theory of distributive lattices, and the theory
of partial order. For more information on decidable and undecidable theories
see [58] and Part III in [150]. For computability theoretic complexity of various
sets of sentences satisfied in certain classes of models see [204].
A modelA is computable ifA is computable, and if there is a computable enu-

meration (ai)i∈ω of A and an algorithm which determines, for every quantifier-
free formula θ(x0, . . . , xn−1) and every sequence (ai0 , . . . , ain−1) ∈ An, whether
AA |= θ(ai0 , . . . , ain−1). A model A is decidable if A is computable and there
is a computable enumeration (ai)i∈ω of A and an algorithm which determines
for every formula θ(x0, . . . , xn−1) and every sequence (ai0 , . . . , ain−1) ∈ An,
whether AA |= θ(ai0 , . . . , ain−1). Clearly, every decidable model is computable.
The converse is not true. For example, (ω,+,×) is a computable model which
is not decidable (by Gödel’s incompleteness theorem [64]). Peretyat’kin [163]
has constructed a decidable linear order without a computable proper elemen-
tary extension. In [160], Nurtazin characterized decidable models which are
isomorphic to computable non-decidable models. Peretyat’kin [166] has shown
that there is a complete decidable theory T which is neither ℵ0-categorical nor
ℵ1-categorical, and which has, up to isomorphism, a unique decidable model.
Moreover, all computable models of T are decidable.
A model is computably presentable if it is isomorphic to a computable model.

Goncharov [66] has constructed an ℵ1—categorical theory which is not ℵ0—
categorical and whose only computably presentable model is the prime model.
On the other hand, Khoussainov, Nies and Shore [101] have shown that there is
an ℵ1—categorical theory which is not ℵ0—categorical and whose only countable
non-computably presentable model is the prime model. It is sometimes conve-
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nient to call a model computable (decidable, etc.) even if it is only computably
(decidably, etc.) presentable.
Morozov [152, 153, 154] has extensively studied the automorphisms of com-

putable models. He constructed a decidable model [152] whose theory is ℵ0—
categorical and which does not have non-trivial computable automorphisms. He
also constructed a computable model [153] with 2ℵ0 many automorphisms and
without a non-trivial hyperarithmetic automorphism.
The notion of a computable (resp. decidable) model corresponds to the

notion of a constructive (resp. strongly constructive) model used by the group in
Novosibirsk. A constructive (resp. strongly constructive) model is a pair (A, ν),
where A is a countable model, and ν is a function from ω onto the domain
of A, such that the model “induced on ω by A via ν−1” is computable (resp.
decidable). ν is called a constructivization (resp. strong constructivization) of
A. For example, the field of rational numbers has a constructivization, while
the group of all computable permutations of ω does not.
In general, the Turing degree of a model A with finite language is the least

upper bound of the Turing degrees of its universe, and its relations and functions.
Hence a model is computable if its Turing degree is zero. Isomorphic models may
have different Turing degrees. Tennenbaum [199] has proved that there is no
computable nonstandard model of Peano arithmetic. Scott and Tennenbaum
[193] have established that every degree d such that d > 00 is a degree of a
complete extension of Peano arithmetic, and that no computably enumerable
degree d such that d < 00 can be a degree of a complete extension of Peano
arithmetic. Jockusch and Soare [94] have shown that there is a nonstandard
model of Peano arithmetic of low degree. Jockusch and Soare [96] have proved
that for every non-zero c.e. degree d, there is a linear order of degree d which is
not isomorphic to any computable linear order. Lerman and Schmerl [122] have
given a number of examples of important theories with computable models.
By a theory of linear order we mean a theory whose language consists of a

binary relation symbol, and which contains the axioms of linear order. Lerman
and Schmerl [122] have extended Peretyat’kin’s [164] result that every c.e. (Σ01)
theory of linear order has a computable model, by showing that every Σ02 theory
of linear order has a computable model. They have also constructed a∆03 theory
of linear order without a computable model. Lerman and Schmerl have further
shown that if x is a Turing degree such that x £ 000, then there is a theory of
linear order of degree x without a computable model.

Definition 4.2. (Millar [140]) Let P be a class of theories. A theory T is
persistently P if for every n ∈ ω, for every complete n—type Γ(x0, . . . , xn−1)
of T and a sequence c0, . . . , cn−1 of new constants, the theory Γ(c0, . . . , cn−1)
belongs to P.
In [55], Ershov has studied persistently ∀—finitely axiomatizable theories. A

theory T is ∀—finitely axiomatizable if for every theory S extending T , S∀ is
finitely axiomatizable. For examples of persistently ∀—finitely axiomatizable
theories see [55, 103]. Ershov [55] has established that every c.e. theory extend-
ing a persistently ∀—finitely axiomatizable theory has a computable model. This
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result implies the previously mentioned result that every c.e. theory of linear
order has a computable model. It also implies that every c.e. (Σ01) theory of
trees has a computable model. By a theory of trees we mean a theory whose
language consists of a binary relation symbol, and which contains the axioms
of a partially ordered set such that the set of all predecessors of any element
is linearly ordered. Lerman and Schmerl [122] have constructed a ∆02 theory of
trees without a computable model. Lerman and Schmerl have further shown
that for every Turing degree x such that x ≮ 00, there is a complete theory of
trees of degree x without a computable model.
Lerman and Schmerl [122] have proved that if T is an arithmetic ℵ0—categorical

theory such that for every n ∈ ω, the set of all Σ0n+2 sentences in T is a Σ
0
n+1 set,

then T has a computable model. They have also shown that for every n ∈ ω,
and a Turing degree x such that x £ 0(n), there is an ℵ0—categorical theory T
of degree x such that the set of all Σ0n+1 sentences in T is computable and T
does not have a computable model. In particular, for every Turing degree x,
there is an ℵ0—categorical theory of degree x such that the set of all existential
sentences in T is computable and every model of T has the degree ≥ x.
Feldman [60, 61] has constructed a complete decidable ℵ0—categorical theory

T of a partial order with the greatest lower bound operator. T has a decidable
model in which every countable lower semilattice can be embedded. Knight [111]
has constructed a complete, decidable, superstable theory T with 2ℵ0 many
types, such that no independent sequence of formulae (with respect to T ) is
computable in a type of T . A sequence (σn(x))n∈ω of formulae in L(T ) is
independent with respect to T if for every α ∈ 2<ω,

T ` (∃x)[
^

α(n)=1

σn(x) ∧
^

α(n)=0

¬σn(x)].

Hurlburt [93] has given some general conditions which are sufficient to construct
computable models for highly non-decidable theories.
According to the Ryll-Nardzewski theorem, a complete theory T is ℵ0—cate-

gorical if and only if for every n ∈ ω, the set of all n—types of T is finite.
For such a theory T , the function which assigns to every n the number of
all n—types of T is called Ryll-Nardzewski function. Schmerl [191], Herrmann
[90] and Venning [205] have proved independently that a complete decidable
ℵ0—categorical theory does not necessarily have a computable Ryll-Nardzewski
function. More generally, the following relativized result holds.

Theorem 4.3. (Schmerl [191]) For every Turing degree x, there is a function
f : ω → ω of degree x such that for every Turing degree y with the property that
x is c.e. in y, there is a complete ℵ0—categorical theory of degree y (in a language
consisting of one binary relation symbol) whose Ryll-Nardzewski function is f .

We can assume that the characteristic function of a consistent set Γ(x) of
formulae in L is a function χ : ω → {0, 1}, defined by:

χ
Γ(x)
(k) =

½
1 if θk(x) ∈ Γ(x),
0 if θk(x) /∈ Γ(x),
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where θ0(x), θ1(x), θ2(x), . . . is an effective enumeration of all formulae in L
whose free variables are among those in x. The set Γ(x) is computable if its
characteristic function is computable. Equivalently, Γ(x) is computable if the
set {n : θn(x) ∈ Γ(x)} is computable.

Proposition 4.4. Every type realized in a decidable model is computable.

Proof. Let A be a decidable model such that a type Γ(x0, . . . , xn−1) of Th(A)
is realized in A by some a0, . . . , an−1 ∈ A. Since A is decidable and

γ(x0, . . . , xn−1) ∈ Γ⇐⇒ AA |= γ(a0, . . . , an−1),

Γ must be computable.

A set of codes of a set of computable (complete) types of a theory T is
a set of Gödel numbers of characteristic functions (which are computable) of
these types, containing at least one index for each type. We say that a set of
computable types belongs to P, where P is a complexity class, if it has a set
of codes which belongs to P. The following proposition follows from a more
general proposition in the theory of enumerations (see Chapter VI of [57]).

Proposition 4.5. Every Σ0n+1 set of codes of a set of computable types of a
theory T is a Π0n set of codes.

Hence, every c.e. set of codes of a set of computable types is a computable set
of codes. To determine the complexity of the set of types realized in a decidable
model, we need from computability theory the s-m-n theorem.

Theorem 4.6. (i) (s-m-n theorem) For every m,n ≥ 1, there is an (m+1)—ary
computable function, denoted by smn , such that

φ(m+n)e (l1, . . . , lm, k1, . . . , kn) = φ
(n)
smn (e,l1,...,lm)

(k1, . . . , kn),

where e, l1, . . . , lm, k1, . . . , kn ∈ ω.
(ii) (Relativized s-m-n theorem) For every m,n ≥ 1 and every oracle X ⊆ ω,

there is an (m+ 1)—ary computable function, denoted by smn , such that

φ(m+n),Xe (l1, . . . , lm, k1, . . . , kn) = φ
(n),X
smn (e,l1,...,lm)

(k1, . . . , kn),

where e, l1, . . . , lm, k1, . . . , kn ∈ ω.

Proposition 4.7. The set of all types of T realized in a decidable model of T
is computable.

Proof. Let A be a decidable model of T and let a0, a1, a2, . . . be an effective
enumeration of A. Choose g : A<ω → ω to be a computable bijection. Define a
computable function h : ω2 → {0, 1} by:

h(n, k) =

½
1 if A |= θk[a],
0 if A 2 θk[a],

11



where g(a) = n, and θ0, θ1, θ2, . . . is an effective enumeration of all formulae of
L(T ) whose free variables are among x = (xi0 , . . . , xil−1), corresponding to a =
(ai0 , . . . , ail−1). By the s-m-n theorem, h(n, k) = φf(n)(k) for some computable
function f . Clearly, {f(n) : n ∈ ω} is a c.e. set which is a set of codes of all
(computable) types of T realized in A.

Proposition 4.8. Let T be a decidable theory.
(i) The set of all Gödel numbers of all computable types of T is a Π02 set.
(ii) Every principal type of T is a computable type, and the set of all principal

types of T is a Π01 set.

Proof. For a given sequence x of variables, let θ0(x), θ1(x), θ2(x), . . . be a com-
putable enumeration of all formulae of L(T ) with all free variables contained in
ran(x).
(i) For e ∈ ω, φe is the characteristic function of a computable type of T in

variables x if and only if

∀n∃s∀j ≤ n∃kj ∈ {0, 1}[φe,s(j) ↓= kj ∧ T ` ∃x(
^
{θkjj (x) : j ≤ n})].

(ii) Every principal type of T is computable because it is generated by a
complete formula. For every i ∈ ω, use ∅0 to determine whether θi(x) is a
complete formula. That is, θi(x) is a complete formula if and only if

∀j∃k ∈ {0, 1}[T ` ∀x(θi(x)⇒ θkj (x))].

Hence by the relativized s-m-n theorem, we can enumerate with oracle ∅0:
The principal type that θi(x) generates, if θi(x) is a complete formula;
Any fixed principal type of T , if θi(x) is not a complete formula.
Thus, since the sets which are computably enumerable in ∅0 are Σ02, it follows

that the set of all principal types is Σ02.

Proposition 4.9. (Millar [145]) Every Σ02 set of computable types of a decidable
theory T is contained in a computable set of computable types of T .

Nerode and his collaborators have also initiated the study of the lattice of
all computably enumerable submodels of a computable model. Models whose
computably enumerable submodels have been investigated include vector spaces,
fields, Boolean algebras, and linear orders. For more information see [7, 30, 45,
47, 48, 82, 81, 157, 159].
Moses [155] has generalized the concepts of computable and decidable models

to “Γ—computably enumerable models,” where Γ is a computably enumerable set
of formulae. For such a set Γ, a model A for L(Γ) is Γ—computably enumerable
if the universe of A is computable, and its satisfaction predicate restricted to Γ
is computably enumerable. For other notions of an “effective model” and of an
“effective isomorphism,” see [181] and [50].
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5 Effective Completeness Theorem
One of the major tasks of computable model theory is to obtain effective versions
of or effective counterexamples to various classical model theoretic results. To
obtain an effective version of the completeness theorem, we use from model
theory, Henkin’s method of constructing models; and from computability theory,
the notion of a computable set and Church’s thesis.

Theorem 5.1. (Effective Completeness Theorem) A decidable theory has a
decidable model.

Proof. Let T be a decidable theory. A corresponding model of T will be obtained
in an effective way by Henkin’s method. Let c0, c1, c2, . . . be an effective one-to-
one enumeration of an infinite set C of new constants. Let σ0, σ1, σ2, . . . be an
effective enumeration of all sentences in L(T )∪C. We will construct effectively,
by induction, a complete theory Ψ in L(T ) ∪ C such that Ψ ⊇ T . Ψ will be
the complete diagram of a model AA, where A is a desired model for T . As
usual, the domain A consists of the equivalence classes of the constants in C,
where two constants c, d ∈ C are equivalent if and only if (c = d) ∈ Ψ. We will
arrange that Ψ = {δ0, δ1, δ2, . . .}, where δs is defined at stage s. For s > 0, let
ψs =def δ0 ∧ δ1 ∧ . . . ∧ δs−1. Construction

Stage 0:
Let δ0 =def (c0 = c0).

Stage s = 2e+ 1 for e ∈ ω (Henkin’s witnesses requirement):
If δe is of the form δe = ∃xθ(x), we effectively find the least i such that ci

does not occur in ψs and let δs =def θ(ci). Otherwise, let δs =def (c0 = c0).

Stage s = 2e+ 2 for e ∈ ω (Completeness of the diagram requirement):
Let c be a sequence of all constants in C which occur in (ψs ⇒ σe). Let

x be the first sequence of variables of the same length as c (in some fixed
effective enumeration of the finite sequences of all variables) which do not occur
in (ψs ⇒ σe). We effectively check whether

T ` ∀x[(ψs ⇒ σe)(x/c)]. (∗)

If this is true, let δs =def σe. Otherwise, let δs =def ¬σe. End of the construc-
tion. Condition (∗) can be verified effectively because T is a decidable theory.
We describe the action at stage 2e + 1 as effectively providing a Henkin’s wit-
ness for δe, and the action at stage 2e + 2 as effectively satisfying the e—th
completeness requirement.

Proposition 5.2. (Millar [145]) Every computable type of a theory T is realized
in some decidable model of T .

Proof. Assume that Γ = Γ(x0, . . . , xn−1) is a computable type of a theory T .
Let c0, . . . , cn−1 be constants which do not occur in Γ. T ∪ Γ(c0, . . . , cn−1) is a
complete decidable theory in L(T )∪ {c0, . . . , cn−1}, so it has a decidable model
A. The reduct of A to L(T ) is a decidable model of T realizing Γ.
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6 Model Completeness and Decidability
Many examples of decidable theories constructed to illustrate certain model the-
oretic or computability theoretic properties are obtained as model completions
of universal theories, which allow the elimination of quantifiers.

Definition 6.1. A theory T is model complete if for any two models A and B
of T ,

A ⊆ B ⇒ A ¹ B.
Neither one of completeness and model completeness implies the other.

Theorem 6.2. A theory T in a language L is model complete
⇐⇒ For every A |= T , the theory T ∪∆A is complete in LA.
⇐⇒ If A and B are models of T and A ⊆ B, then every existential sentence

of LA true in BA is also true in AA.
⇐⇒ For every formula θ(x), there is a universal formula ψ(x) such that

T ` ∀x[θ(x)⇔ ψ(x)].

Definition 6.3. T is a model completion of a theory T 0 if
(∀A |= T )(A |= T 0),
(∀A |= T 0)(∃B |= T )[A ⊆ B], and
(∀D |= T 0)(∀A,B |= T )[(D ⊆ A ∧D ⊆ B)⇒ AD ≡ BD].

A model completion of a theory is a model complete theory.

Theorem 6.4. (Robinson) If T1 and T2 are model completions of T 0, then
T1 = T2.

A theory T ∗ is a model companion of a theory T if T ∗ is model complete
and T∀ = T ∗∀ . For example, the theory of atomless Boolean algebras is a model
companion of the theory of Boolean algebras, and the theory of algebraically
closed fields is a model companion of the theory of fields. Both the theory of
atomless Boolean algebras and the theory of algebraically closed fields are de-
cidable. Burris [29] has established some general criteria for a model companion
to be decidable.

Definition 6.5. T is submodel complete if for every model B of T and every
A ⊆ B, the theory T ∪∆A is complete in LA.

Hence a submodel complete theory is both complete and model complete.

Definition 6.6. (Robinson) A model completion of a universal theory is sub-
model complete.

We say that T admits the elimination of quantifiers if for every formula
θ(x0, . . . , xn−1), there is a quantifier-free formula ψ(x0, . . . , xn−1) such that

T ` ∀x0, . . . , xn−1[θ(x0, . . . , xn−1)⇔ ψ(x0, . . . , xn−1)].
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If there is an algorithm which for every formula θ(x) finds the corresponding
quantifier-free formula ψ(x), then we say that T effectively admits the elimina-
tion of quantifiers.

Proposition 6.7. (i) Let T be a theory which effectively admits the elimination
of quantifiers. Then every computable model of T is a decidable model of T .
(ii) Let T be a computably enumerable theory which admits the elimination

of quantifiers. Then every computable model of T is a decidable model of T .

Proof. (i) The statement follows immediately from the definitions of a com-
putable and of a decidable model.
(ii) The statement follows from (i) because if T is a computably enumerable

theory which admits the elimination of quantifiers, then T effectively admits the
elimination of quantifiers.

Theorem 6.8. A theory T is submodel complete
⇐⇒ (∀A,B |= T )(∀D ⊆ A,B) [A and B satisfy the same existential sen-

tences in L(T ) with parameters from D]
⇐⇒ T admits the elimination of quantifiers.

Millar has characterized universal theories which have decidable model com-
pletions, thus providing a uniform approach for producing specific examples of
decidable theories.
To state this characterization, we fix a language L and let θ0, θ1, θ2, . . .

be an effective enumeration of all quantifier-free formulae of L in variables
x0, x1, x2, . . .; y0, y1, y2, . . . . The convention will be that if the free variables of
a formula are displayed, then the free x—variables (if any) are displayed before
the free y—variables (if any).

Theorem 6.9. (Millar [135]) Assume that T 0 is a universal theory in L. T 0

has a (complete) decidable model completion if and only if there is a unary
computable function f such that for every i ∈ ω, θf(i) does not contain any
y—variable and for all i, j ∈ ω :
(i) (θi is inconsistent with T 0)⇔ θf(i) = ¬(x0 = x0),
(ii) T 0 ` ∀x[∃yθi(x, y)⇒ θf(i)(x)],
(iii) If θi does not contain any x—variable and is consistent with T 0, then

θf(i) = (x0 = x0),
(iv) (T 0 ∪ {θf(i)(x), θj(x, y∗)} is consistent)

=⇒ (T 0 ∪ {θi(x, y), θj(x, y∗)} is consistent),
where rng(y) ∩ rng(y∗) = ∅.
Notice that, by (ii), the implication in (iv) can be replaced by the equiva-

lence. Property (iv) is often called the amalgamation property.

Proof. Assume that T is a decidable model completion of T 0. By Theorem 6.6,
T admits the elimination of quantifiers. Thus, there is a unary computable
function f which has the following properties:
(a) (θi is inconsistent with T 0)⇔ θf(i) = ¬(x0 = x0);
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(b) If θi is consistent with T and does not contain an x—variable, then θf(i) =
(x0 = x0);
(c) If θi is consistent with T , then T ` ∀x[∃yθi(x, y)⇔ θf(i)(x)].
Clearly, (i) and (iii) are satisfied. Let us prove (ii). Assume otherwise. If

follows that
T 0 ∪ {∃x∃y[θi(x, y) ∧ ¬θf(i)(x)]}

is consistent. Hence it has a model A. Since T is a model completion of T 0,
there is a model B of T such that A ⊆ B. Hence B is a model of

T ∪ {∃x∃y[θi(x, y) ∧ ¬θf(i)(x)]}.

Since T is complete, we have

T ` ∃x∃y[θi(x, y) ∧ ¬θf(i)(x)].

That is,
T ` ¬∀x[∀y¬θi(x, y) ∨ θf(i)(x)]

or, equivalently,
T ` ¬∀x[∃yθi(x, y)⇒ θf(i)(x)],

thus contradicting (c). Hence (ii) holds. Finally, let us prove (iv). Assume that
rng(y) ∩ rng(yB) = ∅. Let

T 0 ∪ {∃x∃yB[θf(i)(x) ∧ θj(x, yB)]}

be consistent. By the same argument as in the proof of (ii), we conclude that
T ` ∃x∃yB[θf(i)(x) ∧ θj(x, yB)]. Hence, by (c),

T ` ∃x∃yB[∃yθi(x, y) ∧ θj(x, yB)].

That is, T ∪ {θi(x, y), θj(x, yB)} is consistent. Thus, since T is a model com-
pletion of T 0, T 0 ∪ {θi(x, y), θj(x, yB)} is consistent. To prove the converse, we
assume that a universal theory T 0 and a unary computable function f satisfy
(i)-(iv). Let T be obtained by adding to T 0 the following two sets of axioms:
Ax I ∀x∀y¬θi(x, y) for all i ∈ ω such that θf(i) = ¬(x0 = x0);
Ax II ∀x[θf(i)(x)⇒ ∃yθi(x, y)] for all i ∈ ω such that θf(i) 6= ¬(x0 = x0).
Clearly T ⊇ T 0. We will show that T is a decidable model completion of T 0.

Lemma 6.10. T is consistent.

Proof. We will prove that the union of T 0 and the two sets of axioms is consis-
tent. If σ is an axiom in Ax I, then T 0 ` σ by (i). Therefore, by the compactness
argument, it is enough to prove that for every finite set S of axioms in Ax II,
T 0 ∪ S is consistent. Let

S = {∀x∃y[θf(ik)(x)⇒ θik(x, y)] : 0 ≤ k ≤ n− 1}
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for some n ≥ 1. We will construct a model A for T 0 ∪ S by Henkin’s method.
We choose an infinite set C of new constants. For each k ∈ {0, . . . , n−1}, let Ck

be an enumeration of all sequences of elements in C of the same length as the
length of x in θik(x, y), such that every such sequence appears in Ck infinitely
often. Let σ0, σ1, σ2, . . . be an enumeration of all sentences in L(T 0)∪C. We will
construct the complete diagram Ψ of AA, where A will consist of the equivalence
classes of the constants in C. We will arrange that Ψ = {δ0, δ1, δ2, . . .}, where
δs is defined at stage s. For s > 0, let Ψs = {δ0, δ1, . . . , δs−1} and let ψs be
∧Ψs.
Construction
Stage 0:
Let δ0 =def (c0 = c0).
Stage s = (n+ 2)e for e ≥ 1:
Satisfy the (e− 1)—st completeness of the diagram requirement.
Stage s = (n+ 2)e+ 1 for e ∈ ω:
Provide a Henkin’s witness for δe.
Stage s = (n+ 2)e+ k for e ∈ ω and k ∈ {2, ..., n+ 1} :
Let Ck−2 be c0, c1, c2, . . .. If θf(ik−2)(ce) /∈ Ψs, then δs =def (c0 = c0). If

θf(ik−2)(ce) ∈ Ψs, then δs =def θik−2(ce, c), where c is a sequence of constants in
C which do not occur in ψs such that c is of the same length as y in θik−2(x, y).
End of the construction. We can prove inductively that for every s ∈ ω, T 0∪Ψs is
consistent. In the proof, we use property (iv) at stages of the form (n+ 2) e+k
for k ∈ {2, . . . , n + 1}. Hence Ψ is consistent. The corresponding model A
satisfies T 0 ∪ S.

Lemma 6.11. Every model of T 0 can be isomorphically embedded in a model
of T .

Proof. Assume that B is a model of T 0. Let Ω be the atomic diagram of B. To
prove that there is a model for Ω∪T , we use the same argument as in the proof
of Lemma 6.10 to construct a model for Ω∪S, where S is a finite set of axioms
in Ax II.

Lemma 6.12. (∀A,B |= T )(∀D ⊆ A,B) [A and B satisfy the same existential
sentences in L(T ) with parameters from D]

Proof. If follows from (ii) and Ax II that T admits the elimination of quantifiers,
which is equivalent to this statement.

Although the following lemma follows from Theorem 6.6, we also give an
easy direct proof.

Lemma 6.13. T is complete.

Proof. Let σ be a sentence in L such that T ∪{σ} is consistent. Since T admits
the elimination of quantifiers, the formula σ ∧ (y0 = y0) is T—equivalent to
θi = θi(y0) for some i ∈ ω. By (iii), θf(i) = (x0 = x0). By the definition of
axioms in Ax II, T ` ∀x0[x0 = x0 ⇒ ∃y0(σ ∧ (y0 = y0))]. Hence T ` σ.
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T is decidable because it is complete and the given sets of axioms are com-
putable. T is a model completion of T 0 by Lemma 6.10, Lemma 6.11 and Lemma
6.12.

7 Omitting Types and Decidability
Let Γ be a nonprincipal type of a complete theory T . Then there is a countable
model A of T which omits Γ. However, A does not have to be computable even
if Γ is. The following theorem shows that if T is decidable and Γ is computable,
then Γ is omitted in some decidable model of T .

Theorem 7.1. Let Γ be a computable nonprincipal type of a complete decidable
theory T . There is a decidable model of T which omits Γ.

Proof. Without loss of generality, we assume that Γ is a 1—type, Γ(x). Let C,
(σi)i∈ω , Ψ = {δ0, δ1, δ2, . . .}, ψs and A be as in the proof of Theorem 5.1.

Construction

Stage 0:
Let δ0 =def (c0 = c0).

Stage s = 3e+ 1 for e ∈ ω:
We effectively provide a Henkin’s witness for δe.

Stage s = 3e+ 2 for e ∈ ω (Omitting the types
requirement):
Let ψs be of the form ψs(ce, c), where ce does not occur in c. We effectively

find the first formula γ(x) ∈ Γ such that

(◦) T 0 ∀z[∃yψs(z, y)⇒ γ(z)],

where (z, y) is an appropriate effectively chosen sequence of new variables. Let
δs =def ¬γ(ce).
Stage s = 3e+ 3 for e ∈ ω:
We effectively satisfy the e—th completeness of the diagram requirement.

End of the construction. At stage 3e + 2, the corresponding formula γ exists
because Γ is a nonprincipal type and, by the construction, T ∪ {∃z∃yψs(z, y)}
is a consistent set. Condition (◦) can be verified effectively because T is a
decidable theory. Stage 3e + 2 guarantees that the interpretation of ce in A
does not realize Γ. Since every element in the domain of A is the interpretation
of some constant in C, A omits Γ. Clearly, for an arbitrary n—type Γ, stage
3e+ 2 should be modified so that instead of (ci)i∈ω some effective enumeration
of all n—tuples of elements of C is considered.

A partial type of T is a subset of a (complete) type of T . Millar has estab-
lished the following general result.
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Theorem 7.2. (Effective Omitting Types Theorem, Millar [137]) Let T be a
complete decidable theory. If Φ1 is a Σ02 set of computable nonprincipal partial
types of T , and Φ2 is a Σ02 set of computable types of T , then there is a decidable
model of T which omits all types in Φ1 and all nonprincipal types in Φ2.

The completeness of types in Φ2 plays an important role in Theorem 7.2, as
demonstrated by the next theorem.

Theorem 7.3. (Millar [137]) There is a complete decidable theory T and a
computable set Φ of computable partial types of T such that no decidable model
of T omits all nonprincipal types in Φ.

The following two theorems can be obtained using the Effective Omitting
Types Theorem.

Theorem 7.4. (Millar [137]) Let T be a complete decidable theory without a
decidable prime model. There are infinitely many distinct decidable models of T
such that the set of all types realized in any two of these models simultaneously
is exactly the set of all principal types of T .

Theorem 7.5. (Millar [137]) Let T be a complete decidable theory and let Φ be
a Σ02 set of computable nonprincipal types of T . Assume that for every decidable
model A of T which omits Φ, for every finite X ⊆ A, AX is not a prime model.
Then there are 2ℵ0 distinct type spectra of decidable models of T which omit Φ.

8 Decidable Prime Models
Definition 8.1. Let U be an arbitrary (possibly uncountable) model. U is
atomic if every n—tuple of elements of U satisfies a complete formula in the
theory of U .
Proposition 8.2. Let T be a complete theory in at most countable language.
(i) A countable model A of T is prime if and only if A is atomic.
(ii) T has a prime model if and only if every formula consistent with T is a

member of a principal type of T .

Definition 8.3. An arbitrary model U is ℵ0—homogeneous if for every two
sequences of elements of U of the same length,

(a0, . . . , an−1) and (b0, . . . , bn−1),

with the property

(U , a0, . . . , an−1) ≡ (U , b0, . . . , bn−1),

for every a ∈ U , there is b ∈ U such that

(U , a0, . . . , an−1, a) ≡ (U , b0, . . . , bn−1, b).
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A countable model A which is ℵ0—homogeneous is also called a homogeneous
model.

Proposition 8.4. (i) Every atomic model is ℵ0—homogeneous.
(ii) Two countable homogeneous models which realize exactly the same types

are isomorphic.

Proposition 8.5. Let T be a complete theory in at most countable language.
(i) If T has > ℵ0 types, then T has 2ℵ0 non-isomorphic countable homoge-

neous models.
(ii) If all countable models of T are homogeneous, then the number of non-

isomorphic countable models of T is either 1, or ℵ0, or 2ℵ0 .
The following theorem, obtained independently by Harrington, and Gon-

charov and Nurtazin, is an effective version of Proposition 8.2 (ii). It establishes
that a complete decidable theory T has a decidable prime model if there is an
algorithm which for a given formula θ(x) consistent with T , outputs Gődel num-
ber of the characteristic function of a computable principal type Γ(x) containing
θ(x). In the proof of this result we use from model theory, Henkin’s method of
constructing models; and from computability theory, the finite injury priority
method.

Theorem 8.6. (Goncharov-Nurtazin [79], Harrington [88]) Let T be a complete
decidable theory. The following are equivalent.
(i) T has a decidable prime model.
(ii) T has a prime model and the set of all principal types of T is computable.

Proof. (=⇒): The conclusion follows from Proposition 4.7, since the set of all
types realized in a decidable prime model of T is the set of all principal types
of T .

(⇐=): Let f be a computable function such that {f(n) : n ∈ ω} is a set of
codes of the set of all principal types {Γn : n ∈ ω} of T , where φf(n) = χΓn . We
will use Henkin’s method to construct a decidable prime model of T . Let C =
{c0, c1, c2, . . .} be a set of new constants, and let σ0, σ1, σ2, . . . be an effective
enumeration of all sentences in L(T )∪C. As usual, the domain of the resulting
model A will be {[c0], [c1], . . .}, where [c] is the corresponding equivalence class
of c. We will ensure that in A, for every e ≥ 0, ([c0], . . . , [ce]) realizes a principal
type of T , that is, a type from {Γn : n ∈ ω}. This is sufficient since, for example,
if a (complete) formula ξ(x0, x1) generates a principal 2—type, then ∃x0ξ(x0, x1)
generates a principal 1—type. That is because T ` ξ(x0, x1)⇒ ζ(x1) implies T `
∃x0ξ(x0, x1) ⇒ ζ(x1). Hence every finite sequence of elements in the domain
of A will satisfy a principal type. We will construct the complete diagram Ψ of
A. At every stage s (s ≥ 0) of the construction, we will have a finite set Ψs of
sentences such that

Ψ0 ⊆ Ψ1 ⊆ Ψ2 ⊆ · · · and Ψ = s≥0Ψ
s.
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Let ψs = ∧Ψs. If ψs = ψs(c0, . . . , cns), then for every e ∈ {0, . . . , ns}, we set

ψse =def ∃ye+1 . . . ∃ynsψs(c0, . . . , ce, ye+1, . . . , yns).

For every e ≥ 0, at almost every stage s of the construction, we have a type Ωse ∈
{Γn : n ∈ ω} which is a candidate for a principal type realized by ([c0], . . . , [ce]).
We will allow Ωse to be undefined for finitely many s. Because of the consistency
property, if Ωse is defined then ψse(x/c) ∈ Ωse. The construction will satisfy the
following requirements for every e ≥ 0.

P 1e : σe ∈ Ψ or ¬σe ∈ Ψ;
P 2e : If σe ∈ Ψ and σe = ∃xθ(x), then θ(c) ∈ Ψ for some c ∈ C;
Qe: ([c0], . . . , [ce]) realizes a principal type of T .
The priority ranking of the requirements in the decreasing order is:

P 10 , P
2
0 , Q0 , . . . , P

1
e , P

2
e , Qe , . . .

We attempt to satisfy the requirements in the order of their priority. We say
that at stage s > 0:

P 1e requires attention if σe /∈ Ψs−1 and ¬σe /∈ Ψs−1;
P 2e requires attention if σe ∈ Ψs−1 and σe = ∃xθ(x) for some θ such that

θ(c) /∈ Ψs−1 for every c ∈ C;
Qe requires attention if Ωs−1e is undefined.
Once satisfied at some stage, requirements P 1e and P 2e are never injured

again. However, we say that
Qe is injured at stage s > 0 if Ωs−1e is defined, but ψse(x/c) /∈ Ωs−1e .

Construction
Stage 0:
Let Ψ0 = ∅ and let Ω0e be undefined for every e ∈ ω.

Stage s>0:
Let Req be the highest priority requirement which requires attention at stage

s. We now attack Req as follows. Let Req = P 1e

(a) If T ` ∀x[(ψs−1 ⇒ σe)(x/c)], then Ψs = Ψs−1 ∪ {σe}.
(b) If T ` ∀x[(ψs−1 ⇒ ¬σe)(x/c)], then Ψs = Ψs−1 ∪ {¬σe}.
The properties on the left-hand side of (a) and (b) can be checked effectively

because T is decidable.
(c) If neither (a) nor (b) is satisfied, we add either σe or ¬σe to Ψs−1

such that if some Q—requirement must be injured, then the first such injured
requirement is of the highest priority. (Since the types in {Γn : n ∈ ω} are
computable, we can effectively check whether a given Q—requirement is injured.)
We effectively check whether some Qn is injured at stage s. Let n0 be

the least such n, if it exists. For every n ≥ n0, Ωsn will be undefined.
Let Req = P 2e Thus, σe ∈ Ψs−1 and σe = ∃xθ(x) for some θ. Let c be

the first constant in C which has not been used in the construction before
stage s. We define Ψs = Ψs−1 ∪ {θ(c)}. Let Req = Qe Thus, Ωs−1e is unde-
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fined. We find the first (e + 1)—type Γ(x0, . . . , xe) ∈ {Γn : n ∈ ω} such that
ψs−1e (x0/c0, . . . , xe/ce) ∈ Γ(x0, . . . , xe), and set Ωse =def Γ(x0, . . . , xe). This
can be done effectively because of the following two facts.
(1) Such Γ exists because T has a prime model, so it is an atomic theory,

hence every formula consistent with T belongs to some principal type.
(2) For every computable complete type, we can effectively decide whether

a given formula or its negation belongs to that type. End of the construction.

Lemma 8.7. For every e, Ωe =def limsΩ
s
e exists. Hence every Qe is satisfied.

Proof. Assume that e = 0. Let t0 be the least stage such that Ω
t0
0 is defined.

Let Ωt00 = Γn0 . Then ψt0−10 (x0/c0) ∈ Γn0 . Hence, by construction, Q0 will
never be injured, so Ω0 = Γn0 . Assume that e = 1. Let ξ0 be a complete
formula such that ξ0 ∈ Ω0(= Γn0). Clearly, ¬ξ0(x0) is inconsistent with Ω0,
and Q0 is never injured. Choose the least stage s0 such that ξ0(c0) ∈ Ψs0 .
Let t1 be the least stage > s0 such that Ω

t1
1 is defined. If Ωt11 = Γn1 , then

ψt1−11 (x0/c0, x1/c1) ∈ Γn1 . Since every formula consistent with Ψs0(x/c) is also
consistent with Ω0, it follows that Q1 is not injured after t1. The general proof
is by induction on e. If e > 0, choose the least s such that
∀t > s(Ωte−1 = Ω

s
e−1 = Ωe−1),

ψse−1(x0/c0, . . . , xe−1/ce−1) is a complete formula for Ωe−1,
Ωse is defined.
Let t > s. It follows that Ωte = Ω

s
e since ψ

s
e(x0/c0, . . . , xe−1/ce−1, xe/ce) ∈

Ωse, so ψ
s
e−1(x0/c0, . . . , xe−1/ce−1) ∈ Ωse, and hence Ωse−1 ⊆ Ωte.

Theorem 8.8. (Millar [145]) There is a complete decidable theory T with a
prime model which does not have a computable prime model. In addition, all
types of T are computable.

Proof. The language of T is L = {Pn(·) : n ∈ ω}, where every Pn is a unary
relation symbol. Let θ0(x), θ1(x), θ2(x), . . . be a computable enumeration of all
quantifier-free formulae in L whose only free variable is x. For a quantifier-free
formula θ(x) in L, let

dθ(x)e =def µk(θ(x) = θk(x)).

For a finite sequence α ∈ 2m, let

θα(x) =def

^
{Pk(x)α(k) : 0 ≤ k ≤ m− 1}.

The set of sentences T is defined using a computable tree T ⊆ 2<ω which will be
constructed later. The idea is to use the nodes in T to define certain formulae
which are consistent with T and to use the nodes in (2<ω−T ) to define certain
formulae which are inconsistent with T . Namely, the axioms of T fall into the
following two groups:
Ax I ∀x¬θβ(x) for every β ∈ 2<ω − T ,

22



Ax II ∃x0 . . . ∃xn−1 [
^

0≤i<j≤n−1
xi 6= xj ∧

^
0≤i≤n−1

θα(xi)]

for every α ∈ T and every n ≥ 1.
In addition to being a computable tree, T will satisfy the following condition:

∀β[β ∈ T ⇒ βˆ1 ∈ T ]. (∗)

This allows us to conclude that T has the properties stated in the following four
lemmas.

Lemma 8.9. T is consistent. Hence T is a theory.

Proof. Consistency of T will follow easily from the construction of T . We can
also use the compactness theorem to prove that the set of all axioms of T has
a model. Assume that S is a finite set of axioms. Let σ0, . . . , σk−1 be a list
of all axioms in S from Ax II. For every i ∈ {0, . . . , k − 1}, let αi be the node
in T and ni the natural number corresponding to σi. Define a finite model
A of L as follows. The domain A is A0 ∪ . . . ∪ Ak−1, where A0, . . . , Ak−1 are
pairwise disjoint sets, and for every i ∈ {0, . . . , k − 1}, Ai has ni elements. Fix
i ∈ {0, . . . , k−1}. Let mi = lh(αi). We define the unary relations on Ai in such
a way that σi is true, and for every j ≥ mi, we have PAj ⊇ Ai. The sentences in
S from Ax I are then automatically satisfied, because T is a tree with property
(∗).
Lemma 8.10. T admits the elimination of quantifiers.

Proof. We will use Theorem 6.8. LetA,B |= T andD ⊆A,B. We will prove that
AD and BD satisfy the same existential sentences. Let ∃yψ(x, y) be a formula
of L and let d ∈ D<ω be such that ψ(x, y) is a quantifier-free formula, and
A |= ∃yψ(x, y)[d]. Assume that ψ(x, y) is in a disjunctive normal form. Choose
a disjunct δ(x, y) of ψ(x, y) such that A |= δ(x, y)[d, a] for some a ∈ A<ω. Let
m ≥ 1 be the largest number such that Pm−1 occurs in δ. Let a ∈ rng(a)−B,
and let y be the variable in rng(y) assigned to a. Assume that θ(y) is the largest
subformula of δ(x, y), containing only variable y. Let α ∈ 2m be such that
AA |= θα(a). Clearly, θ(y) is a subformula of θα(y). Since θα(y) is consistent
with T , we conclude that α ∈ T , so B |= ∃yθα(y). Now it is easy to see that
B |= ∃yψ(x, y)[d].

Lemma 8.11. T is complete.

Proof. Let σ be a sentence in L. If σ is inconsistent with T , then T ` ¬σ.
Therefore, assume that σ is consistent with T . We will prove that T ` σ. By
Lemma 8.10, there is quantifier-free formula ψ(x) such that

T ` ∀x(σ ⇔ ψ(x)).

Hence T ` (σ ⇔ ∃xψ(x)). ψ(x) can be written as a disjunction of conjunctions
of atomic formulae or negations of atomic formulae. Let A be a model of T such
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that A |= σ. Let a disjunct θ(x) of ψ(x) and a ∈ A be such that AA |= θ(a).
Assume that m ≥ 1 is the largest number such that Pm−1 occurs in θ(x). As
in the proof of the previous lemma, there is α ∈ 2m such that AA |= θα(a)
and θ(x) is a subformula of θα(x). Thus, α ∈ T , so ∃xθα(x) is an axiom of T .
Therefore T ` ∃xθ(x). Hence T ` ∃xψ(x).

Lemma 8.12. (i) T is decidable.
(ii) Every computable model of T is decidable.

Proof. (i) The sets of axioms in Ax I and Ax II are computable because T is
computable. Hence the decidability of T follows from Lemma 8.11.
(ii) The statement follows from Proposition 6.7 (ii) since T is decidable and

admits the elimination of quantifiers.

Since T admits the elimination of quantifiers, every 1—type of T is uniquely
determined by a function f ∈ 2ω such that for every k ∈ ω:

Pk(x)
f(k) ∈ Γ(x).

We now construct a computable binary tree in such a way that every type of T
is computable, and every decidable model of T realizes a nonprincipal 1—type.
Since every type of T is computable, T has countably many types, so it has a
countable saturated model, and hence a prime model. However, a prime model
of T cannot be decidable because it does not realize a nonprincipal type. T is
computably enumerated, where for every s ∈ ω, Ts is the part of T enumerated
by stage s. The construction satisfies the following requirements for e ∈ ω:

Re : [φ(2)e is the satisfaction predicate of a decidable model A |= T

=⇒ A realizes a nonprincipal type of T ].

To achieve this, for every φ(2)e which is a satisfaction predicate of a decidable
model A of T , we define an infinite set of e—marked nodes and a unique e—marked
element. The e—marked nodes belong to a single infinite branch which deter-
mines a nonprincipal type of T , satisfied by the element of A which corresponds
to the e—marked element. For e ∈ ω, exactly one new e—marked node is defined
at every stage s of the construction such that s ∈ {0} ∪ {e+ 1, e+ 2, . . .}. For
any a, let a0 denote the empty sequence, and for m ≥ 1, let am abbreviate the
sequence of m consecutive a’s.

Construction
Stage 0:
T0 is the tree consisting of the nodes 1eˆ0 for all e ∈ ω, and of their initial

segments. For every e ∈ ω, the node 1eˆ0 is e—marked. Stage s+ 1:
Step 1: For every β ∈ Ts:
Enumerate βˆ1 into Ts+1; and
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Declare that βˆ0 (and hence every γ ∈ Ts such that βˆ0 is an initial segment
of γ) is in the complement of T .
Step 2: Consider each e ≤ s. Let α be the e—marked node at s.
Case (a): No e—marked element has been defined at any previous stage.

Action: Search for the least j ≤ s (if it exists) such that

φ(2)e,s(dθα(x)e, j) ↓= 1.

If such j does not exist, then α is the e—marked node at s+ 1.
If such j is found, define the e—marked element to be j. Let β be the node,
enumerated in Ts+1 by Step 1, of the maximal length such that α is the initial
segment of β. The construction guarantees the uniqueness of β. Define β to be
the e—marked node at s+ 1, and enumerate both βˆ0 and βˆ1 into Ts+1.
Case (b): Assume that j is the e—marked element.

Action: Let lh(α) = n. Find the least b ∈ {0, 1} (if it exists) such that

φ(2)e,s(dθα(x) ∧ Pn(x)be, j) ↓= 1.

If such b does not exist, then α is the e—marked node at s+ 1.
Now assume that b exists. Let β be the node, enumerated in Ts+1 by Step 1, of
the maximal length such that αˆb is an initial segment of β. The construction
guarantees the uniqueness of β. Define β to be the e—marked node at s+1, and
enumerate both βˆ0 and βˆ1 into Ts+1. End of the construction.
Let T =def

S
s∈ω

Ts. T is a computable tree by construction.

Lemma 8.13. (i) Every 1—type of T is computable.
(ii) Every type of T is computable.

Proof. (i) It is easy to see that the principal types of T are computable. As-
sume that Γ(x) is a nonprincipal type of T . Since T admits the elimination of
quantifiers, Γ(x) is uniquely determined by a function fΓ ∈ 2ω. That is, for
every i ∈ ω,

Pi(x) ∈ Γ⇐⇒ fΓ(i) = 1.

To prove that Γ(x) is computable, it is sufficient to prove that f is computable.
Let e ≥ 0 be such that 1eˆ0 is an initial segment of f . If there were only finitely
many e—marked nodes on the infinite branch of T determined by f , then, since
every e-marked node “branches”, f would determine a principal type. Therefore,
there is an infinite set E of such e—marked nodes. Since E is computable by the
construction of T , f is computable.
(ii) Let Ω(x0, . . . , xn−1) be an arbitrary type of T . Since T admits the

elimination of quantifiers, Ω is uniquely determined by its 1—subtypes and by
the set Ψ of all inequalities among x0, . . . , xn−1, which are in Ω. Since, by (i),
all 1—types are computable, and Ψ is finite, it follows that Ω is computable.

Lemma 8.14. Every decidable model of T realizes a nonprincipal type of T .
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Proof. Assume that A is a decidable model of T . Then there is an effective
enumeration (ai)i∈ω of A, and e ∈ ω such that for every formula θ(x) of L and
every i ∈ ω:

A |= θ(ai)⇐⇒ φ(2)e (dθ(x)e, i) ↓= 1.
Let α be the e—marked node of the least length. Since T ` ∃xθα(x), there is
i ∈ ω such that AA |= θα(ai). Hence there is j ∈ ω such that j is the e—marked
element and for some stage s ∈ ω, φ(2)e,s(dθα(x)e, j) ↓= 1. It follows from the
construction of T that there are infinitely many e—marked nodes. For every
such node β, both βˆ0 and βˆ1 belong to T . Hence T has an infinite branch
determining a nonprincipal type which is realized in A by aj .

Now, let us show that the Σ02 complexity assumption in the Effective Omit-
ting Types Theorem (Theorem 7.2) cannot be replaced by a Π02 one. Assume
that a theory T is as in the previous theorem. Then the set of all nonprincipal
types of T is not omitted in any decidable model of T . However, by Proposition
4.8, the set of all nonprincipal types of T is a Π02 set.
Goncharov and Nurtazin [79] have also given an example of a decidable the-

ory without a computable prime model. The language of the theory is infinite,
and the theory is ℵ0—stable. In [73], Goncharov has established a criterion for
the computability of a prime model of a complete decidable theory. Let us first
state a model theoretic result about ℵ0—stable theories.
Theorem 8.15. Let T be an ℵ0—stable theory in at most countable language,
and let U be an arbitrary model of T . For every set X ⊆ U , the complete theory
of UX has an atomic prime model.

Theorem 8.16. (Goncharov [73]) There is a complete decidable ℵ0—stable the-
ory in a finite language (consisting of four unary relation symbols and one binary
relation symbol), which does not have a computable prime model.

Theories obtained in Theorem 8.8 and in Theorem 8.16 have infinite sets of
axioms. However, Peretyat’kin [169] has found a finitely axiomatizable complete
(hence decidable) theory T with a prime model, which does not have a decidable
prime model. In Peretyat’kin’s example, T is associated with a computably enu-
merable binary tree T which has the following properties. For every node α of
T , either both or none of αb0 and αb1 belong to T . Every node of T is an initial
segment of a leaf of T , and the set of all finite branches of T is non-computable.
A tree with these properties was first used by Goncharov and Nurtazin [79]. To
prove that the described tree suffices for the result, Peretyat’kin has invented a
general method for constructing finitely axiomatizable theories whose properties
are determined by Turing machine computations.

Definition 8.17. Let X ⊆ ω. A model A is decidable in X if A ≤T X and
there is an enumeration (ai)i∈ω of A such that the theory of (A,ai)i∈ω is ≤T X.

Theorem 8.18. (Denisov [43], Millar [145], Drobotun [49]) Let T be a com-
plete decidable theory with a prime model. Then T has a prime model which is
decidable in ∅0.
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Millar [142] has introduced a different concept of the effectiveness of a model,
which is weaker than the concept of decidability.

Definition 8.19. A countable model A for L is almost decidable if there is a
computable function F which assigns to every finite binary sequence α a finite
set F (α) of formulae in L∪{c0, c1, c2, . . .}, where c0, c1, c2, . . . are new constants,
such that the following conditions are satisfied.
(1) For α ∈ 2ω, if β is an initial segment of α , then F (β) ⊆ F (α).
(2) We can assign to every f ∈ 2ω a model Af such that

{F (α) : α is an initial segment of f}

determines the complete diagram of Af , and for all but countably many f ∈ 2ω,
Af is isomorphic to A.
Every decidable model is almost decidable, and there is an almost decidable

model which is not decidable. In fact, the concept of almost decidability is
introduced to capture a class of models which fail to be decidable because,
although there are computable strategies for their construction, the strategies
are not uniformly computable.

Theorem 8.20. (Millar [142])
(i) If a complete decidable theory T has fewer than continuum many complete

types, then T has an almost decidable prime model.
(ii) There is a complete decidable theory which has a prime model but does

not have an almost decidable prime model.

9 Computable SaturatedModels and Computably
Saturated Models

In 1961, Vaught introduced the notion of a countably saturated model. In
1970’s, Barwise, Schlipf and Ressayre [28, 27, 185, 190] introduced the notion
of a computably saturated model. Barwise and Schlipf have extensively used
computably saturated models to study computability over admissible sets.

Definition 9.1. (i) Let U be an arbitrary model. U is ℵ0—saturated if for every
finite subset X of its domain, UX realizes every type Φ(x) of the theory Th(UX).
(ii) Let U be a model for a computable language L. U is computably saturated

if for every finite subset X of its domain, every computable set of formulae Φ(x)
in LX consistent with Th(UX) is realized in UX .
Hence, every ℵ0—saturated model for a computable language is computably

saturated. A countable ℵ0—saturated model is simply called saturated.
Theorem 9.2. (i) A complete theory in a computable language whose models
are infinite has a countable computably saturated model
(ii) Every computably saturated model is ℵ0—homogeneous.
(iii) Elementarily equivalent countable saturated models are isomorphic.
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(iv) A complete theory with a countable saturated model has a prime model.

Hence it follows from (ii) of the previous theorem that every countable sat-
urated model is homogeneous. It follows from (i) of the previous theorem that
every countable model for a computable language has a countable computably
saturated elementary extension.

Theorem 9.3. (Engeler, Ryll-Nardzewski, Svenonius) The following statements
are equivalent for a complete theory T .
(i) T is ℵ0—categorical.
(ii) There is a countable model of T which is both prime and saturated.
(iii) All types of T are principal.
(iv) For every finite sequence x of variables, there are only finitely many

types of T in x.
(v) For every finite sequence x of variables, there are only finitely many

formulae with free variables among the elements of the sequence x, which are
not pairwise equivalent with respect to T .
(vi) All models of T are atomic.

Theorem 9.4. A complete theory T has a countable saturated model if and only
if for every n ∈ ω, T has only countably many n—types.

Hence, every complete theory with only countably many non-isomorphic
countable models has a countable saturated model. While countable saturated
models do not exist for complete theories with uncountably many types, count-
able computably saturated models always exist. Thus, the proofs of many early
results in model theory are simplified if countable computably saturated models
are used to replace certain large models which exist only under specific assump-
tions of set theory.

Theorem 9.5. (Millar [135]) Let T be a theory in a computable language L.
Suppose that T has a complete extension T 0 in the language L∪ {c0, . . . , cn−1},
where c0, . . . , cn−1 are new constants, such that T 0 does not have an atomic
model. Then T has a model which is not computably saturated.

Proof. Since T does not have an atomic model, there is a formula

ψ(c0, . . . , cn−1;x0, . . . , xm−1) in L(T 0)

which is consistent with T 0 and not contained in any principal type of T 0. Let
θ0, θ1, θ2, . . . be a computable enumeration of all formulae in L in free variables
(y, x) = (y0, . . . , yn−1, x0, . . . , xm−1). We define a computable set of formulae
Φ(y, x) = {ψ0, ψ1, ψ2, . . .} by:

ψ0 = ψ(y, x),

ψk+1 = [θk(y, x)⇔ ∃z(θk(y, z) ∧ ψ0(y, z) ∧ . . . ∧ ψk(y, z))] for k ≥ 0.

Φ(c0, . . . , cn−1, x) generates an m—type of T 0. It must be a nonprincipal type
since no principal type of T 0 contains ψ(c0, . . . , cn−1, x). So there is a model
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(A, a0, . . . , an−1) of T 0 omitting Φ(c0, . . . , cn−1, x), such that A is a model of T .
Since Φ(y, x) is a computable set of formulae, A is not computably saturated.

Proposition 9.6. (Millar [145]) Let T be a complete decidable theory with a
countable saturated model. Every consistent computably enumerable set
Φ(x0, . . . , xn−1) of formulae, n ∈ ω, is contained in a computable type of T .

Proof. Assume that Φ(x0, . . . , xn−1) is a consistent computably enumerable set
of formulae which is not contained in any computable type of T . Then there is
no formula φ = φ(x0, . . . , xn−1) of L(T ) such that Φ∪{φ} is contained in exactly
one n—type of T in variables x0, . . . , xn−1. We can use the splitting along the
nodes of a binary tree to show that T has 2ℵ0 many n-types. Hence T does not
have a countable saturated model, contradicting the assumption.

Theorem 9.7. (Morley [151], Millar [144, 145]) Let T be a complete decidable
theory such that all types of T are computable. If the set of all types of T is
computably enumerable, then T has a decidable saturated model.

Proof. Let Γ0,Γ1,Γ2, . . . be an effective enumeration of all types of T such that
every type appears infinitely often. Also, consider an effective enumeration of
all finite sequences of constants from an infinite set C of new constants. Modify
the construction in the proof of Theorem 8.6 so that the constructed decidable
model is saturated.

Theorem 9.8. (Millar [145]) There is a complete decidable theory T with a
countable saturated model which does not have a computable saturated model.
In addition, all types of T are computable.

Proof. The example in the proof of Theorem 8.8 can be modified to guarantee
that every decidable model of T omits a (nonprincipal) 1—type of T .

Theorem 9.9. (Millar [145]) Let T be a complete decidable theory.
(i) If all types of T are computable, then T has a countable saturated model

which is decidable in ∅0.
(ii) If T has a countable saturated model, then T has a saturated model which

is decidable in some hyperarithmetic set.

Morley introduced a very important classification of formulae according to
their complexity.

Definition 9.10. Let U be an ℵ1—saturated model for a countable language L.
(i) Let θ(x) be a formula in LU . We say that an ordinal α is the Morley rank

or the transcendence rank of θ(x) if the set of formulae

{θ(x)} ∪ {ψ(x) : ¬ψ(x) has the Morley rank < α}

in LU is consistent and has finitely many maximal consistent extensions in the
theory of UU .
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We assign ∞ to θ(x) as its Morley rank if θ(x) is consistent with the theory
of UU , but no ordinal is assigned to it as its Morley rank.
(ii) The Morley rank of U is the Morley rank of the formula x = x.

It is convenient to work with ℵ1—saturated models because a formula has the
same Morley rank in two elementary equivalent ℵ1-saturated models. The valid
formula x = x is chosen to “represent the model” because it has the largest
Morley rank. Clearly, a formula θ(x) in LU has the Morley rank 0 if it is
satisfied in U by at least one but at most finitely many distinct elements. Such
a formula is also called algebraic.
It follows that all ℵ1—saturated models of a complete theory T have the same

Morley rank, called theMorley rank of T . It can be shown that if Morley rank of
T is not∞, then it is a countable ordinal. A theory T whose Morley rank is not
∞ is called totally transcendental. A complete theory is totally transcendental
if and only if it is ℵ0—stable.
Theorem 9.11. (Peretyat’kin [171]) There is a complete finitely axiomatizable
ℵ0—stable theory of finite Morley rank, which has neither a computable prime
model nor a computable saturated model.

Schlipf [190] has established that if A is a countable, computably saturated
model and S is a computably axiomatizable theory consistent with Th(A), then
A can be expanded to a computably saturated model of S. For example, a
countable nonstandard model of additive number theory can be expanded to a
model of Peano arithmetic if and only if it is computably saturated (see [123]).
For applications of computably saturated models see [114, 118, 124].

10 Decidable Homogeneous Models
While countable homogeneous models are relatively simple objects in model
theory, they can be very complex from a computability theoretic point of view.
Classical model theory has established that every countable model has a count-
able homogeneous elementary extension. Two countable homogeneous models
are isomorphic if and only if they realize the same finite types. Thus, a count-
able homogeneous model is uniquely determined, up to isomorphism, by a set
of types it realizes. Therefore, the following question, first posed by Morley, is
a very natural one.
Let T be a complete decidable theory. Assume that the type spectrum of a

countable homogeneous model A of T consists only of computable types and is
computable. Is A necessarily decidable?
(The converse is obviously true.)

Goncharov, Peretyat’kin and Millar have independently answered Morley’s
question negatively by providing examples of a non-computable countable ho-
mogeneous model of a complete decidable theory such that the type spectrum
of the model consists only of computable types and is computable. Millar [134]
has used the infinite injury priority method to construct his counterexample.
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In addition, Goncharov [68] and Peretyat’kin [167] have characterized a de-
cidable countable homogeneous model of a complete decidable theory. While
Peretyat’kin’s counterexample has not used this characterization, Goncharov
has used the characterization to find his counterexample.
Goncharov [72] has later given an example of a complete ℵ0—stable decidable

theory which does not have a computable homogeneous model. Notice that
such theory has neither a computable prime nor a computable saturated model.
Another consequence of Goncharov’s example is the existence of a decidable
model without a homogeneous computable elementary extension.
To present Peretyat’kin’s counterexample to Morley’s question, we use from

model theory, the Łós-Vaught Test and a characterization of submodel complete
theories from Theorem 6.8; and from computability theory, the notion of an
approximable set and the existence of a non-approximable c.e. set, both of which
are due to Peretyat’kin.

Theorem 10.1. (Łós-Vaught Test) If a theory S of an arbitrary language has
only infinite models and for some infinite cardinal κ ≥ |L(S)|, S is κ—categorical,
then S is complete.

Definition 10.2. Let X ⊆ ω. X is approximable if there is a computable
function f such that for every m ∈ ω,

|{0, . . . ,m− 1} ∩X| ≥ f(m)

and for infinitely many m,

|{0, . . . ,m− 1} ∩X| = f(m).

(If m = 0, then {0, . . . ,m− 1} =def ∅.)
Hence, a set X is not approximable if and only if for every computable

function f ,

[∀m |{0, . . . ,m− 1} ∩X| ≥ f(m)] =⇒
[∃m0∀m ≥ m0 |{0, . . . ,m− 1} ∩X| > f(m)].

Theorem 10.3. (Peretyat’kin [167]) There is a computably enumerable set X
which is not approximable.

Proof. We will algorithmically enumerate X at stages. Construction

Stage 0: Let X0 =def ∅.
Stage s + 1: Let Xs be the part of X enumerated by stage s. For every

e ≤ s, consider all k such that

for every n ∈ {he, ki+ 1, . . . , he, k + 1i},
φe,s(n) ↓ ∧ |{0, . . . , n− 1} ∩Xs| ≥ φe,s(n).

Enumerate all such he, ki in Xs+1. End of the construction.
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Let X =
[
s∈ω

Xs.

Lemma 10.4. X is not approximable.

Proof. Let e ∈ ω be such that φe is total. Assume that

∀n |{0, . . . , n− 1} ∩X| ≥ φe(n).

Let m0 =def he, 0i+ 1. We will prove that

∀m ≥ m0[|{0, . . . ,m− 1} ∩X| > φe(m)].

Let m ≥ m0. There is a unique k such that m ∈ I, where

I = {he, ki+ 1, . . . , he, k + 1i}.

Consider the least s ≥ e such that

(∀n ∈ I)[φe,s(n) ↓ ∧ |{0, . . . , n− 1} ∩Xs| ≥ φe,s(n)].

By construction, he, ki ∈ Xs+1 −Xs. Hence

|{0, . . . ,m− 1} ∩X| > |{0, . . . ,m− 1} ∩Xs| ≥ φe,s(m) = φe(m)].

Theorem 10.5. (Goncharov [68], Millar [134], Peretyat’kin [167]) There is
a complete decidable theory T and a countable homogeneous model M of T
such that M is not computable, and the type spectrum of M consists only of
computable types and is computable.

Proof. We will present the example from [167]. First, we will define a complete
and decidable theory T in L which admits the elimination of quantifiers. Then
for an arbitrary c.e. set X, we will define a c.e. set SX of types of T such that
there is a homogeneous model M with the following properties. M realizes
precisely the types in SX ; and if M is computable, then X must be approx-
imable. However, by Theorem 10.3, X can be chosen to be non-approximable,
thus forcingM to be noncomputable.

Theory T
Definition of T . The language of T is L = {=, R, P0, P1, P2, . . .}, where

R is a binary relation symbol and for i ∈ ω, Pi is a unary predicate sym-
bol. We will also consider the finite sublanguages L0 = {=, R}, and Ls = {=
, R, P0, . . . , Ps−1} for s > 0. Let T =def s≥0Ts, where Ts is a set of sentences in
Ls defined as follows. T0 has the following two axioms.
Ax 1 ∀x¬R(x, x);
Ax 2 ∀x∀y[R(x, y)⇒ R(y, x)].
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For s > 0, Ts has, in addition to the above two axioms, the following axiom
schema:
Axs ∀x0...∀xn−1[δ0(x0, x1, . . . , xn−1) =⇒ ∃xnδ(x0, x1, . . . , xn−1, xn)],

where δ is a conjunction of atomic formulae and negations of atomic formulae
in Ls which is consistent with {Ax 1, Ax 2}, and δ0 is a subformula of δ. We
will call δ a finite diagram in Ls and δ0 a subdiagram of δ.

Lemma 10.6. For s ≥ 0, Ts is consistent.

Proof. Clearly, T0 is consistent. Assume that s > 0. Let A0 be a model in Ls
of axioms Ax 1 and Ax 2. We will construct a model A of Ts. Let θ1, θ2, . . . be
an enumeration of all axioms Axs in which each axiom appears infinitely often.
Let θ1 be of the form

∀x0 . . . ∀xn−1[δ0(x0, x1, . . . , xn−1) =⇒ ∃xnδ(x0, x1, . . . , xn−1, xn)].

We will extend A0 to A1 in such a way that A1 satisfies the matrix of θ1 on all
n—tuples from A0. Let A1 = A0 ∪ {a}, where a /∈ A0. Let

A0 |= δ0(a0,a1, . . . , an−1)

for a0, a1, . . . , an−1 ∈ A0. Extend the definitions of the predicates in Ls to the
set {a0, a1, . . . , an−1, a} so that

A1 |= δ(a0,a1, . . . , an−1,a).

Continuing in a similar fashion, we construct a chain of models

A0 ⊆ A1 ⊆ A2 ⊆ · · · .

Let A =def

S
s≥0

As.

Lemma 10.7. For s ≥ 0, Ts is ℵ0—categorical.

Proof. Let A and B be countable models of Ts. We will prove that they are
isomorphic. Assume that f is a finite (partial) isomorphism from A to B and
dom(f) = {a0, a1, . . . , an−1}. Let δ0(x0, x1, . . . , xn−1) be the finite diagram of
A determined by dom(f), let a ∈ A − dom(f), and δ(x0, x1, . . . , xn−1, xn) be
the finite diagram of A determined by dom(f) ∪ {a}. We have that B |=
δ0[f(a0), f(a1), . . . , f(an−1)]. Thus, there is b ∈ B such that

B |= δ[f(a0), f(a1), . . . , f(an−1), b].

Then f1 = f ∪ {(a, b)} is a finite isomorphism from A to B. Similarly, if b1 ∈
B−ran(f), there is a1 ∈ A such that f2 = f1∪{(a1, b1)} is a finite isomorphism
from A to B.

Lemma 10.8. For s ≥ 0, Ts is complete.
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Proof. Ts has no finite models since {xi 6= xj : i 6= j ∧ i, j ≤ n} belongs to a
finite diagram of Ts. Since Ts is ℵ0—categorical, by the Łós-Vaught Test, it is
complete.

Lemma 10.9. For s ≥ 0, Ts is decidable.

Proof. Ts is complete and computably axiomatizable. Hence, it is decidable.

Lemma 10.10. For s ≥ 0, Ts admits the elimination of quantifiers.

Proof. We will prove that Ts is submodel complete by showing that

(∀A,B |= Ts)(∀D ⊆ A,B) [A and B satisfy the same existential

sentences in L(Ts) with parameters from D].

Let A |= θ(d0, . . . ,dn−1,a0, . . . , am−1), where

d0, . . . , dn−1 ∈ D and a0, . . . , am−1 ∈ A−D.

Extend the identity function on {d0, . . . , dn−1} to a finite isomorphism f from
A to B such that a0, . . . , am−1 ∈ dom(f). Then

B |= ∃x0 . . . ∃xm−1θ(d0, . . . ,dn−1, x0, . . . , xm−1).

Types of T
Description of the types of T . The fact that T admits the elimination of

quantifiers allows us to easily describe all finite types of T . A 1—type Γ(x) of T
is uniquely determined by the sequence f ∈ {0, 1}ω such that

{P f(0)
0 (x), P

f(1)
1 (x), P

f(2)
2 (x), . . .} ⊆ Γ.

For n ≥ 2, an n—type Γ(x0, . . . , xn−1) of T is uniquely determined by the 1—types
Γ ¹ {x0}, . . . ,Γ ¹ {xn−1} and some finite L0—diagram δ(x0, . . . , xn−1).

Description of a set SX of types of T . LetX be a c.e. set of natural numbers.

Definition 10.11. (i) A sequence f ∈ {0, 1}ω is compatible with X if there is
l ∈ ω such that for i ∈ {0, . . . , l − 1},

f(l + i) = 1 if i ∈ X, and f(l + i) = 0 if i /∈ X,
f(2l) = 0 and for i > 2l, f(i) = 1.
(ii) A 1—type is compatible with X if the infinite binary sequence which

determines it is compatible with X.

That is, f is compatible with X if f is defined arbitrarily on some initial
segment of length l, then “follows”X on length l, after that has value 0, and then
its value becomes and remains 1 forever. A 1—type belongs to SX if and only if it
is determined by an almost constant 1—sequence (that is, ∃n0∀n ≥ n0f(n) = 1).
A 2—type Γ = Γ(x, y) of T with Γ1(x) = Γ ¹ {x} and Γ2(y) = Γ ¹ {y} belongs to
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SX if and only if Γ1,Γ2 ∈ SX and the following condition is satisfied: ¬R(x, y) ∈
Γ(x, y), or neither Γ1(x) nor Γ2(y) is determined by the constant 1—sequence,
or if one of Γ1(x) and Γ2(y) is determined by the constant 1—sequence, then the
other one is compatible with X. An n—type belongs to SX if and only if each
of its 2-subtypes belongs to SX .
Lemma 10.12. There is a homogeneous model which realizes precisely the types
in SX .

Proof. The existence of such a model follows from the next two properties.
Property (1) will guarantee Henkin’s witnesses, and property (2) will guarantee
the homogeneity of the model which can be constructed by Henkin’s method.
(1) If Γ(x0, . . . , xn−1) ∈ SX and θ(x0, . . . , xn−1, x) is a formula consistent

with Γ (that is, ∃xθ(x0, . . . , xn−1, x) ∈ Γ)), then there is an (n + 1)—type
Ω(x0, . . . , xn−1, x) ∈ SX containing Γ and θ. Let us prove (1). Let the lan-
guage of θ(x0, . . . , xn−1, x) be Ls. Since Ts eliminates the quantifiers, there is
a finite diagram δ(x0, . . . , xn−1, x) of Ts such that

` δ(x0, . . . , xn−1, x)⇒ θ(x0, . . . , xn−1, x).

We can extend Γ(x0, . . . , xn−1) ∪ {δ(x0, . . . , xn−1, x)} to a type

Ω(x0, . . . , xn−1, x)

in SX . If x = xi for some i < n, then the required extension Ω is unique.
Otherwise, choose Ω in such a way that Ω(x0, . . . , xn−1, x) ¹ {x} is compatible
with X.
(2) If Γ1(x0, . . . , xn−1, xn) ∈ SX and Γ2(x0, . . . , xn−1, xn) ∈ SX and if

Γ1 ¹ {x0, . . . , xn−1} = Γ2 ¹ {x0, . . . , xn−1},
then there is an (n+ 2)—type Ω(x0, . . . , xn−1, xn, x) ∈ SX such that Ω contains
Γ1(x0, . . . , xn−1, xn) and Γ2(x0, . . . , xn−1, x). Let us prove (2). Let

Γ(x0, . . . , xn−1, xn, x) =def Γ1(x0, . . . , xn−1, xn) ∪ Γ2(x0, . . . , xn−1, x).

If for some i < n,

(xi = xn) ∈ Γ1(x0, . . . , xn−1, xn) ∪ Γ2(x0, . . . , xn−1, xn),
then the required extension Ω of Γ is uniquely determined. Otherwise, Ω will
be determined by Γ, xn 6= x, and ¬R(xn, x).

Lemma 10.13. The set SX of types is computably enumerable.

Proof. It is sufficient to prove that the set of all 2—types in SX is computably
enumerable. To prove this fact, it is enough to prove that a family T of 2—types
in SX is computably enumerable, where
T ⊇ {Γ(x, y) : R(x, y) ∈ Γ
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∧(Γ ¹ {x} is determined by the constant 1—sequence)
∧(Γ ¹ {y} is determined by a sequence compatible with X)}.
Let {Xt}t∈ω be a computable enumeration of X. For every pair (p, t) of a

finite sequence p = (p0, . . . , pl−1) and a number t, we define f, g ∈ 2ω as follows:

f(0) = p0, . . . , f(l − 1) = pl−1,

f(l) = 1 if 0 ∈ Xt, and f(l) = 0 if 0 /∈ Xt,

. . .

f(2l − 1) = 1 if l − 1 ∈ Xt, and f(2l − 1) = 0 if l − 1 /∈ Xt,

f(2l) = 0, and f(i) = 1 if i > 2l.

Clearly, f is compatible with X if no new elements among {0, . . . , l− 1} are
enumerated in X after stage t. The sequence g keeps track of that part of the
enumeration. Namely,

g(s) = 0 if (Xs −Xs−1) ∩ {0, . . . , l − 1} 6= ∅ for s > t, and

g(s) = 1 otherwise.

Notice that g is determined by an almost constant 1—sequence. Also, by the
above remark, if g is determined by the constant 1—sequence, then f is compat-
ible with X. Let Γ(p,t)(x, y) be the 2—type such that

Γ(p,t)(x, y) ⊇ {R(x, y), P f(k)
k , P

g(k)
k : k ≥ 0}.

Then T = {Γ(p,t)(x, y) : p ∈ 2<2 ∧ t ∈ ω}.

Lemma 10.14. Assume that a homogeneous model of T realizing precisely the
types in SX is computable. Then the set of types

{Γ : Γ is a 1-type of T compatible with X}

is computably enumerable.

Proof. LetM be a homogeneous model of T realizing precisely the types in SX .
Let a0 be an element of M which realizes inM the 1—type Θ of T determined
by the constant 1—sequence. For every a ∈ M , let Γa be the 1—type realized in
M by a. SinceM is computable by assumption, it is enough to prove that

{Γ : Γ is a 1-type of T compatible with X} =
{Γa : a ∈M ∧M |= R(a0,a)}.

We first assume thatM |= R(a0,a) for some a ∈ M . Since the 2—type realized
in M by (a0, a) belongs to SX , Γa is compatible with X (by the choice of a0).
We now assume that Γ is a 1—type of T compatible with X. Let a 2—type Ω(x, y)
be such that R(x, y) ∈ Ω, Ω ¹ {x} = Θ(x) and Ω ¹ {y} = Γ(y). Since Ω belongs
to SX , it is realized in M by some (b0, b). Thus, a0 and b0 realize the same
1—type in the homogeneous model M. Let f be an automorphism of M such
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that f(b0) = a0. Let f(b) = a for some a ∈ M . Since (a0, a) and (b0, b) realize
in M the same 2—types, it follows that Γ = Γa. Also, since RM(b0,b), we have
that RM(a0,a).

Lemma 10.15. LetM be a homogeneous model realizing precisely the types in
SX . IfM is computable, then X is approximable.

Proof. By Lemma 10.14, the set

{Γ : Γ is a 1—type of T compatible with X}
is computably enumerable. Therefore, we can algorithmically enumerate the
infinite binary sequences which determine the 1—types of T compatible with X.
We choose such a computable enumeration α0, α1, α2, . . . in such a way that
for every e ≥ 0, the length of agreement of αe with X is at least e. Hence
(∃i ≥ 2e)[αe(i) = 0]. We will define, by recursion, a unary computable function
g as follows.

g(0) = 0
For n > 0, g(n) is the least number such that

g(n) > g(n− 1), g(n) > 2n+ 2,

and for every e < n, there is l = le,n which satisfies the following conditions:
g(n) > 2l,
αe(2l) = 0, αe(2l + 1) = αe(2l + 2) = . . . = αe(g(n)) = 1, (∗)
{i : 0 ≤ i ≤ l − 1 ∧ αe(l + i) = 1} = {0, 1, . . . , l − 1} ∩Xg(n).
Thus, at stage n, we look at the initial segment of length g(n) of each of the

sequences α0, α1, . . . , αn−1 and, within this segment, obtain the compatibility of
the sequences with Xg(n). However, past this initial segment, it is still possible
to have value 0 in certain αe’s for e < n.
We define a function f by f(n) = |{0, 1, . . . , n − 1} ∩ Xg(n)|. Clearly, f is

computable and for every n ∈ ω, f(n) ≤ |{0, 1, . . . , n − 1} ∩ X|. Let e ∈ ω.
We define ne to be the least number such that ne > n and αe does not have
a value 0 past the initial segment of length g(ne). We will prove that f(ne) =
|{0, 1, . . . , ne − 1} ∩X|.
Since αe is compatible with X, we have the following equality for l = le,ne :

{i : 0 ≤ i ≤ l − 1 ∧ αe(l + i) = 1} = {0, 1, . . . , l − 1} ∩X.

On the other hand, by the definition of g, we have

{i : 0 ≤ i ≤ l − 1 ∧ αe(l + i) = 1} = {0, 1, . . . , l − 1} ∩Xg(ne).

Therefore, to prove that f(ne) =| {0, 1, . . . , ne − 1} ∩X |, it is enough to prove
that ne ≤ le,ne .
Assume that e = ne − 1. The required inequality follows from the length of

the compatibility of αe.

37



Now assume that e < ne − 1. By the definition of g, g(ne − 1) > 2ne. By
the definition of ne, αe must have value 0 past the initial segment of length
g(ne − 1). Hence, the desired inequality follows from the condition (∗) in the
definition of g.

In [139], Millar has given an example of a complete decidable theory with
only computable complete types and with only countably many non-isomorphic
countable models, which has an undecidable countable homogeneous model.
To state Goncharov’s and Peretyat’kin’s characterization of a decidable count-

able homogeneous model of a complete decidable theory, we introduce the fol-
lowing definition.

Definition 10.16. A computable set T of computable types of a theory T
in L has the effective extension property if the following condition is satisfied
for an effective enumeration Γ0,Γ1,Γ2, . . . of all types in T , and an effective
enumeration θ0, θ1, θ2, . . . of all formulae in L. There is a partial computable
binary function f such that for every n, i ∈ ω, if Γn = Γn(x0, . . . , xk−1) for
some k ∈ ω, and Γn is consistent with θi = θi(x0, . . . , xk−1, xk), then f(n, i) is
defined, Γf(n,i) is a (k + 1)—type and

(Γn ∪ {θi}) ⊆ Γf(n,i).

Theorem 10.17. (Goncharov [68], Peretyat’kin [167]) Let A be a countable
homogeneous model with the type spectrum T . Then A is decidable if and only
if T is a computable set of computable types and T has the effective extension
property.

As a consequence of this characterization, Goncharov-Nurtazin’s, and Har-
rington’s characterization of a decidable prime model, as well as Morley’s and
Millar’s characterization of a decidable countably saturated model can be ob-
tained. Another consequence of this characterization is the next theorem, also
obtained by Millar [147] as a consequence of a more general result.

Theorem 10.18. (Goncharov [68], Millar [147]) Let the set of all computable
types of a complete theory T be computable. If the set of all complete types
realized in a countable homogeneous model A of T is a Σ02 set of computable
types, then A is decidable.

Theorem 10.19. (Millar [143]) Assume that T is a complete decidable theory
all of whose types are computable and which has only countably many type spec-
tra. Let A be a countable homogeneous model of T . If the type spectrum of A
is Σ02, then A is almost decidable.

Algorithmic complexity of countable homogeneous models has also been
studied by Denisov [41, 42, 43]. The following result is a computable analogue
of the classical model theoretic result that every theory in a countable language
has a countable homogeneous model.

Theorem 10.20. (Denisov [43]) Every complete decidable theory has a count-
able homogeneous model which is decidable in ∅0.
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Theorem 10.21. (Tusupov [200]) Let A be a countable homogeneous model of
a decidable theory, such that the type spectrum of A is a computable family of
computable types. Then A is decidable in ∅0.
While every countable model has a countable homogeneous elementary ex-

tension, Goncharov and Drobotun [76] have constructed a computable linear
order which does not have a computable homogeneous elementary extension.
They have also constructed a decidable model which does not have a computable
homogeneous elementary extension. (Also see [163].)

11 Vaught’s Theorem Computably Visited
Theorem 11.1. (Vaught) There is no complete theory which has exactly two
non-isomorphic countable models.

Proof. By contradiction. Assume that T has exactly two non-isomorphic count-
able models. Then T must have a countable saturated model A and a prime
model C. Clearly, A and C are not isomorphic. Since A is not prime, there is
an n—tuple of elements of A which realizes a nonprincipal type of T . Without
loss of generality, assume that n = 1. Thus, there is a ∈ A which realizes a
nonprincipal type Γ(x). Let c be a new constant. Since (A, a) is a countable
saturated model of Γ(c), Γ(c) also has a prime model (B, b). However, B is
not prime because it realizes a nonprincipal type Γ(x). Hence B and C are not
isomorphic. Finally, (B, b) is not saturated because T is not ℵ0—categorical, so
T and, hence, Γ(c) satisfy (v) of Theorem 9.3, so Γ(c) is not ℵ0-categorical.
Hence B and A are not isomorphic. The existence of A, B and C contradicts
the assumption at the beginning of the proof.

Theorem 11.2. (Ehrenfeucht) For every n ≥ 3, there is a complete theory with
exactly n non-isomorphic models.

On the other hand, Millar and Kudaibergenov have constructed a complete
decidable theory with exactly two non-isomorphic decidable models. However,
the effective version of Ehrenfeucht’s result remains true [119]. To present Mil-
lar’s and Kudaibergenov’s result, we use from model theory, a characterization
of submodel complete theories from Theorem 6.8; and from computability the-
ory, the existence of two computably inseparable c.e. sets. That is, there are
c.e. sets X and Y such that

X ∩ Y = ∅ and ¬(∃R)[R is computable ∧X ⊆ R ∧R ∩ Y = ∅].

Theorem 11.3. (Millar [146], Kudaibergenov[119]) There is a complete decid-
able theory T with exactly two non-isomorphic decidable models.

Proof. We present the example from [146]. We will define a theory T such that
the following conditions are satisfied.
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(1) T has only one nonprincipal 1—type, Γ(x). Γ(x) is a computable type.
(Notice that T ⊆ Γ(x).)

(2) There is no computable 2—type Ω(x, y) of T such that

Γ(x) ∪ Γ(y) ∪ {x 6= y} ⊆ Ω(x, y).

(3) Γ(c) has a decidable prime model, where c is a new constant.

(4) If a model of T realizes a computable nonprincipal type of T , then it
realizes all computable nonprincipal types of T .

Lemma 11.4. Conditions (1)—(4) imply the theorem.

Proof. Let (B, b) be a decidable prime model of Γ(c), Γ(c) = T ∪ Γ(c), which
exists by (3). Then B is a decidable prime model of T which realizes Γ(x). Γ(x)
is a nonprincipal type, hence there is a decidable model A which omits Γ(x).
Since A is decidable, all types realized in A are computable. Since every type
realized in A is principal, A is a prime model of T . We will prove that every
decidable model of T is either isomorphic to A or to B. Let D be a decidable
model of T .

Case (a): D omits Γ(x). Since D is decidable, all types realized in D are
computable. By (4), D omits all nonprincipal types of T . Since every type
realized in D is principal, D is a prime model of T , hence D ∼= A.
Case (b): D realizes Γ(x). Let d ∈ D be such that D |= Γ(x)[d]. We claim

that (D, d) ∼= (B, b) and, hence, that D ∼= B. Assume otherwise, that is, (D, d) À
(B, b). Then (D, d) is not a prime model of Γ(c). Thus, (D, d) must realize a
nonprincipal type Ω(c, x) = Ω(c, x1, . . . , xn) of Γ(c). Hence Γ(x) ⊆ Ω(x, x), and
Ω(x, x) is a computable type. Also, Ω(x, x) is a nonprincipal type of T , hence
it is realized in B. Let b0, b01, . . . , b0n ∈ B be such that B |= Ω(x, x)[b0, b01, . . . , b0n].
It follows by (2) that Γ(x) cannot be realized in a decidable model B by two
different elements, b and b0, since the 2-type determined by (b, b0) in B would
be computable. Thus, (B, b) |= Ω(c, x)[b01, . . . , b0n]. This is a contradiction, since
(B, b) is a decidable prime model of Γ(c), and Ω(c, x) is a nonprincipal type of
Γ(c).

The language of T is L = {Pn(·), Sn(·, ·) : n ∈ ω}, where each Pn(·) is a
unary relation symbol and each Sn(·, ·) is a binary relation symbol. Let X ⊆ ω
and Y ⊆ ω be computably inseparable c.e. sets. We will encode X and Y
into 2—types of T . Let (Xt)t∈ω and (Yt)t∈ω be computable enumerations of X
and Y , respectively, such that if n ∈ Xt or n ∈ Yt, then n < t. (We have
X0 ⊆ X1 ⊆ X2 ⊆ . . . and t∈ωXt = X, and similar relations for Y .) We first
define T 0 such that T 0 ⊆ T . The axioms of T 0 are the universal closures with
respect to x and y of the following formulae. Let n, t ∈ ω.
Ax 1 Pt(x)⇒ Pt+1(x);
Ax 2 ¬Sn(x, x);
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Ax 3 Sn(x, y)⇒ Sn(y, x);
Ax 4 Pt(x)⇒ ¬St(x, y);
Ax 5 (¬Pt(x) ∧ ¬Pt(y) ∧ x 6= y)⇒ Sn(x, y) if n ∈ Xt;
Ax 6 (¬Pt(x) ∧ ¬Pt(y) ∧ x 6= y)⇒ ¬Sn(x, y) if n ∈ Yt.
Clearly, T 0 is a universal set of sentences. T 0 is obviously consistent, since a

nonempty set A with PAt = A for t ∈ ω, and SAn = ∅ for n ∈ ω is a model of
T 0. We will now extend T 0 to T in such a way that T is submodel complete,

and, therefore, admits the elimination of quantifiers. We will add a new set of
axioms. First we introduce some notation. LetM be a finite model of T 0. Let
∆Mn(a) be the conjunction of all atomic and negated atomic sentences true
in MM , in which only relation symbols P0, . . . , Pn and S0, . . . , Sn may occur.
There are only finitely many such sentences. T 0 is extended to T by adding a
new group of axioms for every n ∈ ω:
Ax 7 (∀x)(∃y)[∆Mn(x)⇒ ∆Nn(x, y)],
whereM and N are finite models of T 0 such thatM ⊆ N , allowing M = ∅.

Lemma 11.5. T is consistent.

Proof. By compactness.

Lemma 11.6. T is computably axiomatizable.

Lemma 11.7. T is submodel complete.

Proof. We will prove

(∀A,B |= T )(∀D ⊆ A,B)[A and B satisfy the same

existential sentences with parameters from D].

Let A,B |= T and D ⊆ A,B. Let δ(x, y) be a conjunction of atomic and negated
atomic formulae, and d ∈ Dh(x) such that A |= (∃y)δ(x, y)[d]. Let a ∈ Alh(y) be
such that A |= δ(x, y)[d, a]. LetM be the submodel of A whose domain consists
of the elements in d. Let N be the submodel of A whose domain consists of the
elements in d and a. Since T 0 is a universal theory, we haveM,N |= T 0. Let n
be the largest subscript of a P—predicate symbol or of an S—predicate symbol
occurring in δ(x, y). (If no P—predicate symbol and no S—predicate symbol
occurs in δ(x, y), let n = 0.) Clearly,

|= [∆Nn(x, y)⇒ δ(x, y)].

Since (∀x)(∃y)[∆Mn(x)⇒ ∆Nn(x, y)] is an axiom of T , we have that

T |= (∀x)(∃y)[∆Mn(x)⇒ δ(x, y)].

Since B |= ∆Mn(x)[d] and B |= T , we have B |= (∃y)δ(x, y)[d]. Let us now prove
that T satisfies the conditions (1)—(4).

41



(1) T has only one nonprincipal 1—type, Γ(x). Furthermore, Γ(x) is a com-
putable type. Let Γ∗(x) be a 1—type of T . Since T admits the elimination
of quantifiers and ¬Sn(x, x) is an axiom, every formula in L(T ) with one
free variable is equivalent to a quantifier-free formula whose only relation
symbols are from {Pn : n ∈ ω}. Therefore, Γ∗(x) is uniquely determined
by the set {t : Pt(x) ∈ Γ∗(x)}. Assume that this set is nonempty, and let
t0 be its smallest element. Since

Pt0(x)⇒ Pt0+1(x)⇒ Pt0+2(x)⇒ · · · ,

we have that ¬P0(x) ∧ . . . ∧ ¬Pt0−1(x) ∧ Pt0(x) is a complete formula
of Γ∗(x). Hence, Γ∗(x) is a principal type. Thus, there is exactly one
nonprincipal 1—type Γ(x), where Γ(x) contains {¬Pt(x) : t ∈ ω}. Since T
is decidable and admits the elimination of quantifiers, we can effectively
find for each formula a corresponding quantifier-free formula. Thus, Γ is
computable.

(2) There is no computable 2—type Ω(x, y) of T such that

Γ(x) ∪ Γ(y) ∪ {x 6= y} ⊆ Ω(x, y).

Assume otherwise for some Ω(x, y). Define

R = {n ∈ ω : Sn(x, y) ∈ Ω(x, y)}.

R is a computable set since Ω(x, y) is a computable type. By Ax 5 and
Ax 6, X ⊆ R and Y ∩R = ∅, contradicting the computable inseparability
of X and Y .

(3) Let c be a new constant. Then Γ(c) has a decidable prime model. To prove
(3), it is enough to prove the following lemma.

Lemma 11.8. Every computable type of Γ(c) is principal.

Let us first prove that Lemma 11.8 implies (3). Since Γ(x) is a computable
type, Γ(c) has a decidable model (B, b). Since every type realized in a decidable
model is computable, by Lemma 11.8, every type realized in (B, b) is principal.
Hence (B, b) is a prime model of Γ(c). Let us next prove Lemma 11.8.
Assume otherwise. Let Ξ = Ξ(c, x2, . . . , xn) be a computable nonprincipal

type of Γ(c). It is an (n − 1)—type for n ≥ 2. By (2), for each i ∈ {2, . . . , n},
there is the least k(i) with Pk(i)(xi) ∈ Ξ. Thus,

[
^

2≤i≤n
Pk(i)(xi)] ∈ Ξ.

Since Ξ is nonprincipal,
^

2≤i≤n
Pk(i)(xi) is not a complete formula. Hence

there are infinitely many distinct (n− 1)—types of Γ(c) which contain

{Pk(i)(xi) : 2 ≤ i ≤ n}.
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Thus, there are infinitely many distinct n—types of T which contain

{Pk(i)(xi) : 2 ≤ i ≤ n} ∪ Γ(x1).

Since T eliminates quantifiers, every formula of L(T ) in n free variables for
n ≥ 2 is uniquely determined by the 1

2n(n − 1) many 2—types it determines.
Hence infinitely many 2—types of T contain

{Pk(i)(xi), Pk(j)(xj), xi 6= xj}

for some i, j ∈ {2, . . . , n}, or infinitely many 2—types of T contain
{Pk(i)(xi)} ∪ Γ(x1) for some i ∈ {2, . . . , n}. Again, by the elimination of quan-
tifiers, each of these implies that for some k(i) and for infinitely many n, both
{Pk(i)(xi), Sn(x, y)} and {Pk(i)(xi),¬Sn(x, y)} are consistent. This contradicts
the axioms of T 0.

(4) If a model of T realizes a computable nonprincipal type of T , then it
realizes all computable nonprincipal types of T . For every nonprincipal
computable type Θ(x1, . . . , xn) of T , there is i ∈ {1, . . . , n} such that
Γ(xi) ⊆ Θ(x1, . . . , xn). Therefore, any model of T realizing a nonprincipal
computable type must realize Γ. As before, we can conclude that all
decidable models of T realizing Γ are isomorphic. Hence the statement
follows.

While the theory T constructed in the previous theorem has only two non-
isomorphic decidable models, it has 2ℵ0 non-isomorphic countable models. Mil-
lar [136] has further shown that there is a complete decidable theory with only
countably many non-isomorphic countable models, which has exactly two non-
isomorphic decidable models.

12 Decidable Ehrenfeucht Theories
Definition 12.1. An Ehrenfeucht theory is a complete theory with only finitely
many non-isomorphic countable models.

Clearly, if a complete decidable theory T is ℵ0—categorical, then T has, up
to isomorphism, only one countable model which can be chosen to be decidable.
In 1971, Baldwin and Lachlan [23] established Vaught’s conjecture that every
complete ℵ1—categorical theory has either exactly one or exactly ω many non-
isomorphic countable models. The following result is an effective version of the
Baldwin-Lachlan’s result.

Theorem 12.2. (Harrington [88], Khisamiev [100]) If a complete decidable
theory T is ℵ1—categorical, then every countable model of T is isomorphic to a
decidable model.

Proof. Every countable model of T can be viewed as a prime model of some
other ℵ1—categorical decidable theory.
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Nerode posed the following problem:
Let T be a complete decidable theory which has only finitely many non-

isomorphic countable models. Can all of these models be chosen to be decidable?
By Vaught’s theorem, T cannot have exactly two non-isomorphic countable

models. We will prove that T must have a decidable prime model. Assume
otherwise. Then T has a decidable model realizing a nonprincipal type, which
is omitted in another decidable model of T realizing another nonprincipal type,
etc. Here we use the fact that every finite set of nonprincipal types of T is
omitted in some decidable model of T . Thus, contrary to the assumption, T
has infinitely many non-isomorphic decidable models.
Morley gave an example of a theory T with exactly six non-isomorphic count-

able models, of which only the prime one can be chosen to be computable (even
decidable). Moreover, Lachlan has found a simple example of such a theory,
using the fact that there is a computable linear ordering of order type ω + ω∗

whose ω—part is not computable. Peretyat’kin [165] has generalized this result.
He has obtained for every n ≥ 3, a theory T in a finite language, with exactly n
non-isomorphic countable models, of which only the prime one can be chosen to
be computable (decidable). To construct such theories, Peretyat’kin has used
a least upper bound operator to obtain an underlying ℵ0—categorical theory
which admits the elimination of quantifiers, and in which a binary tree can be
distinguished by constants.
The countable non-isomorphic models of decidable Ehrenfeucht theories in

all mentioned examples can be chosen to be decidable in 00. The question
then arises whether all countable models of an arbitrary complete decidable
Ehrenfeucht theory can be chosen to be, for example, arithmetic. Millar has
answered this question negatively by showing that there is a complete decidable
theory with only finitely many non-isomorphic countable models, some of which
must be chosen to be of arbitrarily high hyperarithmetic degree. Moreover,
the theory in Millar’s example is persistently Ehrenfeucht (see Definition 4.2).
Persistently Ehrenfeucht theories are also called persistently finite theories and
have been introduced and first studied by Benda. It can be shown that every
persistently decidable Ehrenfeucht theory has a decidable saturated model.

Definition 12.3. Let X ⊆ ω. We say that a model A is decidable exactly in X
if A is decidable in X and for every Y ⊆ ω, if A is decidable in Y then X ≤T Y .

Theorem 12.4. (Millar [138]) Let Hn be a hyperarithmetic set, where n ∈ ω.
Then there is a complete decidable persistently Ehrenfeucht theory T with an
undecidable countable model, such that for every undecidable countable model A
of T , A is decidable exactly in Hn.

For every Hn, the corresponding theory in the previous theorem has eighteen
countable non-isomorphic models, exactly three of which are decidable. To
define such a theory, Millar has used the existence of a computable subtree of
ω<ω having exactly one infinite branch f , where f ≡T Hn (see [98], page 456).
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In Morley’s, Lachlan’s and Peretyat’kin’s counterexamples to Nerode’s ques-
tion, the theories have non-computable types. Therefore Morley raised the fol-
lowing question:
Let T be a complete decidable theory with all types computable, which has

only finitely many non-isomorphic countable models. Can all of these models be
chosen to be decidable?
Assume that one of the finitely many non-isomorphic models of T must be

undecidable. Clearly, T is not ℵ0—categorical. The fact that T has a finite
number of non-isomorphic decidable models has several implications. As shown
before, T has a decidable prime model. The set of all types of T is computably
enumerable, because every computable type of T is realized in some decidable
model of T . Since the set of all types of T is computably enumerable, T has a de-
cidable saturated model. We can mimic Vaught’s construction to obtain a third
non-isomorphic decidable model. Therefore, if the answer to Morley’s ques-
tion is negative, then a counterexample must have at least four non-isomorphic
countable models. Indeed, Goncharov has recently announced a negative answer
to Morley’s question.

Theorem 12.5. (Goncharov [75]) There is a decidable Ehrenfeucht theory with
all types computable, whose non-isomorphic countable models cannot be chosen
to be all decidable.

Millar asked the following question:
If T is an arithmetic Ehrenfeucht theory whose types are all arithmetic, are

all countable models of T arithmetic?
Ash and Millar have proven that if the answer to this question is negative,

then a counterexample must have at least five non-isomorphic countable models.
Ash and Millar have also proven that the answer to this question is positive
when every type of T is realized in only finitely many non-isomorphic countable
models.

Theorem 12.6. (Ash-Millar [20]) If T is a complete, arithmetic, persistently
Ehrenfeucht theory with a countable non-arithmetic model, then T has at least
five non-isomorphic countable models.

Theorem 12.7. (Ash-Millar [20]) If T is a complete, persistently Ehrenfeucht
theory with only arithmetic complete types, then all countable models of T are
arithmetic.

Theorem 12.8. (Millar [140]) If T is a decidable Ehrenfeucht theory with a
countable model which is not decidable in ∅00, then T has at least five non-
isomorphic countable models.

Theorem 12.9. (Reed [179, 180]) LetHn be a hyperarithmetic set, where n ∈ ω.
Then there is a decidable persistently Ehrenfeucht theory T with exactly five non-
isomorphic countable models:
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Theorem 12.10. (i) A decidable prime model;
(ii) A decidable non-homogeneous model which is the reduct of the prime

model of Γ(c), where c is a new constant and Γ(x) is a computable nonprincipal
type of T ;
(iii) A decidable homogeneous model which realizes all computable types of

T ;
(iv) A non-homogeneous model decidable exactly in Hn, which is the reduct

of the prime model of Ω(d), where d is a new constant and Ω(x) is the only
non-computable 1—type of T ;
(v) A saturated model decidable exactly in Hn.

Thus, the theory in the previous theorem has, up to isomorphism, three
decidable models and two models which are decidable exactly in Hn. It follows
from Theorem 12.8 that this is an example of a decidable Ehrenfeucht theory
with the least possible number of non-isomorphic countable models which are
not all decidable in ∅00. It is not known whether a decidable Ehrenfeucht theory
whose undecidable countable models are decidable exactly in ∅00 can have fewer
than five countable models.
Closely related to the notion of an ℵ0—homogeneous model is the notion of

an almost homogeneous model.

Definition 12.11. A model is almost homogeneous if some finite expansion of
the model by constants is ℵ0—homogeneous.
It is not known whether there is an Ehrenfeucht theory with a model which

is not almost homogeneous. Millar [140] has shown that if T is a persistently
Ehrenfeucht, persistently decidable theory whose every model is almost homo-
geneous, then every countable model of T is isomorphic to a decidable model.

13 Decidable Theories with CountablyMany Count-
able Models

Millar has constructed a complete decidable theory with exactly two non-isomorphic
decidable models and only countably many non-isomorphic countable models.
To present Millar’s construction, we use from: computable model theory, a char-
acterization of a universal theory with a complete decidable model completion,
as stated in Theorem 6.9; and from computability theory, the existence of a
certain computable binary tree, as will be established by Theorem 13.3.

Definition 13.1. For a tree T , an infinite branch f of T is called a limit branch
if for every initial segment α of f , there is a node β ∈ T such that α is an initial
segment of β, and β is not an initial segment of f .

For finite or infinite binary sequences f and g, we write f <L g if there is a
(finite) binary sequence α such that αˆ0 is an initial segment of f and αˆ1 is
an initial segment of g.
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Theorem 13.2.

Theorem 13.3. (Millar [136]) There is a computable binary tree T whose leaves
form a computable set L, and a unary computable function h such that the
following conditions are satisfied.
(i) ∀α ∈ T [α /∈ L⇒ αb1 ∈ T ]
(ii) There is exactly one limit branch of T , which we denote by f . Moreover,

f is not computable.
(iii) If g is an infinite branch of T different from f , then all but finitely

many values of g are 1, and f <L g.
(iv) If β ∈ L and γ ∈ T are such that γ <L β, then h(γ) < lh(β).
(v) There is at most one element of a given length in L. If α0, α1, α2, . . . is

an enumeration of L in the order of the increasing length of nodes, then for all
i, j ∈ ω, h(i) = lh(αi) and (i < j ⇒ αi <L αj).

Theorem 13.4. (Millar [136]) There is a complete decidable theory T with
exactly two non-isomorphic decidable models, which has only countably many
non-isomorphic countable models.

Proof. We will define a complete decidable theory T such that the following
conditions are satisfied.
(1) T has a nonprincipal computable 1—type, Γ(x).
(2) Every countable model of T is homogeneous.
(3) There is a sequence (Γn)n∈ω of types of T such that:
(3.1) Γ0 = Γ;
(3.2) Γ1 is non-computable;
(3.3) If i < j, then every model which realizes Γj also realizes Γi;
(3.4) For every n ∈ ω, there is a countable model which realizes Γn and

omits Γn+1;
(3.5) The type spectrum of a countable model A of T is exactly the set of

all types in {Γn : n ∈ ω} which A realizes.

Lemma 13.5. Conditions (1)—(3) imply the Theorem.

Proof. Since Γ is a computable type, T has a decidable modelA which realizes Γ.
Since the computable type Γ is nonprincipal, T has a decidable model B which
omits Γ. Clearly, A and B are non-isomorphic. Let D be a decidable model of
T . D must omit Γ1, because Γ1 is not computable. Hence, by (3.3), D omits
every Γk for k ≥ 1. Thus, since all countable models of T are homogeneous, if D
realizes Γ, D is isomorphic to A, and if D omits Γ, D is isomorphic to B. Hence,
T has exactly two decidable non-isomorphic models. For every n ∈ ω, let An

be a countable model of T which realizes Γn and omits Γn+1. Hence, by (3.3),
An realizes every Γk for k ≤ n, and omits every Γk for k > n. Hence, by (3.5),
{Γk : k ≤ n} is the type spectrum of An. Thus, since all countable models are
homogeneous, T has exactly countably many countable models. The language
of T is L = {Pn(·), Sn(·, ·) : n ∈ ω}, where for n ∈ ω, Pn(·) is a unary relation
symbol and Sn(·, ·) is a binary relation symbol. Let a computable binary tree T
whose leaves form a computable set L, and a unary function h be as in Theorem
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13.3. We first define T 0 such that T 0 ⊆ T . The axioms of T 0 are the universal
closures of the following formulae:
Ax 1 Pt(x)⇒ Pt+1(x) for t ∈ ω;
Ax 2 ¬Sn(x, x) for n ∈ ω;
Ax 3 Sn(x, y)⇒ Sn(y, x) for n ∈ ω;
Ax 4 Pt(x)⇒ ¬Sn(x, y) for n ≥ h(t);

Ax 5 [¬ Pt(x) ∧ ¬Pt(y) ∧ x 6= y] =⇒ ¬
^

i<lh(α)

Si(x, y)
α(i)

for α /∈ T such that lh(α) = h(t+ 1);

Ax 6
^

i<lh(α)
Si(x, y)

α(i) =⇒ ¬Sn(x, y)
for α /∈ T − L such that lh(α) ≤ n;

Ax 7
^

i<lh(α)
Si(x, y)

α(i) =⇒ [Pt(x) ⇔ Pt(y)]

for α ∈ T − L such that lh(α) ≤ h(t);

Ax 8
^

i<lh(α)
Si(x, y)

α(i) =⇒ [ Pt(x) ∨Pt(y)]
for α ∈ L such that lh(α) = h(t);

Ax 9 [
^

i<lh(α)

Si(x, y)
α(i) ∧

^
i<lh(β)

Si(y, z)
β(i) ∧ x 6= y]

=⇒
^

i<lh(α)

Si(x, z)
α(i) for α, β ∈ 2<ω such that α <L β.

Now it can be shown that Theorem 6.9 applies to T 0. T will be a complete
decidable model completion of T 0.

Let T be a complete decidable theory with all complete types computable.
It is known that there is such a theory which has, up to isomorphism, 2ℵ0

countable models. Hence it has undecidable models. Millar (see Theorem 7.5)
has shown that if T does not have a decidable model whose finite expansion by
constants is prime, then T must have, up to isomorphism, 2ℵ0 countable models.
The question then arises whether there is a T with only countably many non-
isomorphic countable models and with an undecidable countable model. First
we introduce the following

Definition 13.6. Let Γ and Ω be types of T . The type ordering is defined by

Γ ≤ Ω⇐⇒ (∀A |= T )[A realizes Γ⇒ A realizes Ω].

Theorem 13.7. (Millar [139]) There is a complete decidable theory T with
all complete types computable, and with only countably many non-isomorphic
countable models such that its countable saturated model is undecidable.

The theory T is the model completion of a universal theory T 0, obtained
using Theorem 6.9. The ordering of all nonprincipal 1-types of T is linear with
order type ω∗. The set of all complete types of T is not Σ02. Every decidable
model of T omits a type of T , and, therefore, every countable saturated model
of T is undecidable.
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Theorem 13.8. (Millar [141]) There is a complete decidable theory T with
all complete types computable, and with only countably many non-isomorphic
countable models, such that T has a decidable saturated model and a countable
undecidable homogeneous model.

The theory T is the model completion of a universal theory T 0, obtained using
Theorem 6.9. The set of all complete types of T is computably enumerable. This
guarantees the existence of a decidable saturated model. The set of all types
realized by a countable undecidable homogeneous model is not Σ02. However,
both the set of all 1-types realized and the set of all 1—types omitted by a
countable undecidable homogeneous model are linearly ordered by the type
ordering relation, with order type ω∗.

14 Indiscernibles and Decidability
The notion of order indiscernibles, introduced by Ehrenfeucht and Mostowski,
plays an important role in generating models with certain properties.
Let T be a fixed complete theory in L and let U be an ℵ1—saturated model

of T . Since all countable models of T are elementarily embeddable in U , we
can assume that all countable models considered in this section are elementary
submodels of U .
Definition 14.1. Let D ⊆ U .
(i) A set of formulae Γ = Γ(x0, . . . , xn−1) is a type over D if there are

a0, . . . , an−1 ∈ U such that for every formula θ(x0, . . . , xn−1) in LD we have
θ(x0, . . . , xn−1) ∈ Γ⇐⇒ UD |= θ(x0, . . . , xn−1)[a0, . . . , an−1].
(ii) Let B ⊆ U , where B = {b0, b1, b2, . . .} is a fixed enumeration of B. A set

Γ of formulae with free variables among x0, x1, x2, . . . is the ω—type of B over
D (with respect to the enumeration of B) if for every n ∈ ω, for every finite
sequence (k0, . . . , kn−1) of natural numbers and every formula θ in LD in n free
variables, we have

θ(xk0 , . . . , xkn−1) ∈ Γ⇐⇒ UD |= θ(xk0 , . . . , xkn−1)[bk0 , . . . , bkn−1 ].

Definition 14.2. Let D ⊆ U and I ⊆ U , where I = {i0, i1, i2, . . .} is a fixed
enumeration of I.
(i) I is a set of (order) indiscernibles over D if for every n ∈ ω and every

increasing n—tuple k0 < . . . < kn−1 of natural numbers:
(i0, . . . , in−1) and (ik0 , . . . , ikn−1) satisfy the same formulae in LD.
(ii) I is a set of total indiscernibles over D if for every n ∈ ω and every

n—tuple (k0, . . . , kn−1) of distinct natural numbers:
(i0, . . . , in−1) and (ik0 , . . . , ikn−1) satisfy the same formulae in LD.
(iii) The indiscernibles over ∅ are simply called the indiscernibles.

Proposition 14.3. Every theory with an infinite model has a model A with an
infinite set I of indiscernibles such that I ⊆ A.
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Kierstead and Remmel [108] have studied computable analogues of the pre-
vious proposition. They have shown that the problem of determining whether a
decidable model of T has an infinite set of indiscernibles is a Σ11 question. They
have investigated decidable theories which have decidable models with infinite
computable sets of indiscernibles, as well as the possible Turing degrees of the
sets of indiscernibles in decidable models.
Let us recall that an ω—branching tree is a tree whose nodes belong to ω<ω.

Kierstead and Remmel [108] have shown that the problem of finding an infinite
set of indiscernibles in an infinite decidable model of T is, in some sense, equiv-
alent to the problem of finding an infinite branch in a computable ω—branching
tree. More precisely, a decidable model A of T is equivalent to an ω—branching
tree T if there are oracle algorithms φ( )e1 and φ( )e2 , such that the following is
true:
(i) For every infinite set I of indiscernibles in A, φ(I)e1 outputs an infinite

branch fI of T ;
(ii) For every infinite branch f of T , φ(f)e2 outputs an infinite set If of indis-

cernibles in A;
(iii) For every infinite branch f of T , fIf = f .
Kierstead and Remmel have proven that for every decidable model of a

complete theory, there exists an equivalent computable ω—branching tree; and
for every computable ω—branching tree T , there exists a complete decidable
theory whose every decidable model is equivalent to T .
Definition 14.4. Let A be a countable model of T , and let D ⊆ U be such
that A ⊆ D. Let Γ = Γ(x0, . . . , xn−1) be a type of T over D.
(i) Γ is definable over A if for every k ∈ ω, for every formula

θ(x0, . . . , xn−1, y0, . . . , yk−1)

in LA there exists a formula δθ = δθ(y0, . . . , yk−1) in LA such that for every
d0, . . . , dk−1 ∈ D

θ(x0, . . . , xn−1,d0, . . . ,dk−1) ∈ Γ

⇐⇒ U |= δθ(y0, . . . , yk−1)[d0, . . . , dk−1].

We call the set

{δθ(y0, . . . , yk−1) : θ(x0, . . . , xn−1, y0, . . . , yk−1) is a formula in LA}

a definition of Γ over A.
(ii) Γ is computably definable over A if there is an algorithm which assigns

to every formula θ(x0, . . . , xn−1, y) in LA a formula δθ(y) such that {δθ(y) :
θ(x0, . . . , xn−1, y) is a formula in LA} is a definition of Γ over A.
To prove that certain theories have decidable models with infinite com-

putable sets of indiscernibles, we use from model theory, a result in stability
theory which establishes that the range of a sequence whose every member re-
alizes a certain type, forms an infinite set of indiscernibles.
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This result is stated in part (ii) of the following theorem, and it uses the
basic fact about the unique definable extensions, stated in part (i) of the same
theorem.

Theorem 14.5. (i) Let A be a countable model of T , and let B and D be subsets
of U such that A ⊆ B ⊆ D. Let Γ(x) be a type of T over B which is definable
over A. There is a unique type over D, denoted by ΓD(x), which is definable
over A, such that Γ(x) ⊆ ΓD(x).
(ii) Let A be a countable model of T such that there is a type Γ(x) which

is definable over A and not realized in A. Let (b0, b1, b2, . . .) be a sequence
of elements in U such that for every n ∈ ω, bn realizes ΓAn(x), where An =
A ∪ {bk : k < n}. Then {b0, b1, b2, . . .} is an infinite set of indiscernibles over
A.

Proof. Let {δθ(y) : θ(x, y) is a formula in LA} be a definition of Γ(x) over A.
Define ΓD(x) to be the following set of formulae in LA.

{θ(x,d0, . . . ,dk−1) : (k ∈ ω) ∧ (d0, . . . , dk−1 ∈ D)

∧ (U |= δθ(y0, . . . , yk−1)[d0, . . . , dk−1])}.
Since B ⊆ D, we have that Γ(x) ⊆ ΓD(x). ΓD(x) is a consistent set of formulae
by compactness. ΓD(x) is complete because U |= (¬δθ ⇔ δ¬θ). The uniqueness
of ΓD(x) follows from the definition of a type over a model.
Notice that, by (i), if i, j ∈ ω are such that i < j, then the restriction of the

type ΓAj (x) to Ai is the type ΓAi(x). Let {δθ(y) : θ(x, y) is a formula in LA} be
a definition of Γ(x) over A. To show that {b0, b1, b2, . . .} is a set of indiscernibles
over A, it is enough to show that for every two increasing sequences f, g ∈ 2ω,
for every n ≥ 1, and every formula θ in LA in n free variables

U |= θ[bf(0), . . . , bf(n−1)] ⇐⇒ U |= θ[bg(0), . . . , bg(n−1)]. (∗)
Let such f and g be given, and fix n. Assume that f(n) < g(n). Let {γθ(y) :
θ(x, y) is a formula in LA} be a definition of ΓAg(n) over A. Then for a formula
θ in LA in (n+ 1) free variables, we have

U |= θ[bf(0), . . . , bf(n−1), bg(n)] ⇐⇒ U |= γθ[bf(0), . . . , bf(n−1)]

⇐⇒ θ(bf(0), . . . ,bf(n−1), x) ∈ ΓAg(n)(x)
⇐⇒ θ(bf(0), . . . ,bf(n−1), x) ∈ ΓAf(n)(x)
⇐⇒ U |= θ[bf(0), . . . , bf(n−1), bf(n)].

Now the equivalence in (∗) follows inductively. To prove that {b0, b1, b2, . . .}
is an infinite set, consider the formula θ(x, y) = ¬(x = y). To prove that
A |= ∀yδθ(y), we assume otherwise. Hence

A |= ¬δθ(y)[a] for some a ∈ A =⇒ U |= ¬δθ(y)[a]
=⇒ (x = a) ∈ Γ(x)
=⇒ a realizes Γ(x) in U
=⇒ a realizes Γ(x) in A.
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However, the last statement contradicts the assumption of the theorem. Hence
A |= ∀yδθ(y) and, thus, U |= ∀yδθ(y). Let i, j ∈ ω be such that i < j. Then
A |= δθ(y)[bi] and ¬(x = bi) ∈ ΓAj (x). Since bj realizes ΓAj (x), we have that
bi 6= bj .

Theorem 14.6. (Kierstead-Remmel [107]) Let A be a decidable model of T such
that there is a computably definable type Γ(x) over A, which is not realized in A.
Then T has a decidable model with an infinite computable set of indiscernibles.

Proof. Let {δθ(y) : θ(x, y) is a formula in LA} be a definition of Γ(x) overA such
that there is an algorithm which to every formula θ(x, y) in LA assigns δθ(y).
Let L0 be LA ∪ {c0, c1, c2, . . .}, where c0, c1, c2, . . . is a computable enumeration
of new constants. We inductively define the following sets of sentences in L0

T0 = the theory of AA in LA;

Tn+1 = Tn ∪ {θ(cn, cn−1, . . . , c0) : (θ(xn, xn−1, . . . , x0) is in LA)

∧ δθ(cn−1, . . . , c0) ∈ Tn} for n ≥ 0.

Let T 0 =def

[
n∈ω

Tn. T 0 is a consistent complete theory in L0. T 0 is decidable

because A is decidable and the considered definition of Γ(x) is algorithmic. By
the Effective Completeness Theorem, there is a decidable model B of T 0. As
mentioned before, we assume that B ¹ U . Let I =def {b0, b1, b2, . . .}, where for
every i ∈ ω, bi is the interpretation in B of the constant ci. Since B satisfies T0,
we can assume that A ¹ B. Clearly, I is a computable set. We use Theorem
14.5 (ii) to show that I is an infinite set of indiscernibles. Let A0 = A, and
An+1 = A ∪ {b0, . . . , bn}. We show that

ΓAn(x) = {θ(x, cn−1, . . . , c0) : (θ(xn, xn−1, . . . , x0) is in LA)

∧ δθ(cn−1, . . . , c0) ∈ Tn}.

Thus, bn realizes ΓAn(x).

Examples of theories to which Theorem 14.6 applies are the theory of dense
linear order without endpoints, and the theory of real closed fields.

Theorem 14.7. (Kierstead-Remmel [107]) Let Q be a generalized quantifier
whose interpretation is “there are infinitely many”. Assume that T is a stable
theory which also satisfies the following decidability condition (D).
There is an effective procedure which decides for every formula in L of the

form φ(x, y0, . . . , yk−1), whether

T ∪ {(∃y0) . . . (∃yk−1)(Qx)φ(x, y0, . . . , yk−1)}

has a model.
Then T has a decidable model with an infinite computable set of total indis-

cernibles.
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Proof. Such a theory T has a decidable model A and a type Γ over A, such that
Γ is computably definable over A, and not realized in A. Also, since T is stable,
every set of order indiscernibles is a set of total indiscernibles.

The strong decidability condition (D) in the previous theorem cannot be
replaced by the usual decidability condition. Also, the stability condition cannot
be omitted from the assumption of the theorem, as shown by the following
counterexample.

Proposition 14.8. (Kierstead-Remmel [107]) There is a complete theory T sat-
isfying the decidability condition (D) such that T has infinitely many decidable
models, none of which has an infinite computable set of indiscernibles, although
each of them has an infinite set of indiscernibles.

It is well known from the classical model theory that every ℵ0—stable theory
is stable in all infinite powers. It is easy to show that there is an ℵ0—stable
decidable theory which does not satisfy the decidability condition in Theorem
14.7.

Proposition 14.9. (Kierstead-Remmel [107]) If T is an ℵ0—stable and decidable
theory, then T has a decidable model with an infinite computable set of total
indiscernibles.

Kierstead and Remmel have shown that ℵ0—stability in the previous theorem
can be replaced neither by stability nor even by superstability.

Proposition 14.10. (Kierstead-Remmel [107]) There is a complete decidable
superstable theory which has an infinite decidable model, but it does not have a
decidable model with an infinite computable set of indiscernibles.

The following result illustrates an application of Theorem 14.9.

Proposition 14.11. (Kierstead-Remmel [107]) If T is ℵ0—stable and decidable,
then T has models of arbitrarily large cardinality, which realize only computable
types.

Proof. By Theorem 14.9, T has a decidable modelA with an infinite computable
set of indiscernibles I. Let κ be an arbitrary infinite cardinal. There are a model
B of T , and a subset J of B of cardinality κ such that J is the set of indiscernibles
satisfying the same ω—type of T as I. Since T is ℵ0—stable, by a result from
model theory, there is a prime model C over J . Clearly, A and C realize the same
types. Since A is decidable, the types that they realize are computable.

Theorem 14.12. (Kierstead-Remmel [108]) If A is a decidable model with an
infinite set of indiscernibles, then A has an infinite set I of indiscernibles such
that the hyperdegree of I is strictly less than the hyperdegree of Kleene’s O.
Kierstead and Remmel have also investigated the degrees of sets of indis-

cernibles in decidable models of ℵ0—categorical theories.
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Definition 14.13. A decidable theory T has decidable atoms if there is an
effective procedure which decides whether a given formula is an atom in the
Lindenbaum algebra of formulae with the corresponding free variables.

Kierstead and Remmel [108] have shown that the problem of finding an
infinite set of indiscernibles in an infinite decidable model of an ℵ0—categorical
theory with decidable atoms is, in some sense, equivalent to the problem of
finding an infinite branch in an infinite computable tree. In particular, for
every infinite computable binary tree T , there is a decidable model A of an ℵ0—
categorical decidable theory with decidable atoms, such that there is an effective
one-to-one correspondence between the infinite branches of T and the ω—types
of infinite sets of indiscernibles in A.
Thus, the set of Turing degrees realized by the sets of ω—types of infinite sets

of order indiscernibles in a decidable model of an ℵ0—categorical theory coincides
with the set of degrees realized by recursively bounded Π01 classes. Thus, the
following result follows from Jockusch-Soare’s work [95] on Turing degrees of Π01
classes.

Theorem 14.14. (Kierstead-Remmel [108]) Let A be a decidable model of an
ℵ0—categorical theory with decidable atoms. A has an infinite set of indis-
cernibles of low Turing degree, and A has an infinite set of indiscernibles of
a c.e. degree. If A does not have an infinite computable set of indiscernibles,
then there are continuum many ω—types of infinite sets of indiscernibles, which
have mutually incomparable Turing degrees.

There are decidable models of T with infinite sets of indiscernibles which
have no hyperarithmetic infinite sets of indiscernibles. However, it is not true if
T is ℵ0—categorical.
Theorem 14.15. (Kierstead-Remmel [108]) If A is a decidable model of an
ℵ0—categorical complete theory, then A has an infinite set I of indiscernibles
such that deg(I) ≤ 00.

15 Degrees of Models
Clearly, a computably axiomatizable complete theory is computably enumer-
able. Kleene [109] and Hasenjaeger [89] have independently shown that if T is a
computably axiomatizable theory, then T has a countable model whose domain
is a set of natural numbers, such that every relation and function of the model
is ∆02. On the other hand, there is a computably axiomatizable theory which
does not have a model in which every relation and function is c.e. or co-c.e.
Unless otherwise stated, we consider only models whose domain is ω. (For

such a model A, a set of formulae in LA can be thought of as a set of natural
numbers.) This allows us to define the (Turing) degree of A, denoted by deg(A),
as the Turing degree of the atomic diagram ∆A of A. Thus, A is computable if
and only if deg(A) = 0.
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It is easy to see that the theory of a model A is computable in the complete
diagram of A, and that the complete diagram of A is computable in (∆A)(ω).
Henkin’s construction of a model of a complete theory T produces a model B
whose atomic diagram and complete diagram are both computable in T (see
Theorem 5.1). Hence T and the complete diagram of B have the same Turing
degree. The atomic diagram of a model of T may be of much lower Turing degree
than T . For example, true arithmetic is the theory of the standard model of
natural numbers, and its Turing degree is 0(ω).
Shoenfield has used the following lemma from computability theory to im-

prove Hasenjaeger’s and Kleene’s result.

Lemma 15.1. (Kreisel’s Basis Lemma) An infinite computable binary tree has
a ∆02 infinite branch.

Shoenfield has first strengthened Kreisel’s Basis Lemma by proving that an
infinite computable binary tree has an infinite branch of Turing degree < 00.

Theorem 15.2. (Shoenfield [194]) If T is a computably axiomatizable theory,
then T has a countable model whose degree is < 00.

Proof. Extend T to a complete theory S in the same language such that the
Turing degree of S is < 00. This can be done using Shoenfield’s strengthening
of Kreisel’s Basis Lemma.

Jockusch and Soare [94] have generalized Kreisel-Shoenfield Basis Theorem.

Theorem 15.3. (Low Basis Theorem) An infinite computable binary tree has
an infinite branch of low Turing degree.

The Low Basis Theorem implies that every computably axiomatizable theory
has a model of low Turing degree.
Knight [112] has shown that for a model A, either there is a finite set S ⊆ A

such that all bijections of A that fix S are automorphisms of A; or for every Tur-
ing degree d ≥deg(A), there is a model B isomorphic toA such that deg(A) = d.
Wehner [212] and Slaman [195] have independently found a countable model A
such that the Turing degrees of models isomorphic to A are exactly the non-
computable degrees.
Since the degree of a model is not invariant under isomorphisms, Jockusch

has introduced the following complexity measure of the isomorphism type of a
model. The isomorphism type of a model A is the set of all models isomorphic
to A.
Definition 15.4. (Richter [187]) The degree of the isomorphism class of A, if
it exists, is the least Turing degree in {deg(B) : B ∼= A}.
The following theorem establishes that the degree of the isomorphism class

of a model satisfying certain general computable condition cannot be different
from 0.
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Theorem 15.5. (Richter [186]) Assume that a model A satisfies the following
computable embeddability condition.
For every finite model C isomorphic to a submodel of A and every embedding

f of C into A, there is an algorithm which determines whether a given finite
model D extending C can be embedded into A by an embedding extending f .
Then if the degree of the isomorphism class of A exists, it must be 0.

Proof. If A is a computable model, then the statement follows immediately. As-
sume that A is not computable. We will prove that there is model B isomorphic
to A such that deg(A) and deg(B) form a minimal pair. Hence 0 will be the only
possible degree of the isomorphism class of A. A model B and an isomorphism
h from B onto A will be constructed in stages by finite extension. Let L be the
language of A.
Construction
Stage 0: Let B0 = ∅ and h0 = ∅.
Stage s = 2e+1: First assume that there is a finite model C for L extending

Bs and an embedding g of C into A extending hs, such that for some n ∈ ω,
both {e}C(n) and {e}A(n) are defined and

{e}C(n) 6= {e}A(n).

In this case, for some such C and g, let Bs+1 =def C and hs+1 =def g. Otherwise,
let Bs+1 =def Bs and hs+1 =def hs.
Stage s = 2e + 2: If e ∈ A − rng(hs), let hs+1 =def hs ∪ {(u, e)}, where

u ∈ ω is the least number such that u /∈ dom(hs). Otherwise, let hs+1 =def hs.
In both cases, extend Bs to Bs+1 such that hs+1 is an embedding of Bs+1 into
A. End of the construction. Let B =def

[
s∈ω

Bs and h =def

[
s∈ω

hs. Clearly, h is

an isomorphism from B to A. Now, let us prove that deg(A) and deg(B) form
a minimal pair. Since A is not computable, by Posner’s Lemma, it is enough to
prove that for every e ∈ ω:

{e}A = {e}B = f total =⇒ f is computable.

Thus, assume {e}A = {e}B = f , where f is total. By construction, there is a
stage s such that for every finite extension C of Bs which can be embedded into
A, and every n ∈ ω such that {e}C(n) is defined, we have {e}C(n) = {e}A(n).
Hence f(n) = {e}A(n). By the computable embeddability condition, f must be
computable.

The previous theorem can be applied to show that the isomorphism class of
a countable tree which is not isomorphic to a computable tree, does not have
a degree. Hence, the isomorphism class of a countable linear ordering which is
not isomorphic to a computable linear ordering does not have a degree.

Theorem 15.6. (Richter [186]) Let S be a theory in a finite language L such
that there is a computable sequence A0,A1,A2, . . . of finite models for L which
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are pairwise non-embeddable. Assume that for every X ⊆ ω, there is a countable
model AX of S which is computable in X and

(∀i)[Ai is embeddable in AX ⇔ i ∈ X].

Then for every Turing degree d, there is a countable model of S whose isomor-
phism class has degree d.

Proof. Let d be a Turing degree and D ⊆ ω be such that deg(D) = d. Let
X =def D ⊕ D. We will show that AX is a countable model of S whose
isomorphism class has degree d. Clearly,

AD⊕D ≤T D ⊕D ≤T D,

so deg(AX) ≤ d. Let B be a model isomorphic to AX . It is enough to prove
that deg(B) ≥ d. This follows from the fact that

(i ∈ D ⇔ A2i is embeddable in B)∧
(i /∈ D ⇔ A2i+1 is embeddable in B).

The previous theorem can be used to show that for every Turing degree d,
there is a countable abelian group whose isomorphism class has degree d. A
corresponding sequence of finite models consists of cyclic groups of every prime
order, and the abelian group assigned to an arbitrary set of natural numbers is
obtained by forming countable direct sums.
Theorem 15.3 implies that there is a nonstandard model of Peano arithmetic

of low degree. McAloon has asked whether there is a nonstandard model A of
Peano arithmetic such that the theory of A is not arithmetic and the degree of
A is arithmetic. Harrington has given the answer by establishing the following
result.

Theorem 15.7. (Harrington) There is a nonstandard model A of Peano arith-
metic such that the theory of A has degree 0(ω) and the degree of A is ≤ 00.
The construction uses Harrington’s worker method with infinitely many

workers. The n—th worker produces the Σn—part of the complete diagram of
the model, using ∅(n) as an oracle. To assure coherence, every n—th worker
constantly guesses what the (n + 1)—st worker has done. In [113], Knight has
improved Harrington’s result by showing that there is a nonstandard model A
of Peano arithmetic such that the theory of A has degree 0(ω), and the degree
of A is low. This result follows from a general theorem of Knight [113] for
which she has used Harrington’s worker method with infinitely many workers to
produce a model of a theory T , which realizes a certain set of types of bounded
complexity.
Feferman [59] has stated that every arithmetic set is computable in the

degree of every nonstandard model of true arithmetic. In fact, his proof yields
a stronger result. First we need the following definition.
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Definition 15.8. A Turing degree d is a subuniform upper bound for the arith-
metic sets if there is X ⊆ ω such that deg(X) ≤ d and

(∀n)(∃i)[X [i] = ∅(n)].

Theorem 15.9. (Feferman [59]) If A is a nonstandard model of true arithmetic
of degree d, then d is a subuniform upper bound for the arithmetic sets.

As Marker has pointed out, certain results on the degrees of nonstandard
models of true arithmetic are analogous to the results on the degrees of non-
standard models of Peano arithmetic. From the fact that the degree of true
arithmetic is 0(ω), it follows that there is a nonstandard model of true arith-
metic of degree ≤ 0(ω). Knight has shown that there is such a model of degree
< 0(ω). Marker has used a modification of Harrington’s worker method with
three workers to obtain the following result.

Theorem 15.10. (Marker [128]) Let d be a Turing degree such that for every
n ≥ 0, d > 0(n). Then there is a nonstandard model A of true arithmetic such
that deg(A) ≤ d0.
It follows from the previous theorem that there is a nonstandard model of

true arithmetic whose degree d is such that d0 = 0(ω). Marker has also shown
that for a nonstandard model A of Peano arithmetic, the set of degrees of all
models isomorphic to A is closed upward. In particular, the set of degrees of all
nonstandard models of true arithmetic is closed upward.

Knight, Lachlan and Soare [110] have strengthened Theorem 15.10 by show-
ing that, given d as in Theorem 15.10, there is a nonstandard model A of true
arithmetic such that (deg(A))0 ≤ d0. As a consequence of their result, they have
obtained

Corollary 15.11. (Knight-Lachlan-Soare [110]) There is a nonstandard model
of true arithmetic of degree d such that d00 = 0(ω).

Proof. By a result of Sacks, there is a Turing degree d such that d00 = 0(ω), and
for every n ∈ ω, d > 0(n). Fix such d. Let A be a nonstandard model of true
arithmetic such that (deg(A))0 ≤ d0. Hence (deg(A))00 ≤ 0(ω).

Knight attempted to answer Jockusch’s question about a characterization of
the degrees of nonstandard models of true arithmetic, by conjecturing that if a
degree d is such that (∀n ≥ 1)[d > 0(n)], then d is the degree of a model of true
arithmetic. This conjecture is refuted by the following theorem.

Theorem 15.12. (Knight-Lachlan-Soare [110]) There is a Turing degree d
which is not a subuniform upper bound for the arithmetic sets, such that (∀n ≥
1)[d > 0(n)]. In addition, d00 = 0(ω).
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If d is as in Theorem 15.12, then, by Theorem 15.9, d is not the degree of a
model of true arithmetic.
In the 1984 Logic Colloquium material, Solovay gave a characterization of

the degrees of nonstandard model of true arithmetic. Solovay’s characterization
is in terms of the effective enumerations of families of the so-called Scott sets.
Let α0, α1, α2, . . . be a computable enumeration without repetition of all

nodes in 2<ω.

Definition 15.13. A set S ⊆ P (ω) is called a Scott set if it satisfies the
following conditions for all X,Y ⊆ ω :
(1) (X ∈ S ∧ Y ≤T X)⇒ Y ∈ S;
(2) (X ∈ S ∧ Y ∈ S)⇒ X ⊕ Y ∈ S;
(3) [X ∈ S ∧ (T = {αn : n ∈ X} is an infinite tree)]

=⇒ (∃Z ∈ S)[{αn : n ∈ Z} is an infinite branch of T ].
For n ∈ ω, let θn(x) be a formula in the language of Peano arithmetic which

expresses that “x is divisible by the n—th prime number”. If A is a nonstandard
model of Peano arithmetic, then

{{n : A |= θn(x)[a]} | a ∈ A}

is a Scott set. It is called the Scott set of A and is denoted by Scott(A).
Definition 15.14. Let T be a complete extension of Peano arithmetic and let
X ⊆ ω. X is representable with respect to T if for some formula θ(x) of L(T )
and every n ∈ ω:

[T ` θ(n)]⇔ n ∈ X.

Scott [192] has proven that the family of all Scott sets coincides with the
family of sets which are representable with respect to some complete extension
of Peano arithmetic.
An enumeration of a countable family S ⊆ P(ω) is a binary relation ν such

that S = {ν0, ν1, ν2, . . .}, where for every i ∈ ω, νi =def {n : (i, n) ∈ ν}. By
“effectivizing” conditions (1) − (3) in Definition 15.13, we obtain the notion of
an effective enumeration of a Scott set.

Definition 15.15. Let S be a countable Scott set. An enumeration ν of S is an
effective enumeration if there are computable functions f(·, ·), g(·, ·) and h(·, ·)
such that the following conditions are satisfied for all i,j ∈ ω:
(1) (νi = X ∧ Y = {e}X)⇒ Y = νf(i,e);
(2) νi ⊕ νj = νg(i,j);
(3) [νi = X ∧ (T = {αn : n ∈ X} is an infinite tree) ∧ νh(i) = Y ]

=⇒ [{αn : n ∈ Y } is an infinite branch of T ].
Theorem 15.16. (Solovay) Let d be a Turing degree.
(i) d is the degree of a nonstandard model of true arithmetic ⇔ d is the

degree of an effective enumeration of a
countable Scott set which contains all arithmetic sets.
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(ii) Let S be a countable Scott set. d is the degree of a nonstandard model
of true
arithmetic with the Scott set S ⇔ d is the degree of an effective enumeration of
S.
In the following theorem, Knight has established a general sufficient condi-

tion for a Turing degree to be the degree of a model representing a given Scott
set. We will use the following notation in the theorem. For a theory T and
n ∈ ω, we define Tn to be the set of Gődel numbers of all Σn sentences in T .

Theorem 15.17. (Knight [115]) Let ν be an effective enumeration of a (cou-
ntable) Scott set S, and let T be a complete theory such that for every n ∈ ω,
Tn ∈ S. Assume that there is an algorithm which on every input n ∈ ω, using
the n—th jump of ν, outputs i ∈ ω such that νi = Tn+1. Then there is a model A
of T which represents S, such that the atomic diagram of A is Turing reducible
to ν.

This theorem gives Theorem 15.16 as a corollary. Another corollary is the
following strengthening of Theorem 15.7.

Theorem 15.18. (Knight [115]) Let ν be an effective enumeration of a (cou-
ntable) Scott set S. Let d be the Turing degree of ν. There is a nonstandard
model A of Peano arithmetic with the Scott set S such that the theory of A has
degree ≥ d(ω) and the degree of A is ≤ d.
Since many models do not have the degree of their isomorphism class, Jockusch

has introduced another measure of model complexity which is invariant under
isomorphisms. This measure uses jumps of the degrees of models.

Definition 15.19. Let α be a computable ordinal. The α—th jump degree of a
model A is, if it exists, the least Turing degree among {deg(B)(α) : B ∼= A}.
Obviously, the notion of the 0—th jump degree of A coincides with the notion

of the degree of the isomorphism class of A. While Richter [186] has shown that
the only possible 0—th jump degree of a linear ordering is 0, Knight [112]
has shown that the only possible first jump degree of a linear ordering is 00.
No nonstandard model of Peano arithmetic has 0—th jump degree. There is
a nonstandard model of Peano arithmetic with a 1—st jump degree. We have
the following general results for jump degrees of linear orderings and Boolean
algebras.

Theorem 15.20. (Knight [112], Ash-Knight [10], Jockusch-Soare [96], Ash-
Jockusch-Knight [9], Downey-Knight [46]) Let α ≥ 1 be a computable ordinal
and let d be a Turing degree such that d ≥ 0(α). Then there is a linear ordering
A whose α—th jump degree is d and such that A does not have β—th jump degree
for any β < α.

Theorem 15.21. (Jockusch-Soare [97])
(i) Let d be a Turing degree such that d ≥ 0(ω). Then there is a Boolean

algebra A whose ω—th jump degree is d.
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(ii) Let n ∈ ω, and d be a Turing degree such that d > 0(n). Then there is
no Boolean algebra A whose n—th jump degree is d.

Result (i) of Theorem 15.21 is a straightforward application of a method by
Feiner, see [97].

16 Automorphisms and Computable Models
One of the important and interesting questions in computable model theory is
how a specific aspect of a computable model may change if the model is iso-
morphically transformed so that it remains computable. A model B isomorphic
to a computable model A is not necessarily computable. However, even if B is
computable, it can still lose many of the computable properties of A.
A computable property of a computable model A which Ash and Nerode

have considered is an additional computable relation R on the domain of A
(that is, R is not named in the language of A). For example, Ash and Nerode
have studied conditions under which the image of R under any isomorphism from
A to another computable model is necessarily a computable or a c.e. relation.

Definition 16.1. Let R be an additional relation on the domain of a com-
putable model A.
(i) (Ash-Nerode [21]) R is intrinsically c.e. on A if the image of R under

every isomorphism from A to a computable model is c.e.
(ii) Let P be a certain class of relations. R is called intrinsically P on A if

the image of R under every isomorphism from A to a computable model belongs
to P.
For example, Moses [156] has established that relations which are intrinsi-

cally computable on a computable linear order A are precisely those that are
equivalent in A to quantifier-free formulae with finitely many parameters. Let
A be a computable Boolean algebra and let R be a computable subalgebra of
A. Odintsov [162] has established that R is intrinsically c.e. if and only if R
is generated by a finite set of elements and a finite set of principal ideals of A.
This characterization implies that if R is intrinsically c.e. then R is intrinsically
computable. However, it is easy to see that there are intrinsically c.e. relations
which are not intrinsically computable.

Ash and Nerode have introduced a computable syntactic condition for a
new relation on the domain of a computable model, to be called a formally c.e.
relation.

Definition 16.2. (i)An Lω1ω formula with free variables among x is a (computable)
Σ1 formula if it is equivalent to a formula of the form_

n∈ω
∃ynθn(x, yn),

where (θn(x, yn))n∈ω is a (computable) sequence of quantifier-free formulae.
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(ii) (Ash-Nerode [21]) Let R be an additional m—ary computable relation on
the domain of a computable model A. R is formally c.e. on A if and only if
there is a finite sequence (b0, . . . , bk−1) of elements in A and a computable Σ1
formula F (x0, . . . , xm−1, b0, . . . , bk−1) such that the following equivalence holds
for every a0, . . . , am−1 ∈ A:

R(a0, . . . , am−1)⇔ AA |= F(a0, . . . , am−1,b0, . . . ,bk−1).

R is formally computable on A if both R and its complement are formally c.e.
on A.
That is, R is formally c.e. on A if and only if R is equivalent to an infinite

disjunction of a computable sequence of existential formulae with finitely many
fixed parameters from A. A formally c.e. relation is also called a formally Σ1
relation.
Clearly, every formally c.e. relation on a computable model is intrinsically

c.e. Ash and Nerode have proven, under a certain decidability condition (D),
the converse, thus establishing the equivalence of a syntactic and a semantic
condition. For an m—ary relation R on a model A, the condition (D) is:
There is an algorithm which determines for k ∈ ω, for an existential formula

ψ(x0, . . . , xm−1, y0, . . . , yk−1) and a sequence (b0, . . . , bk−1) of elements of A,
whether the following implication holds for every a0, . . . , am−1 ∈ A:

[AA |= ψ(a0, . . . ,am−1,b0, . . . ,bk−1)] =⇒ R(a0, . . . , am−1).

Condition (D) implies that R is a computable relation. It also implies that
A is 1—computable, which is a property of a model defined as follows.

Definition 16.3. A model A is 1—computable if there is an algorithm which
determines for every existential formula ψ(x0, . . . , xn−1) and every sequence
(a0, . . . , an−1) of elements of A, whether ψ(a0, . . . , an−1) is true in AA.

Let P be a class of formulae. Define the P—diagram of a model A for
language L to be the set of all P—sentences in LA which are true in AA. Thus, a
model is 1—computable if its existential diagram is computable or, equivalently,
its universal diagram is computable.

Theorem 16.4. (Ash-Nerode [21]) Let R be an additional m—ary relation on
the domain of a model A, satisfying the decidability condition (D). Then

R is intrinsically c.e. on A⇔ R is formally c.e. on A.

Proof. (⇐) Always true for a relationR on the domain of any computable model.
(⇒) Without loss of generality, let R be a unary relation. Assume that R is
not formally c.e. We assume that ω is the domain of all considered computable
models. We will construct a computable model B and an isomorphism f : B →
A such that f−1(R) is not c.e. Let s be an arbitrary stage of the construction.
We will define a finite set Ψs of formulae of the open diagram of B, and a finite
partial isomorphism fs from B to A. By a finite partial isomorphism from B
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to A at stage s, we understand an injective function g with a finite domain
such that for every θ ∈ Ψs, if θ = θ(b0, . . . ,bn−1) for some b0, . . . , bn−1 ∈ ω,
then g(b0) ↓, . . . , g(bn−1) ↓ and A |= θ[g(b0), . . . , g(bn−1)]. Define Ψ−1 = ∅ and
f−1 = ∅. Let Xs = f−1s (R) for s ∈ ω. At the end of the construction, we
will have that f = lims fs exists. Let X =def f−1(R) and Ψ = s≥−1Ψ

s. The
construction will ensure that X is not c.e. Let (θe)e∈ω be an effective list of

all atomic and negated atomic formulae in the language of A, augmented with
the constants for the elements of ω. The construction will meet the following
requirements for every e ≥ 0,

P 0e : θe ∈ Ψ or ¬θe ∈ Ψ;
P 1e : e ∈ dom(f);
P 2e : e ∈ rng(f);
Qe : X 6=We.

The strategy for meeting a single requirement Qe is to wait for a stage s such
that for some b ∈ ω, b ∈ We,s. Define fs(b) such that fs(b) /∈ R. Hence
b /∈ Xs. Now, let nse =def b. Let n−1e be undefined for every e ∈ ω.
We say that at stage s,

P 0e requires attention if θe /∈ Ψs−1, ¬θe /∈ Ψs−1 and all elements of ω occur-
ring in θe are in the domain of fs−1;

P 1e (P
2
e ) requires attention if e /∈ dom(fs−1) (e /∈ rng(fs−1));

Qe requires attention if ns−1e is undefined;
P 1e (P

2
e ) is injured if fs(e) 6= fs−1(e) (f−1s (e) 6= f−1s−1(e));

Qe is injured if ns−1e is defined and fs(n
s−1
e ) 6= fs−1(n

s−1
e ).

Construction
Stage s: For a requirement Req, we have the following clauses in the defini-

tion of Req is attacked at stage s.
Req = P 0e Let θe = θe(b0, . . . ,bn−1) for some b0, . . . , bn−1 ∈ ω.

Define Ψs = Ψs−1 ∪ {θke}, where k ∈ {0, 1} is such that

A |= θke [fs−1(b0), . . . , fs−1(bn−1)].

Let fs =def fs−1.
Req = P 1e Define Ψ

s = Ψs−1, and fs = fs−1 ∪ {(e, a)}, where a ∈ ω is the
least new element at stage s.

Req = P 2e Define Ψ
s = Ψs−1, and fs = fs−1 ∪ {(b, e)}, where b ∈ ω is the

least new element at stage s.
Req = Qe Let Ψs =def Ψ

s−1. There exists b ∈We,s and a partial isomorph-
ism from B to A at stage s which maps b into an element from (ω−R). Choose
the least such b, and then define fs to be the least corresponding partial isomor-
phism (in some effective ordering of all finite functions on ω). Hence b /∈ Xs.
Define nse = b.

Attack the highest priority requirement Req which requires attention at stage
s, and which can be attacked without injuring any requirement of a higher pri-
ority. Whether this can be done for a Q—requirement can be checked effectively
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because the decidability condition (D) holds. If some lower priority requirement
Qi is injured at s, then nsi becomes undefined. End of the construction. It is

not difficult to show that each requirement is attacked and injured only finitely
often, and that all P—requirements are met. Thus, we have a computable model
B and an isomorphism f .

Lemma 16.5. Every Q—requirement is satisfied.

Proof. Assume otherwise. For example, let Qe be the requirement of the highest
priority which is not satisfied. Then X = We. Let s0 be a stage by which all
requirements of higher priority than Qe have been attacked for the last time,
and at which the sequences of numbers coming from the higher priority re-
quirements have reached their final values, d and f(d). Let b0, b1, b2, . . . be a
computable enumeration ofWe. Consider an arbitrary bk. Find the least corre-
sponding stage s. Let ψ

k
(x,d) be the corresponding existential formula. That

is, ψ
k
(x,d) = (∃y)δ(x,d, y), where δ(bk,d,d

0
) is the conjunction of all formulae

of Ψs−1, and lh(y) = lh(d
0
). Clearly, B |= ψ

k
[bk, d], so A |= ψ

k
[f(bk), f(d)].

Let f(d) = (a0, . . . , an−1). Since Qe is not attacked at s, we have for every
a ∈ A

[AA |= ψ
k
(a,a0, . . . , an−1)] =⇒ R(a).

Conversely, for every a ∈ R, there is k ∈ ω such that a = f(bk). Thus, the
following equivalence holds for every a ∈ A

[AA |=
_
k∈ω

ψk(a,a0, . . . ,an−1)] ⇐⇒ R(a).

This is a contradiction since R is not formally c.e. on A.

As an immediate consequence, we have that if both R and its complement
satisfy the decidability condition (D), then

R is intrinsically computable on A ⇐⇒ R is formally computable on A.

The decidability condition (D) cannot be omitted from the previous theo-
rem. Goncharov [70] and Manasse [127] have shown that there are computable
models with intrinsically c.e. relations which are not formally c.e. Chisholm [33]
has established the best possible result on the definability of intrinsically c.e.
relations on 1—computable models.

Definition 16.6. Let F be an Lω1ω formula with free variables among x. F is
a (computable) Σ2 formula if it is equivalent to a formula of the form_

n∈ω
∃yn

_
m∈ω
∀zmnθmn(x, yn, zmn)
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and F is a (computable) Π2 formula if it is equivalent to a formula of the form_
n∈ω
∀yn

_
m∈ω
∃zmnθmn(x, yn, zmn),

where (θmn(x, yn, zmn))n,m∈ω is a (computable) sequence of quantifier-free for-
mulae.

This definition has been extended by Ash [2] to all (computable) Σα and Πα
formulae, where α is a computable ordinal.

Definition 16.7. Let R be an additional m—ary computable relation on the
domain of a computable model A. R is formally Σ02 (Π

0
2, respectively) on A

if and only if there is a finite sequence (b0, . . . , bk−1) of elements in A and
a computable Σ2 (Π2, respectively) formula F (x0, . . . , xm−1, b0, . . . , bk−1) such
that the following equivalence holds for every a0, . . . , am−1 ∈ A.

[AA |= F(a0, . . . , am−1,b0, . . . ,bk−1)] ⇐⇒ R(a0, . . . , am−1).

R is formally ∆2 on A if R is both formally Σ02 and formally Π
0
2 on A.

Theorem 16.8. (Chisholm [33])
(i) Let R be an additional relation on the domain of the 1—computable model

A. Then

R is intrinsically c.e. on A =⇒ R is formally Π02 on A.

(ii) There is a decidable model A and an additional relation R on its domain,
such that R is intrinsically c.e. and not formally Σ02 on A. Moreover, R is not
definable by any Σ2 formula.

Barker [24] has extended Theorem 16.4 to Σ02 relations. He has proved that
if certain extra decidability conditions are satisfied, then R is intrinsically Σ02 if
and only if R is formally Σ02. Barker [25] has further proved an analogous result
for all Σ0α relations, where α is a computable ordinal.
Let A be a computable model. Davey [40] has considered two additional,

disjoint, computable relations, R1 and R2, on the domain A. He has studied
conditions under which there is a computable model B isomorphic to A such
that the corresponding isomorphic images of R1 and R2 are ∆0α—inseparable.
For example, let R1 and R2 be infinite, disjoint, computable subsets of ω such
that R1 ∪ R2 is coinfinite. Then, there is a computable model isomorphic to
(ω,<) such that the images of R1 and R2 are computably inseparable.
While all the previous results address only levels of the arithmetic or hy-

perarithmetic hierarchy, Harizanov has also considered Turing degrees of the
images of a computable relation on the domain of a computable model A, un-
der all isomorphisms from A to computable models.

Definition 16.9. (Harizanov [83]) Let R be an additional relation on the do-
main of a computable model A. The (Turing) degree spectrum of R on A,

65



in symbols DgA(R), is the set of Turing degrees of the images of R under all
isomorphisms from A to computable models.
For a computable model B isomorphic to A, the (Turing) degree spectrum

of R on A with respect to B , in symbols DgA,B(R), is the set of Turing degrees
of the images of R under all isomorphisms from A to B.
Harizanov has studied various aspects of degree spectra, such as: the struc-

ture of uncountable degree spectra, the effect of decidability condition (D) on
the cardinality of a degree spectrum, realizing c.e. degrees in a degree spec-
trum via c.e. and, in general, via ∆02 isomorphic images of R, and finite degree
spectra.
To state results about uncountable degree spectra we assume, without loss

of generality, that R is unary. Let B be a computable model isomorphic to A.
By I(A,B) we denote the set of all isomorphisms from A to B. We say that
a partial function p from A to B is a finite isomorphism from A to B if p is
one-to-one, dom(p) is finite and for every atomic formula α = α(x0, . . . , xn−1)
in L(A), and every a0, . . . , an−1 ∈ dom(p), we have

A |= α[a0, . . . , an−1] ⇐⇒ B |= α[p(a0), . . . , p(an−1)].

By Ifin(A,B) we denote the set of all finite isomorphisms from A to B. We
define the R—equivalence relation ∼R on Ifin(A,B) as follows:

q ∼R r ⇐⇒ (∀b ∈ ran(q) ∩ ran(r))[q−1(b) ∈ R⇔ r−1(b) ∈ R].

Theorem 16.10. (Harizanov [85])
(i) The following are equivalent:
(0) DgA(R) is uncountable.
(1) DgA,B(R) is uncountable.
(2) DgA,B(R) has cardinality 2ω.
(3) There is a nonempty set S ⊆ Ifin(A,B) such that the following two

conditions are satisfied:

(A) (∀p ∈ S)(∀a ∈ A)(∀b ∈ B)(∃q ∈ S)

[(q ⊇ p) ∧ (a ∈ dom(q)) ∧ (b ∈ rng(q))];

(B) (∀p ∈ S)(∃q, r ∈ S)[(q ⊇ p) ∧ (r ⊇ p) ∧ ¬(q ∼R r)].

(ii) Let S be as in (i)(3). Then for every set C ≥T S, there is an isomorphism
f fromA toB such that

C ≡T f(R)⊕ S ≡T f ⊕ S.

In particular, if S is computable, then DgA,B(R) = D and, moreover, for every
set C ⊆ ω, there is an isomorphism f from A to B such that

C ≡T f(R) ≡T f.
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Theorem 16.11. (Harizanov [87]; Ash, Cholak and Knight [6]) The following
are equivalent:
(1) DgA,B(R) = D and, moreover, for every set C ⊆ ω, there is an isomor-

phism f from A to B such that C ≡T f(R) ≡T f .
(2) There is e ∈ ω and p ∈ 2<ω such that the set

Se,p =def {φqe : q ∈ 2<ω ∧ q ⊇ p}

has the following properties:

Se,p ⊆ Ifin(A,B),
Condition (3)(A) from Theorem 16.10 is satisfied for S = Se,p, and

(∃i ∈ ω)(∀q ⊇ p)(∀a ∈ dom(q))[φ
φqe(R)
i (a) ↓= q(a)].

(3) There is a nonempty computable set S ⊆ Ifin(A,B) such that the conditions
(A) and (B) from Theorem 16.10 are satisfied.

In the proof of ¬(2) ⇒ ¬(1) for Theorem 16.11 in [87], the construction of
C can be done computably in ∅00. Hence C ∈ ∆03. Thus, if not every Turing
degree is obtained in a degree spectrum DgA,B(R) via an isomorphism of the
same Turing degree, then there is such a ∆03 degree. This conclusion also follows
from the proof in [6] since there is a generic ∆03 set.
In [84], the priority method has been used to establish how the Ash-Nerode

decidability condition affects the cardinality of the degree spectrum.

Theorem 16.12. (Harizanov [84])
(i) If the Ash-Nerode decidability condition (D) holds for a non-intrinsically

c.e. relation R on a model A, then the degree spectrum of R on A is infinite.
(ii) There is a computable non-intrinsically c.e. relation R on a computable

model A such that the degree spectrum of R on A has exactly two degrees.

Also, in [84] some new computable syntactic conditions have been intro-
duced, which have allowed the use of the permitting method to obtain every
c.e. degree in the degree spectrum. Ash, Cholak and Knight [6] have general-
ized this result to include in the degree spectrum all α—c.e. degrees in Ershov’s
hierarchy of ∆02 degrees, see [52, 53, 54]. For a computable ordinal α, a Turing
degree is α—c.e. if it contains an α—c.e. set. A set C ⊆ ω is α—c.e. if there exists a
computable function f : ω2 → {0, 1} and a computable function o : ω2 → α+ 1
with the following properties:
(∀x)[ lim

s→∞
f(x, s) = C(x) ∧ f(x, 0) = 0],

(∀x)(∀s)[o(x, s+ 1) ≤ o(x, s) ∧ o(x, 0) = α], and
(∀x)(∀s)[f(x, s+ 1) 6= f(x, s)⇒ o(x, s+ 1) < o(x, s)].
In particular, 1—c.e. sets are c.e. sets, and 2—c.e. sets are d—c.e. sets. For other

characterizations of α—c.e. sets, also see [51, 16]. In [16], Ash and Knight have
studied intrinsically α—c.e. relations. For other generalizations of a syntactic
condition in [84], see [15, 17].
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In [86], Goncharov’s infinite injury method has been modified to construct a
computable non-intrinsically c.e. relation with a two-element degree spectrum
whose nonzero degree is ≤ 00. First, a family S of c.e. sets and a computable set
P , which have certain required properties, have been constructed. A function ν
from ω onto S is called a computable enumeration of S if there is a uniformly
computable sequence {νt}t∈ω of functions from ω to the set of finite subsets of
ω such that for every n ∈ ω, ν(n) = ∪{νt(n) : t ∈ ω}. The family S constructed
has two injective computable enumerations, ν and µ, such that every other injec-
tive computable enumeration λ of S is computably equivalent to ν or µ. Here,
λ is computably equivalent to ν if the function f : ω → ω such that ν = λf
is recursive. The set Y defined by Y = {n ∈ ω : (∃m ∈ P )[ν(m) = µ(n)]}
is a non-c.e. ∆02 set. The enumeration ν has then been encoded into a rigid
computable model A. The category of injective computable enumerations of
S, whose morphisms are equivalences (computable equivalencies, respectively)
of the enumerations, is equivalent to the category of computable models iso-
morphic to A whose morphisms are isomorphisms (computable isomorphisms,
respectively) of the models. The set R which encodes P in A is computable and
its degree spectrum on A has the required property.
The ideas described in the previous paragraph have originated in Gon-

charov’s work [69, 70] on the dimension of a computable model (see Theorem
16.15). Similar ideas have also been used by Ventsov [206, 207, 209], as well as
by Cholak, Goncharov, Khoussainov and Shore [36].

Definition 16.13. Let P be a certain class of functions. A computable model
A is P—categorical if for every computable model B isomorphic to A, there exists
an isomorphism from A to B, which belongs to P .
An example of a computably categorical model is the ordered set of ratio-

nals. In general, a computable linear ordering is computably categorical if and
only it has only finitely many elements with an immediate successor [77, 183].
A computable Boolean algebra is computably categorical if and only if it has
finitely many atoms ([182], also see Theorem 1 in [77]). For more examples of
computably categorical models see [39].
Ash [4] has established for every ordinal α < ωCK1 , under certain extra de-

cidability assumptions, a necessary and sufficient condition for a computable
model A to be ∆0α—categorical, termed A has a Σ0α Scott family. (The extra de-
cidability assumptions are needed only for establishing the necessary condition.)
For α = 1, this result has been first obtained by Goncharov [65].

Definition 16.14. A computable model A has a Σ01 Scott family if there is
a finite sequence (b0, . . . , bk−1) of elements in A and a computable sequence
(Fn(x0, . . . , xm−1, b0, . . . , bk−1)) n∈ω of existential formulae satisfiable in AA

such that the following two conditions hold.
(1) For every a0, . . . , am−1 ∈ A, there is n ∈ ω such that

AA |= Fn(a0, . . . , am−1,b0, . . . ,bk−1).
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(2) For every n ∈ ω and every two sequences (a0, . . . , am−1) ∈ Am and
(d0, . . . , dm−1) ∈ Am,

if AA |= Fn(a0, . . . , am−1,b0, . . . ,bk−1)

and AA |= Fn(d0, . . . ,dm−1,b0, . . . ,bk−1),

then (A, a0, . . . , am−1) ∼= (A, d0, . . . , dm−1).

Khoussainov and Shore [102] and Kudinov [120] have shown that there is
a computably categorical model A without a Σ01 Scott family. Moreover, they
proved that there is such a model with the additional property that every ex-
pansion by finitely many constants is computably categorical.
The notion of a dimension of a computable model originates in Mal’cev’s

work on computable algebras in early 1960’s. We say that two computable
models A and B have the same computable isomorphism type if there is a
computable isomorphism from A to B. The dimension of a computable model
A is the number of computable isomorphism types of computable models which
are isomorphic to A. Clearly, the dimension of a computable model is ≤ ω, and
a computable model is computably categorical if its dimension is 1. It has been
shown that for many classes of computable models, the dimension of the models
is either 1 or ω, see [65, 67, 74, 77, 78, 208, 210].

Theorem 16.15. (Goncharov [70, 71]) For every natural number n ≥ 2, there
is a rigid computable partial ordering with dimension n.

In the following theorem, Millar, extending an earlier result of Goncharov,
has proved that a small amount of decidability for a computably categorical
model is sufficient to preserve computable categoricity under expansions by
finitely many constants.

Theorem 16.16. (Millar [148]) Let A be a 1—computable and computably cat-
egorical model. For every finite sequence of elements a0, . . . , an−1 from A, the
model (A, a0, . . . , an−1) is computably categorical.
The question then remains whether the condition of 1—computability in the

previous theorem can be removed. Cholak, Goncharov, Khoussainov and Shore
have answered negatively by establishing the following stronger result.

Theorem 16.17. (Cholak-Goncharov-Khoussainov-Shore [36]) Let n ∈ ω.
There exists a computably categorical model A such that for every element
a ∈ A, the expanded structure (A, a) has dimension n.

It is not known whether the previous result holds for n = ω.
Khoussainov [105] has also studied a generalization of the notion of a dimen-

sion of a computable model by allowing homomorphic images. Other types of
algorithmic dimensions of computable models, such as program dimension and
uniform dimension, have also been studied [104, 106].
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In [160], Nurtazin gave several characterizations of a decidable model A
which is computably isomorphic to every other isomorphic decidable model.
One of the characterizations is that there is an expansion (A, a0, . . . , an−1) of
A (by finitely many constants) such that the set of atoms of the Lindenbaum
algebra of Th(A, a0, . . . , an−1) is computable and (A, a0, . . . , an−1) is the prime
model of Th(A, a0, . . . , an−1).
Ash and Nerode [21] and Goncharov [65] have also studied the class of the

so-called computably stable models.

Definition 16.18. (i) A computable model A is computably stable if every
isomorphism from A to a computable model is computable.
(ii) Let P be a certain class of functions. A computable model A is P—stable

if every isomorphism from A to a computable model belongs to P .

Thus, computably stable is the same as ∆01—stable. It is easy to see that
A is computably stable if and only if all computable relations on the domain
A are intrinsically computable. Ash and Nerode, and Goncharov have given a
computable syntactic condition forA which is equivalent to A being computably
stable, under the assumption that A is 1—computable.

Theorem 16.19. (Ash-Nerode [21], Goncharov [65]) Let A be a 1—computable
model. Then A is computably stable if and only if there is a sequence of elements
a0 , . . . , am−1 from A and a computable sequence ψ0 , ψ1 , ψ2 , . . . of existential
formulae in free variables x , x0 , . . . , xm−1 such that the sets

{a ∈ A : AA |= ψn(a,a0, . . . , am−1)}

form a family of singletons whose union is A.

Ash [3] has generalized this result to ∆0n—stable models for every n > 1. He
has established a syntactic condition, termedA has a formally ∆0n—enumeration,
which is, under certain additional decidability conditions, equivalent to A be-
ing ∆0n—stable. Ash [2] has also established a similar result for all hyperarith-
metic degrees. For example, for every computable ordinal α, no infinite reduced
abelian p—group is ∆0α—stable, as shown by Barker [26].
Ash and Goncharov [8] have also introduced and studied the notions of strong

∆02—stability and strong ∆
0
2—categoricity.

Definition 16.20. (Ash-Knight [10]) Let (A,B) be a pair of computable models
(c.e. models, respectively), and let X ⊆ ω. We say that (A,B) codes X via a
computable sequence (Dn)n∈ω of computable models (c.e. models, respectively)
if the following isomorphism condition is satisfied:

[Dn
∼= A if n ∈ X] and [Dn

∼= B if n /∈ X].

For example, if X is a Π03 set, then there is a computable sequence (Dn)n∈ω
of computable linear orders such that Dn is isomorphic to ω+ω∗ if n ∈ X, and
Dn is isomorphic to ω+1+ω∗ if n /∈ X. Ash and Knight [10] have obtained some
general computable syntactic conditions on computable models A and B and a
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computable ordinal α, so that (A,B) codes every Π0α set X via a computable
sequence of computable models. A necessary condition is that all computable
infinitary Σα sentences true in A are also true in B. Ash and Knight have shown
that if certain “useful relations” which give information about A and B are c.e.,
then this necessary condition is also sufficient. For every computable ordinal
α, Knight [116, 117] has also established a different set of sufficient conditions
for a pair (A,B) of computable models to code every Π0α set via a computable
sequence of computable models. Here, not all “useful” relations have to be c.e.,
but A and B must be “more alike.”
Ash [5] has also established, under certain assumptions, a necessary and

sufficient condition on c.e. models A and B and a computable ordinal α, which
allows (A,B) to code every Π0α set X via a computable sequence of c.e. models.
The method used is an extension of Ash’s method of the so-called α—systems,
introduced in [2]. For further extensions of this method see [13, 14].
Ash, Knight, Manasse and Slaman [1], and Chisholm [35, 34] have also con-

sidered a different approach to studying the effectiveness of model theory. While
Ash, Knight, Manasse and Slaman call this approach relatively computable model
theory, Chisholm calls it effective model theory. The basic idea is to allow, in-
stead of computable models, arbitrary models, and to require all notions to be
relativized to the complexity of the corresponding models. One of the advan-
tages of this approach is the elimination of certain “pathological” situations.
For example, the notion of intrinsically c.e. is replaced by the following notion
of relatively c.e.

Definition 16.21. Let R be an additional relation on the domain of a com-
putable model A. R is called relatively c.e. on A if the image of R under every
isomorphism from A to any model B is c.e. in the atomic diagram of B.
Now a forcing method has been used to obtain the following analogue of

Theorem 16.4, thus establishing the equivalence of a semantic and a syntactic
notion, without an extra decidability condition. (See a related paper [12], which
involves a new classification of computable infinitary formulae.)

Theorem 16.22. (Ash-Knight-Manasse-Slaman [1], Chisholm [34]) Let R be
an additional relation on the domain of a computable model A. Then

R is relatively c.e. on A⇐⇒ R is formally c.e. on A.

Using forcing, a similar result has been obtained for the new notion of relative
categoricity. This line of investigation has been continued by Soskov [197, 198]
to intrinsically Π11 relations and to hyperarithmetic relations.
Let A be a computable model and let σ(R) be a computable sentence true in

an expansion of A by a computable relation R. Ash, Knight and Slaman [11, 19]
have investigated the conditions under which there is a computable model B
isomorphic to A such that no relation on B satisfies σ(R) and is computable
relative to B.
Vlach [211] has studied the degrees of algebraically independent sets on com-

putable models. Hird [91] and Ash, Knight and Remmel [18] have investigated
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the existence and the degrees of the so-called quasi-simple relations on com-
putable models.
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