
System Design Methodology and Tools

Daniel Gajski
Junyu Peng

Andreas Gerstlauer
Haobo Yu

Dongwan Shin

Technical Report CECS-03-02
January 12, 2003

Center for Embedded Computer Systems
University of California, Irvine, CA 92697, USA

{gajski, pengj, gersrtl, haoboy, dongwans}@cecs.uci.edu
http://www.cecs.uci.edu

2

3

Table of Contents

Chapter 1. System level design flow 5
Chapter 2. System level modeling 35
Chapter 3. Design of a GSM Vocoder 53
Chapter 4. System level refinement 61
Chapter 5. Design of a JPEG encoder 87
Chapter 6. Design of a JBIG encoder 95
References 111

4

5

Chapter 1

System Level Design Flow

System Level Design Flow
What is needed and what is not

Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
http://www.cecs.uci.edu/~gajski

Copyright © 2002 Daniel D. Gajski

6

System Level Design Flow
What is needed and what is not

Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
http://www.cecs.uci.edu/~gajski

Copyright © 2002 Daniel D. Gajski

With complexities of Systems-on-Chip rising almost daily, the design community has
been searching for new methodology that can handle given complexities with increased
productivity and decreased times-to-market. The obvious solution that comes to mind is
increasing levels of abstraction, or in other words, increasing the size of the basic
building blocks. However, it is not clear what these basic blocks should be beyond the
obvious processors and memories. Furthermore, if a design consists of SW and HW the
modeling language should be based on C since standard processors come only with C
compilers. Unfortunately, C language was developed for describing software and not
hardware. It is missing basic constructs for expressing hardware concurrency and
communication among components. Therefore, we need a language that can be compiled
with standard compilers and that is capable of modeling hardware and software on
different levels of abstraction including cycle-level accuracy.

7

Outline

• System gap
• Semantics, styles and refinements
• RTL Semantics
• System-Level Semantics
• Where are we going?
• Conclusion

Copyright © 2002 Daniel D. Gajski

In order to find the solution for system-level design flow, we will look first at the system
gap between SW and HW designs and then try to bridge this gap by looking at different
levels of abstraction, define different models on each level and propose model
refinements that will bring the specification to a cycle-accurate implementation. We will
exemplify this by looking at the RTL and SL abstraction levels. From this point of view
we will try to analyze the basic approaches in the academia and the industry today, and
try to find out where we, as a design community, are going. We will finish with a
prediction and a roadmap to achieve the ultimate goal of increasing productivity by more
then 1000X and reducing expertise level needed for design of complex systems to the
basic principles of design science only.

8

Past Design Flow

Simulate

Capture
& Simulate

Physical

Logic

Specs

Design

Manufacturing

Algorithms

System Gap

1960’s

Copyright © 2002 Daniel D. Gajski

Design methodology has been changing with increase in complexity. We can distinguish
three different phases over the last 40 years:
(a) Capture-and-Simulate Methodology (approximately from 1960s to 1980s)
In this methodology software and hardware design was separated by a system gap. SW
designers tested some algorithms and possibly wrote the requirements document and
initial specification. This specification was given to HW designers who read it and started
system design with a block diagram. They did not know whether their design would
satisfy the specification until the gate level design was produced. When gate netlist was
captured and simulated designers could find whether system really worked as specified.
Usually it did not work as specified, and therefore specification was changed. This
approach started the myth that specification is never complete. It took many years to
realize that specification is independent of its implementation. The main obstacle to close
the gap was the design flow is which designers waited until the gate level design was
finished to verify the system behavior. Since they captured system design once at the end
of design cycle, before simulation this methodology is called capture-and-simulate.

9

Past and Present Design Flow

Describe

SimulateSimulate

System Gap

Capture
& Simulate

Physical

Logic

Specs

Design

Manufacturing

Algorithms

1960’s

Describe
& Synthesize

Manufacturing

Specs

Algorithms
(software)

Physical

Logic

Design

1980’s

Copyright © 2002 Daniel D. Gajski

 (b) Describe-and-Synthesize methodology (late 1980s to late 1990s)
1980’ s brought us logic synthesis, which has significantly altered the design flow, since
designers first specify what they want in terms of Boolean equations or FSM descriptions
and the synthesis tools generate the implementation in terms of a gate netlist. Therefore,
the behavior or the function comes first and the structure or implementation next. Also,
there are two models to simulate: behavior (function) and gate-level structure (netlist).
Thus, in this methodology specification comes before implementation and they are both
simulatable. Also, it is possible to verify their equivalence since they can be both reduced
to a canonical form in principle. In practice, today’ s designs are too large for this kind of
equivalence checking.
By late 1990s the logic level has been abstracted to RTL or cycle-accurate description
and synthesis. Therefore, we have two abstraction levels (RTL and gate levels) and two
different models on each level (behavioral and structural). However, the system gap still
persists.

10

Past, Present and Future Design Flow

Communications

Functionality

Connectivity

Protocols

Timing
Describe

SimulateSimulate

Physical

Logic

Specs

Design

Manufacturing

Capture
& Simulate

Algorithms

Describe
& Synthesize

Manufacturing

Specs

Algorithms
(software)

Physical

Logic

Design

Specify, Explore
& Refine

Architecture

Manufacturing

Executable
Spec

Algorithms

Physical

Logic

Design

System Gap

1960’ s 2000’ s1980’ s

Copyright © 2002 Daniel D. Gajski

(c) Specify, Explore-and-Refine Methodology (from early 2000s)
In order to close the gap we must increase level of abstraction from RTL to SL. On SL
level we have executable specification that represents the system behavior or function
and structural models with emphasis on connectivity or communication protocols. Each
model is used to prove some system property such as functionality, connectivity,
communication and so on. In any case we have to deal with several models in order to
close the gap. Each model can be considered to be a specification for the next level model
in which more detail in implementation is added. Therefore specify-explore-refine (SER)
methodology represents a sequence of models in which each model is a refinement of the
previous one. Thus, SER methodology follows the natural design process where
designers specify the intent first, explore possibilities and then refine the model according
to their decisions. Thus, SER flow can be viewed as several interactions of the basic
describe-and-synthesize methodology.

11

Missing Semantics:
Simulation Dominated Design Flow

Finite State Machine

3.415
2.715

 case X is

 when X1 =>

 when X2 => Table Lookup

Controller Memory

• Simulatable but not synthesizable

Copyright © 2002 Daniel D. Gajski

With introduction of SL abstraction, designers have to generate even more models. One
obvious solution is to automatically refine one model into another. However, that requires
well defined model semantics, or, in other words, good understanding what is meant by
the given model. This is not as simple as it sounds, since design methodologies and EDA
industry has been dominated by simulation based methodologies in the past. For example,
all HDL (such as Verilog, VHDL, SystemC, and others) are simulatable but not
synthetizable or verifiable.
As an example of this problem, we can look at a simple case statement in any of the
languages. It can be used to model a FSM or a look-up table, for example. However,
FSMs and look-up tables require different implementations: a FSM can be implemented
with a controller while a look-up table is implemented with a memory. On the other hand,
using memory to implement an FSM or control logic to implement a table is not very
efficient and not acceptable by any designer. Therefore, the model which uses case
statement to model FSMs and tables is good for simulation but not good for
implementation since a designer does not know what was meant by the case statement.
Thus, clean and unambigues semantics is needed for refinement, synthesis and
verification. This semantics is missing from most of the simulation-oriented languages.

12

Y Chart

Behavior Structure

Physical

Synthesis

Physical
Design

Copyright © 2002 Daniel D. Gajski

In order to explain the relationship between different abstraction levels, design models
and design methodologies or design flow we will use Y-Chart, which was developed in
1983 to explain different design methodologies or design flows. The Y-Chart makes the
assumption that each design, no matter how complex, can be modeled in three basic ways
emphasizing different properties of the same design.
Therefore, Y-Chart has three axes representing design behavior (function, specification),
design structure (connected components, block diagram), and physical design (layout,
boards, packages). Behavior represents a design as a black box and describes its outputs
in terms of its inputs and time. The black-box behavior does not indicate in anyway how
to implement the black box or what its structure is. That is given on the structure axis,
where black box is represented as a set of components and connections. Although,
behavior of the black box can be derived from its component behaviors such an obtained
behavior may be difficult to understand. Physical design adds dimensionality to the
structure. It specifies size (height and width) of each component, the position of each
component, each port and each connection on the silicon substrate or board or any other
container.

13

Y Chart

Behavior Structure

Physical

Logic

Transistor

RTL

System

Copyright © 2002 Daniel D. Gajski

Y-Chart can also represent design on different abstraction levels identified by concentric
circles around the origin. Usually, four levels are used: Transistor, Logic, Register-
transfers and System levels. The name of the abstraction level is derived by the main
component used in the structure on this abstraction level. Thus, the main components on
Transistor level are N or P-type transistors, while on Logic level they are gates and flip-
flops. On the Register-transfers level the main components are registers, register files and
functional units such as ALUs. While on the System level they are processors, memories
and buses.

14

Y Chart

Behavior Structure

Physical

Logic

Transistor

RTL

System

MoC

MoC

MoC

MoC

Copyright © 2002 Daniel D. Gajski

Each abstraction level needs also a database of components on this level. Each
component in the database has tree models representing three different axes in the Y-
Chart: behavior or function (sometimes called Model of Computation (MoC)), structure
of components from the lower level of abstraction and the physical layout or
implementation of the structure. These components are IPs for each abstraction level.

15

SoC Algebra

Algebra := < {objects}, {operations} >

SoC Algebra := < {models}, {transformations} >

Ordered set of transformations < tm, … , t2, t1 > is a
refinement iff

model B = tm(… (t2(t1(model A))) …)

Question: { models } ? ; { transformations } ?

Copyright © 2002 Daniel D. Gajski

In order to define a design methodology or a design flow we must define first a set of
different models and a set of transformations that will generate one model from the other.
This is similar to an abstract algebra that consists of a set of objects and a set of
operations on those objects. Each object and operations may have certain properties. For
example, we say that on operations is commutative if the order of objects for this
operation is not important. Similarly to an abstract algebra, we can define SoC algebra
which consists of a set of models (objects) and a set of transformations (operations) with
the following property: for each model in the set we can find a ordered set of
transformations that will generate another model in the set. If the models in the set are
ordered by the complexity or the level of detail we say tha SoC algebra is ordered. More
formally, for each model A we can find a ordered set of transformations < tm, … , t2, t1 >
such that the next (more detailed) model B can be derived by applying this set of
transformations to A. In other words: B = tm(… (t2(t1(A))) …). Every ordered SoC
algebra defines a design methodology or design flow.

16

Why SoC Algebra?

1. Enabling standards for SL design automation

2. Discover truth behind SL myths

3. Define SL field (abstract semantics)

4. Identify SL methodology

5. Introduce interoperability

6. Support IP trade

7. Define how to SL languages

Copyright © 2002 Daniel D. Gajski

Proper definition of abstraction levels and models for design will enable standards in
system-level (SL) design automation. It will also introduce some science into ad hoc
methods used in approaches to create tools for SL simulation, synthesis and verification.
It will also help define SL field and identify SL methodology. Formal definition of
models (model semantics) will introduce interoperability and establishment of IP trading.
It will also allow us to properly use SL languages such as SystemC, SpecC and others.

17

Semantics, Styles & Refinements

• Each model uses well defined semantics
• Each model has simple style
• Each style uniquely expressed

– no syntactic variance or semantic ambiguity

• Each model needs style checker

• Ordered set of models
• Clear refinement rules
• Ordered set of refinement rules for each model
• Verifiable model refinements

Copyright © 2002 Daniel D. Gajski

The main requirement for success of SoC algebra and SL design automation is formal
definition of models and transformations. Thus, each model needs well defined semantics
which can be expressed with a very simple syntax and modeling style which is free of
syntactic variance or semantic ambiguity. Syntactic variance allows same meaning to be
expressed (or described) syntactically in several different ways, which makes all
synthesis or verification algorithms extremely complicated. On the other hand, semantic
ambiguity allows same syntax to have different meanings as shown previously in the case
of missing semantics. Since each language can be use for describing different models and
each model may require different style, we need a style checkers to help designers
comply with the model style.
In order to automate SoC design methodology we need ordered set of models and a
ordered set of transformations or refinement rules for transforming higher-level model
into lower-level ones. Also, the model transformations should be verifiable. We will
explain these concepts for RTL and SL levels of abstraction.

18

RTL Computational Models

• Finite State Machine with Data (FSMD)
• Combined model for control and computation

– FSMD = FSM + DFG

• Implementation: controller plus datapath

FSMD model

S1 S2

S3

Op2 Op3

Op4

Op6

Op1

Op5
Op1 Op2

Op3

Op1 Op2

Copyright © 2002 Daniel D. Gajski

The RTL behavior or computational model is given by a Finite-state-machine with Data
(FSMD). It combines finite-state-machine (FSM) model for control and data-flow-graph
(DFG) for computation. FSM has a set of states and a set of transitions from one state
into others depending on the value of some of the input signals. In each state FSMD
executes a set of expressions represented by a DFG. FSMD model is clock-accurate if
each state takes a single clock-cycle.
It should be noted that FSMD model encapsulates the definition of the state-based
(Moore-type) FSM in which the output is stable during duration of each state. It also
encapsulates the definition of the input-based (Mealy-type) FSM with the following
interpretation: Input-based FSM transitions to a new state and outputs data conditionally
on the value of some of FSM inputs. Similarly, FSMD executes set of expressions
depending on the value of some FSMD inputs. However, if the inputs change just before
the clock edge there may be not enough time to execute the expressions associated with
that particular state. Therefore, designers should avoid this situation by making sure the
input values change only early in the clock period or they must insert a state that waits for
the input value change. In this case if the input changes too late in the clock cycle, FSMD
will stay in the waiting state and proceed with a normal operation in the next clock cycle.

19

RTL Processor

Bus1

Bus2

Bus3

Datapath

D Q

D Q

D Q

Control

inputs

Next-
Sate

Logic
or

Address
generator

Output
logic

or
Program
memory

State
register

or
PC

Control
outputs

Register

Selector

Register

Datapath
outputs

RF
Cache

ALU ∗ / ÷

Signal
status

Controller

Latch

Data
memory

IR

SR

Cotrol
signals

Copyright © 2002 Daniel D. Gajski

The behavior represented by a FSMD model can be implemented by the structure of a
RTL processor, which consists of a Controller and the Datapath. Datapath consists of set
of storage elements (registers, register files, memories), set of functional units (ALUs,
multipliers, shifters, custom functions) and set of busses. All these RTL components may
be allocated in different quantities and types and connected arbitrarily through busses.
Each component may take one or more clock cycles to execute, each component may be
pipelined and each component may have input or output latches or registers. The entire
Datapath can be pipelined in several stages in addition to components being pipelined
themselves. The Controller defines the state of the RTL processor and issues the control
signals for the Datapath.
The RTL processor may represent an implementation of a standard processor (such as
Pentium, PowerPC, or a DSP) or a custom processor or IP specifically synthesized for a
particular function. In the former case, the Controller is programmable with a Program
memory, PC and an Address generator. In the later case, the Controller is hardwired with
a State register, Next-state logic and Output logic providing the control signals to the
Datapath.

20

RTL Synthesis

Op2 Op3

Op4

Op6

Op1

Op5
Op1 Op2

Op3

Op1 Op2

S1 S2

S3

FSMD model
RTL Processor

D
Q

D
Q

D
Q

Control
inputs

Next-
state
logic

or
Address
generator

Output
logic

or
Program
memory

State
register

or
PC

Control
outputs

Control
signals

Bus1

Bus2

Selector

Register

Datapath
outputs

ALU ∗ / ÷

Bus3

Datapath

Signal
status

Controller

Register Memory

RF

SR

IR

Latch

Data
memory

RTL
Behavior Structure

Physical

Copyright © 2002 Daniel D. Gajski

RTL synthesis starts with the FSMD model in the behavior axes of the Y-chart and ends
up with a custom RTL processor containing any number and type of components
connected as required by the FSMD model. Note, that FSMD model can be obtained
easily from a programming language code such as C by grouping all the consecutive
statements into basic blocks (BB) and introducing two states for each if statement or loop
statement, where each state executes a BB. Such a FSMD is sometimes called super-state
FSMD since each BB may be considered to be executed in one super state. This
generation is very simple. Note that each BB will be partitioned into several states during
RTL synthesis, where the number of states depends on the resources allocated to the RTL
processor.

21

RTL Synthesis

Op1 Op2

Op3

Op1 Op2

S1 S2

S3

FSMD model

Allocation

Rescheduling

Variable binding Operation Binding

Bus Binding

FSM Synthesis

RTL Processor

D
Q

D
Q

D
Q

Control
inputs

Next-
state
logic

or
Address
generator

Output
logic

or
Program
memory

State
register

or
PC

Control
outputs

Control
signals

Bus1

Bus2

Selector

Register

Datapath
outputs

ALU ∗ / ÷

Bus3

Datapath

Signal
status

Controller

Register Memory

RF

SR

IR

Latch

Data
memory

Op2 Op3

Op4

Op6

Op1

Op5

RTL

Copyright © 2002 Daniel D. Gajski

RTL synthesis is the process of converting a FSMD model into a RTL processor that
generates the same result. It consists of several tasks:
(a) Allocation of components from the RTL library,
(b) Rescheduling of computation in each state since some components may need more
than one clock cycle,
(c) Binding of variables, operations and register transfers to storage elements, functional
units and busses,
(d) Synthesis of programmable or hardwired controller.
(e) Generation of refined model representing the RTL processor.
Any of the above tasks can be performed manually or automatically. If all of them are
done automatically, we call the above process RTL synthesis. On the other hand, if (a) to
(d) are performed by designer and only (e) is done automatically, we call the process
model refinement. Obviously, many other strategies are possible as exemplified by
available EDA tools that may perform each of the above tasks only partially in automatic
fashion and leave the rest to the designer.

22

System Behavioral Model

• Program State Machine
– States described by procedures in a programming language

• Example: SpecC! (SystemC!)

PSM model
Proc

Proc

Proc

Proc

Proc

Copyright © 2002 Daniel D. Gajski

Since systems consist of many communicating RTL processors the FSMD model will not
suffice. Furthermore, such model must represent SW and HW. The easiest way is to
retain the concept of states and transitions as in a FSM but to extend the computation in
each state to include any procedure in a programming language such as C/C++.
Furthermore, in order to represent an architecture with several processor working in
parallel or in pipelined mode we must introduce concurrency (two states running in
parallel) and pipelining (several states running in parallel with data passed between them
sequentially). Since states are running concurrently we need a synchronization
mechanism for data exchange. Furthermore, we need a concept of channel to encapsulate
data communication. Also, we need to support hierarchy to allow humans to write easily
complex systems specifications.

23

System Synthesis

PSM model

Proc

Proc

Proc

Proc

Proc

Memory

Memory

µProcessor

Interface

Comp.
IP

Bus

Interface

Interface

Interface

Custom HW

System architecture

System

Copyright © 2002 Daniel D. Gajski

System synthesis starts with a behavioral model of the system such as PSM model and
generates the system architecture such as bus-functional model, which describes
components, their behavior and connectivity among components. Such model describes
the operation of each component as a set of functions or procedures with lumped time
assigned to each function. The communication is described with channels including time
accurate protocols.

24

System Semantics

Objects:
- Behaviors
- Channels

Composition:
- Hierarchy
- Order
 • Sequential
 • Parallel
 • Piped
 • States
- Transitions
 • TI
 • TOC, TOS, ...
- Synchronization

Objects:
- Components
 • Proc
 • IP
 • Memories
 • IF
- Connections
 • Buses
 • Wires

Composition:
(same as in Behavior
Model)

System

Copyright © 2002 Daniel D. Gajski

In system semantics we must transform a behavioral model into a structural model.
Following the SoC algebra the behavioral model is a composition of two objects:
behaviors and channels. They can be composed hierarchically and ordered through
sequential, parallel pipelined and state operators. The transition from state to state may be
accomplished on interrupt, completion, or specific variable value. For concurrent
processing we can use some type of synchronization such as waiting for event generated
by another process. The structural model uses different object: behaviors are replaced by
components (processors, IPs, etc.) and channels are replaced by buses or wires with well
defined protocols. The composition rules stay the same.

25

System Synthesis

PSM model

Proc

Proc

Proc

Proc

Proc

Memory

Memory

µProcessor

Interface

Comp.
IP

Bus

Interface

Interface

Interface

Custom HW

System architecture

Profiling

Allocation IF Synthesis

Refinement

Behavior Binding Channel Binding

System

Variable Binding

Copyright © 2002 Daniel D. Gajski

PSM model can be synthesized into a arbitrary architecture by the following set of tasks:
(a) Profiling of code in each behavior and collecting statistics about computation,
communication, storage,traffic, power consumption, etc.,
(b) Allocating components from the library of processors, memories, IPs and custom
RTL processors,
(c) Binding behaviors to processing elements, variables to storage elements (local and
global), and channels to busses,
(d) Synthesizing IF between components and busses with incompatible protocols,
(e) Refining the PSM model into a architecture model that reflect allocation and binding
decisions.
The above tasks can be performed automatically or manually. Tasks (b)-(d) are usually
performed by designers while tasks (a) and (e) are better done automatically since they
require lots of mundane effort.

Once the refinement is performed the architecture model can be validated by simulation
quite efficiently since all the component behaviors are described by high level functions.

26

System Synthesis (continued)

RTL/IS Implementation
+ results

Mem RF
State

Control

ALU

Datapath

PC

Control Pipeline

IF FSM

IF FSM
IP Netlist

RAM

IR

Memory

State

State

HCFSMD model

FMDS4

FSMD5

FSMD3

FSMD2

FSMD1

RTL MoC

Copyright © 2002 Daniel D. Gajski

In order to generate cycle –accurate model, we must replace each component functional
model with a FSMD model for custom HW or IS model for standard processors
executing SW. Once we have bus-functional model, we can refine it further to cycle-
accurate model by performing RTL synthesis for custom RTL processors or custom IFs
and compiling behaviors assigned to standard processors to instruction-set level and
inserting IS simulator to execute the compiled instruction stream. RTL synthesis can start
from super-state FSMD that is obtained through two different mechanisms. On one hand,
we can replace a behavior assigned to an IP with a super-state FSMD model from IP
library. On the other hand, we can perform RTL synthesis on any behavior assigned to
RTL processor after refining the behavior to BB super-state FSMD. After RTL/IS
refinement we end up with cycle-accurate model of the entire system.

27

System-Level Trends

• Simulation
• C++
• MoC
• Syntax first
• Semantic first

Copyright © 2002 Daniel D. Gajski

System-level abstraction arrived suddenly as a consequence of large increases in chip
complexity. Since the methodology and tools are not available yet, many research groups
are experimenting with different approaches to solve the complexity issues. We can
identify several more popular approaches. Simulation is the most popular among EDA
community. Some people are trying to extend C++ for their particular needs, while
others are developing new MoCs for particular applications. Others are trying to develop
multi purpose system-level languages. Two trends can be identified in this group
depending whether syntax or semantics is developed first. We will look at each trend in
detail in the rest of this report.

28

Simulation Approach

System

RTL

Logic

Transistor
VHDL, Verilog,

Copyright © 2002 Daniel D. Gajski

Simulation approach focuses design methodology on simulation. Designers develop
design on different levels and simulate its behavior by writing simulation models. Formal
verification or equivalence checking is almost impossible since simulation models are
ambiguous and not strict enough for synthesis and verification. Usually, simulation
model must be restricted to a language subset or a particular style to be synthesizable and
even more restricted to be verifiable. This simulation approach reverses the trend
established by logic synthesis where design methodology focuses on synthesis while
creating simulatable models automatically.

29

C++ Approach

System

RTL

Logic

Transistor

Copyright © 2002 Daniel D. Gajski

C++ is an extensible language. Providing a standard set of C++ classes and a free-source
simulator is very appealing to all faculty ad their students as well as to large number of
industrial researchers and managers since they can add some classes and adapt the
standard set to their particular application, methodology and modeling style. However,
these additional classes make their methodology and models useless for others.
Therefore, C++ is good for experimentation but is improbable to become a standard
modeling language.

30

MoC Approach

System

RTL

Logic

Transistor

MoC

Copyright © 2002 Daniel D. Gajski

Developing new models of computation (MoCs) that are tuned to different applications
simplifies the specification captive for a particular application. However, this approach
leaves a huge gap between MoC and working SW and HW on a SoC. This gap is difficult
to bridge with today’ s algorithms and methods for synthesis, verification and test in order
to generate an efficient design.

31

SystemC Approach: Language First

Source: J. Kunkel, VP Synopsis, (CODES, May 2002)

C++

SystemC

C
Supported

Subset

Copyright © 2002 Daniel D. Gajski

There are two approaches in developing system methodology. One approach is to
develop a language first and then experiment with it to find how to use it in different
applications. Such a language is accompanied with a simulator to support simulation of
the models written in the language. SystemC is such a language based on C++. It is
appealing to many researchers who can experiment with it by adding new classes that
they optimize for their own application. However this extensibility does not help. On the
contrary, it creates incompatibility, since everyone has his or her own classes that are not
compatible with anyone else. At this moment, SystemC already has too many classes that
are not easy too support. That will eventually result in a subset for synthesis and another
subset for verification. It is difficult to predict when these subsets will emerge, how they
will look like and who will define them. Similar situation occurred with other simulation-
oriented languages such as VHDL and Verilog.

32

SpecC Approach: Semantics First

System

RTL

Logic

Transistor

MoC

Copyright © 2002 Daniel D. Gajski

The other approach to language definition is to define abstraction levels and define
behavioral and structural models and transformation rules for deriving one model from
the other. This approach is more limited since there is less flexibility later but it results
into interoperability of models and tools. With well-defined semantics the designer
education is easier and IP trade can develop sooner. Since SpecC was designed to
support minimal and orthogonal set of concepts for modeling SW and HW it is easy to
use by designers as well as tool makers and it does not need subsetting since the SpecC
models are synthetizable and verifiable. The SpecC version 2.0 supports automatic
refinement of a PSM model into architecture/bus-functional model, into FSMD model,
and finally into cycle-accurate RTL model ready for synthesis with available standard
EDA tools.

33

SystemC/SpecC

SpecC

C++

SystemC

C

Copyright © 2002 Daniel D. Gajski

In the moment, SystemC looks like a popular simulation language that is looking for
synthesis and verification subsets. On the other hand, SpecC is more restricted,
synthesizable and verifiable. Therefore, the obvious conclusion is that SpecC may
become synthesizable and verifiable subset of SystemC, since it compiles to C++ for
simulation anyhow. This outcome may become a real possibility if both group came
together and smooth some minor differences in the syntax and semantics of both
languages.

34

Conclusion

Work to be done:

1. Abstraction Levels

2. Model Semantics

3. Refinement Rules

4. Methodology

5. Language

6. Simulation, Synthesis, Verification Tools

7. ESDA Market/Community Emergence

Prediction: No success in 7 without 1-6

Copyright © 2002 Daniel D. Gajski

From the above discussion it is obvious that old strategy of developing a language and
subsetting it for different design task is not acceptable for SL design. The strategy for
success is to solve the following issues:
(1) Define the abstraction levels for SoC design flow,
(2) Define semantic for each model without synthetic variance or semantic ambiguity,
(3) Define refinement rules for deriving a refined model from a more abstract one,
(4) Define the methodology including models, tasks and necessary tools,
(5) Design the language to support the above models, refinements and methodology,
(6) Develop tools for simulation, synthesis and verification of different models,
(7) Stimulate the organization of SL community, and ESDA market.
It is obvious that issues 1-6 must be resolved before a community or market will emerge.
SL academic community has made sizable progress toward this goal in the past, but more
work is needed in the future before we can claim that SL design flow is understood.

35

Chapter 2

System Level Modeling

System Level Modeling

Andreas Gerstlauer
Daniel D. Gajski

Center for Embedded Computer Systems
University of California, Irvine
http://www.cecs.uci.edu

Copyright © 2002 A. Gerstlauer, D. Gajski

36

Motivation and Goals

• Well-defined abstraction levels
• Focus on critical issues
• Early feedback

• Well-defined models
• Automated synthesis and refinement
• Minimal, localized changes
• IP integration

½ Rapid design space exploration
½ Synthesis-based design flow

Copyright © 2002 A. Gerstlauer, D. Gajski

A requirement for any design flow is a set of well-defined abstraction levels and models.
The number of models and their semantics must be defined in a way that will simplify
design decisions and model transformations. Also, the number of objects in the model
must be minimized to improve efficiency while providing enough detail to perform
exploration at each step. Furthermore, a clear and unambiguous definition of these
models is then needed for automation of synthesis and verification. In addition, such a
formalized definition is a necessity for interoperability across tools, designers and IP
vendors.
Traditionally, abstracted models of a design are used mainly for simulation purposes. In
such simulation-centric approaches, the designer is responsible for manually rewriting the
model to accommodate the changes in the design. However, none of these approaches
attack the vertical integration of models that is needed for a synthesis-centric design flow
with automatic refinement of higher-level models into lower-level ones.
For each design task, the models at the input and output of the flow have to be defined in
such a way that the transformation between the models is possible. If the gap between
them is too big, the task needs to be performed in several steps, thus creating additional
intermediate models. On the other hand, tasks should be as independent as possible in
order to perform them separately.
In summary, models on any level trades off accuracy for efficiency. On the other hand
models have to be defined with the right amount of detail that will allow rapid and
meaningful exploration, synthesis, and validation.

37

Motivation and Goals

• Well-defined abstraction levels
• Focus on critical issues
• Early feedback

• Well-defined models
• Automated synthesis and refinement
• Minimal, localized changes
• IP integration

½ Rapid design space exploration
½ Synthesis-based design flow

Specification model

Architecture synthesis

Architecture model

Communication model

FSMD model

Communication synthesis

Cycle synthesis

Implementation model

RTL synthesis

Copyright © 2002 A. Gerstlauer, D. Gajski

In general, the system design process is too complex to be completed in one single step.
The gap between requirements and implementation is impossible to cover using non-
exponential algorithms. Hence, we need to divide the process into a sequence of smaller,
manageable steps. Since computation and communication refinement are largely
orthogonal we can subdivide the design process into the two separate tasks of
computation and communication design. However, computation synthesis needs to be
performed before communication synthesis since partitioning of computation influences
the amount of communication to be performed.
In our design methodology, system design starts with the behavioral specification model.
In the first step, computation is implemented on processing elements (PEs), resulting in
the intermediate architecture model, which is a mixed behavioral/structural description. It
defines the computation structure but leaves communication at a behavioral level.
Communication synthesis completes the system design flow and creates the structural
system communication model. On the lower level of abstraction, each PE is then
implemented separately trough cycle and RTL synthesis. Clock scheduling in cycle
synthesis creates the cycle-accurate FSMD model. Finally, the implementation model as
the result of RTL synthesis is a structural description of each PE in the form of an RTL
netlist.

38

Specification Model

• PSM model of computation
• Pure system functionality
• Algorithmic behavior
• No implementation details

• No implicit structure / architecture
• Behavioral hierarchy

• Untimed
• Executes in zero (logical) time
• Causal ordering
• Events only for synchronization

Specification model

Architecture synthesis

Architecture model

Communication model

FSMD model

Communication synthesis

Cycle synthesis

Implementation model

RTL synthesis

Copyright © 2002 A. Gerstlauer, D. Gajski

The system design process starts with the specification model written by the user to
specify the desired system functionality. It forms the input to architecture exploration, the
first step of the system design process. Therefore, it defines the basis for all exploration
and synthesis. For example, the specification model defines the granularity for
exploration through the size of the leaf behaviors, it exposes the available parallelism, it
separates communication from computation, and it uses hierarchy to group related
functionality and to manage complexity.
The specification model is a purely functional, abstract model that is free of any
implementation details. The hierarchy of behaviors in the specification model solely
reflects the system functionality without implying anything about the system architecture
to be implemented. For example, parallel behaviors in the specification model describe
independent groups of functions that can run concurrently. However, parallelism in the
specification does not make any premature assumptions about a concurrent
implementation.
The specification model is also free of any notion of time. The model executes in zero
logical (simulation) time. Events in the specification model are used for synchronization,
which establishes a partial ordering among the behaviors based on desired causality.

39

Specification Model Example

C2

B1

v2
v3

B2 B3

v1

Copyright © 2002 A. Gerstlauer, D. Gajski

This figure shows an example of a simple yet quite typical specification model.
In general, at each level of hierarchy the specification is an arbitrary serial-parallel
composition of behaviors. Behaviors communicate through variables and synchronize
through events attached to their ports. At the lowest level of hierarchy, leaf behaviors
execute the algorithms in the form of C code.
In the example shown here, execution starts with leaf behavior B1, followed by the
parallel composition of leaf behaviors B2 and B3. B1 contains a local variable v1 to store
state information. B1 then produces variable v2, which is consumed by both B2 and B3,
and variable v3, which is read by B3. In addition, the concurrent behaviors B2 and B3
exchange data and synchronize through channel c2.

40

IP Architecture Model

• Computation structure
• System component architecture

• Communication behavior
• System communication functionality

• Behavioral component models

• Component functionality
• Sequential behavior

• Timed
• Estimated execution delays

Specification model

Architecture synthesis

Architecture model

Communication model

FSMD model

Communication synthesis

Cycle synthesis

Implementation model

RTL synthesis

Copyright © 2002 A. Gerstlauer, D. Gajski

The architecture model is an intermediate model of the system design process. As a result
of architecture exploration, computation has been mapped onto processing elements of a
system architecture.
The architecture model reflects the component structure of the system architecture. At the
top-level of the behavior hierarchy, the design is a set of concurrent, non-terminating
component behaviors. However, communication is still on an abstract level and
components communicate via message-passing channels. The communication synthesis
task that follows will implement the abstract communication over busses with real
protocols.
The behaviors grouped under the components according to the selected mapping specify
the desired functionality for the implementation of the component during later stages.
Concurrency is limited to the top-level of the design in the architecture model. All the
concurrency in the design at this point is captured by the set of components running in
parallel. Inside each component, behaviors execute sequentially in a certain order. In the
system architecture, true concurrency can only be exploited by executing computation in
parallel on different components.
The architecture model is timed in terms of the computational parts of the design.
Behaviors are annotated with estimated execution delays for simulation feedback,
verification and further synthesis.

41

IP Component Models

• Component behavior
• Simulation, synthesis

• Wrapper
• Encapsulate fixed IP protocol
• Provide canonical interface

B2

v2

IP
Components

• Functionality of B2
• Quality metrics

IP1

IIP
B

u
s

B2

IP1

IIP
B

u
s B2

Behavioral model

RTL model

Copyright © 2002 A. Gerstlauer, D. Gajski

As part of PE allocation during architecture synthesis, Intellectual Property (IP)
components can become part of the architecture model. Due to the specific characteristics
of IP components, they have to be modeled in a special manner, different from other,
synthesizable components.
IP components are predesigned components with predefined functionality. As such, their
external interfaces and communication protocols are fixed, too. Note that this may also
include microprocessor cores with specific, fixed bus interfaces.
IP components are selected out of the component library during component allocation to
implement a specific part of the system specification. Depending on quality and cost
metrics like power, performance or area, a certain part of the specification can be mapped
onto an IP component during partitioning instead of implementing it on a general-purpose
PE. For example, under the assumption that the component library contains an IP that
implements the functionality of behavior B2, the behavior will be mapped onto and
replaced with an instance IP1 of the corresponding IP in the architecture model.

42

IP Component Models

• Component behavior
• Simulation, synthesis

• Wrapper
• Encapsulate fixed IP protocol
• Provide canonical interface

IP
Components

• Functionality of B2
• Quality metrics

IP1

IIP
B

u
s

B2

IP1

IIP
B

u
s B2

Behavioral model

RTL model

B2

v2

Copyright © 2002 A. Gerstlauer, D. Gajski

Each IP component model is stored in the component library as a combination of a IP
behavior and a protocol wrapper.
The IP component behavior is a bus-functional model of the actual IP for simulation
and/or synthesis. It provides a description of the fixed IP functionality at the ports of the
component. Internally, it models the behavior of the IP and drives the set of ports
according to the fixed IP protocol. The library can contain bus-functional models for IP
component behaviors at different levels of abstraction. Depending on the desired levels of
accuracy and complexity, models can range from purely functional descriptions of the IP
behavior down to cycle-accurate RTL models.
The IP wrapper is a channel that encapsulates a description of the IP protocol and
provides a canonical, abstract interface to the IP functionality. A wrapper implements the
abstract semantics needed for communication in the architecture model by driving and
sampling the IP ports according to the IP protocol.

43

IP Architecture Model Example

B3

B13rcv

B34snd

B1B1

B13snd

B34rcv

PE1

CB13

CB34

PE2

v2

B2snd

B2rcv

M1

Mem

v1

v3

IP1

B2

v2

Copyright © 2002 A. Gerstlauer, D. Gajski

The figure shows the architecture model for our example. It demonstrates the complexity
of the architecture model. In this case, behaviors B1 and B3 are mapped onto processing
elements PE1 and PE2, respectively. B2 is implemented by an existing IP component that
provides the same functionality. A vendor-supplied description of IP1 encapsulates a
model of the IP while allowing integration into the system through a channel interface. A
system memory M1 holds variables v1 and v3 and provides read and write access through
its channel interface. On the other hand, local copies of the channel c2, degenerated to a
simple variable v2 after serialization, have been created in PE1 and PE2.
In addition, communication and synchronization blocks BXXsnd and BXXrcv have been
inserted to preserve the original execution order. Execution of formerly sequential blocks
mapped to concurrent PEs is synchronized, and updated variable values are
communicated to keep local copies in sync. Finally, behavioral blocks inside PE1 and
PE2 communicate via global channels CBxx or by accessing the channel interfaces of M1
and IP1 directly.
The behavior pair B13snd and B13rcv ensures that B3 on PE2 doesn’ t start executing
until B1 on PE1 is finished. In addition, variable v2 produced by B1 is transferred to B3
through these behaviors and channel CB13. Behavior B2snd and B2rcv replace the
original behavior B2 with corresponding communication with IP1. Finally, the pair
B34snd/B34rcv is added so that the next cycle on PE1 won’ t start until the whole
execution sequence including B3 on PE2 is finished.

44

Communication Model

• System architecture
• Computation & communication structure

• Behavioral component view

• Bus-functional component models

• Timed

• Component delays
• Communication overhead

Specification model

Architecture synthesis

Architecture model

Communication model

FSMD model

Communication synthesis

Cycle synthesis

Implementation model

RTL synthesis

Copyright © 2002 A. Gerstlauer, D. Gajski

The communication model is the final result of the system synthesis process and as such
defines the structure of the system architecture in terms of both components and
connections. Computation has been mapped onto components and communication onto
busses.
At the top-level of the hierarchy, the communication model is a parallel composition of a
set of non-terminating components communicating via a set of system busses.
Inside the components, a sequence of behaviors describes their functionality. The
behaviors also define the timing of bus transactions as determined by the communication
calls executed by the code. The bus adapter channels inside the components, in turn,
define the timing-accurate implementation of each transaction over the bus wires.
At their interfaces, the components therefore provide a timing-accurate model of the
component functionality down to the level of events on the bus wires. As a result, the
communication model is timed in terms of both computation and communication.

45

Communication Model Example

B3

B13rcv

B34snd

B1B1

B13snd

B34rcv

v2

v2
B2snd

B2rcv

Bus2

PE1 PE2

T1

Bus1

T2Arbiter1

IP1

B2

M1Ctrl

Mem

v1
v3

M1

M1Bus

IP1Bus

Copyright © 2002 A. Gerstlauer, D. Gajski

The figure shows the communication model for our example. In the figure, the memory
M1 is connected to processor PE1 via the processor’s bus Bus1. A memory controller
M1Ctrl translates requests on the processor bus into transactions on the memory bus
M1Bus.
IP1 and co-processor PE2 communicate via Bus2. A bus bridge T1 connects the two
main system busses. PE2 is a synthesizable component that implements the Bus2
protocol directly. The IP component, on the other hand, is connected to the bus through a
protocol transducer T2 that translates between the bus protocol and the proprietary IP
protocol on the IP bus IP1Bus.
Inside PE1 and PE2, behavioral blocks connect to bus driver channels that implement
message-passing over the bus wires. The channel interface of IP1 in the architecture
model has been moved into T2 where it implements communication with IP1 over the
exposed wires of the IP bus.
Finally, an additional PE, the arbiter Arbiter1, has been inserted as part of the
communication model. The arbiter regulates conflicting bus accesses of bus masters T1
and PE2 on Bus2 according to the bus’ arbitration protocol.

46

FSMD Model

• System architecture
• Component & bus structure

• FSMD component models

• Operations scheduled into cycles
• Instruction-set model

½ Cycle-accurate system model

Specification model

Architecture synthesis

Architecture model

Communication model

FSMD model

Communication synthesis

Cycle synthesis

Implementation model

RTL synthesis

Copyright © 2002 A. Gerstlauer, D. Gajski

The FSMD model is an intermediate model, which contains cycle-accurate descriptions
for each PE.
At the top-level, the system architecture is a set of non-terminating, concurrent
components communicating via system busses. At the component level, computation and
communication functionality is described in the form of cycle-accurate state machines:
FSMD models for custom hardware and instruction-set models for software on
programmable processors.
The FSMD model is a cycle-accurate system description. The order and timing of
computation and computation in the system is described in terms of component clocks. A
global order is imposed among the system’ s components via the order of events on the
common bus wires.

47

FSMD Model Example
Bus2

PE1 PE2

T1

Bus1

Arbiter1

B2

PE2_CLKPE1_CLK

OBJ

ISS

T2

IP_CLK

IP1

IP1Bus

M1Ctrl

Mem

v1
v3

M1

M1Bus

Copyright © 2002 A. Gerstlauer, D. Gajski

The figure shows the FSMD model for our design example. Compared to the
communication model shown previously, the architecture at the system level consisting
of PEs connected to busses is unchanged. However, each PE is replaced with a cycle-
accurate description based on the PE’ s individual clock. In each PE, states and transitions
in the form of FSMDs model the cycle-based behavior of both computation and
communication in the PE.
The programmable processor PE1 is replaced with an instruction-set simulator (ISS) that
executes the compiled object code. For the IP component IP1, a cycle-accurate model is
pulled out of the library and plugged into the system. Similarly, the system memory M1
is replaced with a cycle-accurate description. For the custom hardware component PE2,
an FSMD is synthesized by scheduling the PE behavior into clock cycles. In all cases,
both the behaviors and the bus driver channels from the communication model are
transformed into cycle-accurate descriptions. Bus driver calls are either implemented as
hierarchical (super-) states or through communicating state machines.
Finally, pure communication functionality inside bus bridges, transducers or arbiters is
synthesized into bus interface FSMDs similar to the implementation of other custom
hardware or IP components.

48

Implementation Model

• System architecture
• Component & bus structure

• Structural component models

• RTL component architecture

½ Network of RTL processors

Specification model

Architecture synthesis

Architecture model

Communication model

FSMD model

Communication synthesis

Cycle synthesis

Implementation model

RTL synthesis

Copyright © 2002 A. Gerstlauer, D. Gajski

The implementation model is the result of the backend process and as such the final end-
result of the whole system design flow. It is a structural description of the system down to
the component RTL architectures.
Like the FSMD model, the system architecture at the top level is a set of non-terminating,
concurrent components communicating via system busses. At the component level,
however, computation and communication functionality in the implementation model is
implicitly given as a description of the component RTL architectures. For each PE, a
structural description of the PE’ s controller and datapath in the form of a netlist of RTL
components is available.
Therefore, the implementation model is a netlist of RTL processors. As such, the
implementation model is accurate down to sub-cycle delays.
Finally, the implementation model is then further processed and refined down to
manufacturing through traditional design flows. For example, logic synthesis of custom
hardware RTL descriptions is followed by physical design to generate the final chip
layout.

49

Implementation Model Example (1) Bus2

Controller Datapath

Register
file

Memory

ALU

IR

PC

Decode

OBJ

PE1

Bus1

S
ta

te

Lo
gi

c

B
u

ff
er FIFO

C
o

n
tr

o
l

T1

B
u

ff
er

S
ta

te

Lo
gi

c

C
o

n
tr

o
l

M1Ctrl

Register

State

Logic

C
o

n
tr

o
l

M
em

o
ry

M1

S
ta

te

Lo
gi

c

C
o

n
tr

o
l

Arbiter1

Copyright © 2002 A. Gerstlauer, D. Gajski

The final implementation model for our design example is shown here. In general, each
PE from the FSMD model is replaced with an RTL processor that implements the PE’ s
state machine. An RTL processor is a structural description of the PE’ s controller and
datapath architecture in the form of a netlist of RTL components.
For the programmable processor PE1, the (possibly pipelined) datapath contains the
typical register files, memories, functional units and busses. The controller of the
programmable processor, on the other hand, contains the necessary program counters,
program memory, instruction register and instruction decoder of the control pipeline.
The memory M1 is mainly a description of the memory cell array with its simple
controller. The bus arbiter Arbiter1 contains only a controller implementing the bus
arbitration protocol. Furthermore, memory controllers M1Ctrl, bus bridges T1 and bus
transducers T2 contain controllers implementing bus protocol translations and datapaths
with buffers to temporarily hold data transferred between busses.

50

Implementation Model Example (2)Bus2

S
ta

te

Lo
gi

c

B
u

ff
er FIFO

C
o

n
tr

o
l

T2

Controller

State

Next
state
logic

Output
logic

PE2

Datapath

Register
file

Memory

ALU

Controller

State

Next
state
logic

Output
logic

IP1

Datapath

Register
file

Memory

FU1 FU2

IP1Bus

Copyright © 2002 A. Gerstlauer, D. Gajski

In case of the custom hardware component PE2, a custom controller and custom datapath
is synthesized. In general, the custom datapath will contain registers, memories and
functional units connected through busses. The custom controller will contain the state
register, next state and output logic required to implement the state machine of the FSMD
model.
Finally, for the IP component IP1, depending on the type of IP (soft, firm, or hard) such
a custom RTL processor netlist for the implementation model is either synthesized from
the FSMD IP model or pulled out of the IP library directly.

51

Summary & Conclusions

• Accomplishments
• Finalized model definitions & model refinements
• Verified design flow consistency
• Checked compatibility with existing backend flows
• Tested on three industrial-strength examples:

– Vocoder

– JPEG
– JBIG

• Developed SC environment
• Future work

• Formal verification
• Model style checker
• Connection to EDA tools

Copyright © 2002 A. Gerstlauer, D. Gajski

In summary, we have shown a set of well-defined system-level models covering the flow
from specification to RTL implementation. The definition of models is based on a
separation of concerns that minimizes interactions between levels, simplifies refinement
between models, and allows easy exploration with a variety of components and IPs. The
resulting design flow supports rapid design space exploration allowing critical decisions
at early stages while providing quick feedback.
The models define a framework on top of which system-level languages and design
methodologies can be developed. For example, platform based design predefines the sets
of PEs and busses supported by architecture and communication models. The
formalization of models is the enabler for interoperability and design automation. We
verified the feasibility of the models and the design flow through several industrial-
strength design examples.
Based on the abstract definitions, we can demonstrate automatic model refinement
between levels. We have developed the corresponding refinement tools and integrated
them into a design environment.
In the future, we want to extend the formalization to a general algebra on which proof
ably correct transformations can be defined. Such a formalized framework of models and
transformations based on the definitions presented in this report is the foundation for the
vertical integration of models through synthesis and verification.

52

53

Chapter 3

Design of a GSM Vocoder

Design of a GSM Vocoder

Andreas Gerstlauer

Center for Embedded Computer Systems
University of California, Irvine

http://www.cecs.uci.edu/~specc/

Copyright © 2002 A. Gerstlauer

54

GSM Vocoder

• Vocoder standard (source: ETSI)
• Speech synthesis model

– Frames of 4 x 40 = 160 samples (4 x 5ms = 20ms of speech)
– Transmit model parameters (244 bits / frame)

• Transcoding constraint (back-to-back encoder/decoder)
– First subframe: < 10ms
– Whole frame (4 subframes): < 20 ms

Short-term
synthesis filter

+Delay/ Adaptive codebook

10th-order LP filter

Speech

Fixed codebook

Long-term
pitch filter

Residual
pulses

Copyright © 2002 A. Gerstlauer

The CELP voice-encoding scheme is based on a speech synthesis model, which tries to
emulate the way in which speech is generated in the human vocal tract. The combination
of the output of a long term pitch filter (also called adaptive codebook) and a set of
residual pulses out of a fixed codebook models the buzz produced by the human vocal
chords. This excitation is then fed into a short-term, linear prediction (LP) synthesis filter
(linear, weighted sum of the past 10 inputs) that models the modulation occurring in the
human throat and mouth as a system of lossless tubes.
Instead of transmitting compressed speech samples, the filter parameters of the speech
synthesis model are extracted in the encoder, transmitted, and used for driving the
synthesis of speech in the decoder. In the encoder, parameters are extracted via an
analysis-through-synthesis approach such that the mean-square error between synthesized
and original speech is minimized. Analysis and synthesis operate on speech frames of
160 samples corresponding to 20 ms of speech. Each frame is subdivided into 5
subframes of 40 samples (5 ms of speech) each, and one set of parameters is transmitted
per subframe.
The Vocoder standard specifies a maximal total latency of 10 ms for the first subframe
when operating encoder and decoder in back-to-back mode. In addition, a complete frame
has to be encoded and decoded within the 20 ms before the next frame arrives.

55

Specification Model

Copyright © 2002 A. Gerstlauer

Filter memory

update

Closed-loop

pitch search

Algebraic (fixed)

pitch search

Linear prediction

(LP) analysis

Open loop

codebook search ������

������

������

���
�

	

��
�
��
�
� ������

��

������������

������������

��

decode_12k2

Post_Filter

Bits2prm_12k2

Decode

LP parameters

4 subfram
es

bits

speech[160]

A(z)

synth[40]

synth[40]

prm[57]

prm[13]

decoder

��

��

��

�

!"

#�#$�$

%%&
&

''
'
((
(

))*
*

++,
,

--.
.

/0 12

3456

778
8

9�9:�:

;<

=>

?@

AB

C�CD DE�EE E

F�FG GH�HH H

I�IJ JK�KK K

L�LM MN�NN N

O�OO�OP�PP�P

Q�QQ�QR�RR�R

m
em

ory

2x per fram
e

A(z)

2 subfram
es

prm2bits_12k2

pre_process

sample

prm[57]

bits

speech[160]

coder

vocoderspeech_in bits_in

speech_outbits_out

The original vocoder standard published by the European Telecommunication Standards
Institute (ETSI) contains a bit-exact reference implementation of the standard in C. This
reference code was taken as the basis for developing the SpecC specification model. At
the lowest level, the C algorithms were directly reused by encapsulating them in SpecC
leaf behaviors. However, the C function hierarchy had to be converted into a clean and
efficient SpecC hierarchy by analyzing dependencies, exposing available parallelism,
grouping related parts hierarchically, and so on. In contrast to the original C code, the
SpecC specification describes the vocoder functionality in a clear and concise manner,
which greatly eases understanding for both the user and any automated tools.
At the top level, the specification model runs encoding (left) and decoding (right)
behaviors in parallel. The encoder preprocesses and frames incoming speech before
analyzing the speech frames in two nested loops. LP and initial, open-loop pitch filter
parameters are extracted once for every two subframes. Final, closed-loop pitch
parameters and the fixed codebook vector are computed for every subframe. The decoder,
on the other hand, decodes the incoming speech synthesis parameters and synthesizes
speech frames following the synthesis model in a loop over all subframes.

56

Specification Model: Encoding

Prefilter pitch_contr

G_codePrefilter

cor_h_x

set_sign

cor_h

search_10i40

build_cod$

Codebook

Syn_filt

upd_mem

excitation

q_gain_code

Update

Enc_lag6

Pred_lt_6

Convolv$

G_pitch

q_gain_pitch

R$sidu

Syn_filt

Residu

Syn_filt

Syn_filt

Syn_filt

Closed_loop

Pitch_fr6

2 subframes

Residu

Syn_filt

Weight_Ai Weight_Ai

2
su

bf
ra

m
es

Open_loop

Pitch_ol

Az_lsp Az_lsp

LP_analysis

LevinsonLevinson

Autocorr

Lag_window

Autocorr

Lag_window

Q_plsf_5

Int_lpc

Int_lpc2

2x per frame

code_12k2

Copyright © 2002 A. Gerstlauer

The model shown on the previous page only depicts the top levels of the hierarchy. As an
example of the overall complexity of the vocoder specification, this figure shows the
complete hierarchy of the encoding part of the vocoder down to the leaf behaviors.
In general, at each level of the hierarchy, the specification model hides unnecessary
details while focussing the designer and the tools onto the important aspects at hand.
In total, the specification model of the vocoder contains 43 leaf behaviors and consists of
13,000 lines of code.

57

Architecture Model

Copyright © 2002 A. Gerstlauer

res

Motorola DSP56600

Custom hardware

data

���
���
���
��� ���� �
���
� �

speech_in

Codebook

HW

prm_in �
��
�
���

��
	
		 Bits2PrmSpeech_In

cdbk_res

cdbk_data

�
��

�
�
�
�
�
�
�
�

�
��
�
��

�
�
�
�
�
�
�
��
�

�
�
�
�
�
�

speech_out

�
�
�
�
�
�
�
�

Speech_Out��
�
��
�

�
��
��
��
�

��
�
��
�

������������

Prm2Bits ��
�

!!
!
""
"

prm_out

Post_Filter

Decode_12k2

D_lsp

Pre_process

LP_analysis

Open_loop

Closed_loop

Start_codebook

Wait_codebook

Update

res

data

speech

prm_in

prm

speechprm

prm_in

synth_out

speech_in

bits_out

DSP

bits_in

The architecture model is shown here. At the center of the architecture is the DSP56600
digital signal processor (yellow). The DSP runs encoding (left) and decoding (tasks)
concurrently in a dynamic scheduling approach. The main loop of the application is
formed by the encoding task reading incoming speech samples, processing them, and
producing the encoded bit stream at the output. However, encoding is interrupted
whenever a new packet arrives at the decoding side. Depending on the state of the
decoding process, the corresponding decoding stage is executed and once the decoder has
finished processing the incoming packet control returns to the encoder.
The encoding task on the DSP is supported by the codebook search custom HW
component (blue, middle right). The encoder communicates with the codebook HW via
message-passing channels in order to send data into the co-processor for processing and
to receive the corresponding results.
Finally, the DSP is surrounded by four peripheral custom hardware components that
handle I/O with the environment, pre-process incoming speech or bit streams, and
perform the necessary framing. Similar to the codebook HW, the DSP communicates with
the peripheral HW via message-passing channels, sending and receiving
encoded/decoded bit and speech frames.

58

Communication Model

nWR

Data[23:0]

intC

Addr[15:0]

MCS

nRD

Bus InterfaceBus Driver

Bus InterfaceBus Interface Bus Interface Bus Interface

HW
Codebook

Speech_In Bits2Prm Prm2Bits Speech_Out

DSP

Copyright © 2002 A. Gerstlauer

The communication model as the result of the communication synthesis process is shown
here. The five components are connected by and communicate via the addess, data, chip
select (MCS), read (nRD) and write (nWR) wires of the bus. The DSP56600 processor
(yellow) is the master on the bus. The codebook HW co-processor (blue, top right) and
the four peripheral hardware components (blue, bottom) are bus slaves, listening for
transfers with matching addresses on the bus. In addition, hardware components can
signal the DSP by raising interrupts in the processor, as exemplified by the connection
from the codebook HW to the DSP’ s intC interrupt line.
Internally, the component’ s behaviors are unmodified from the architecture model.
However, the bus drivers and bus interfaces generated during communication synthesis
are inserted into the components as adapter channels interfacing the component’ s
behaviors to the bus.

59

Implementation Model

½ Cycle-accurate co-simulation
• DSP instruction-set simulator (ISS)
• RTL SpecC for hardware

nWR

Data[23:0]

intC

Addr[15:0]

MCS

nRD

Codebook
FSMD

Motorola
DSP56600

ISS
OBJ

DSP HW

Copyright © 2002 A. Gerstlauer

The finalimplementation model of the vocoder design is shown here. The implementation
model performs a cycle-accurate co-simulation of hardware and software components
communicating via bus wires.
The model for the DSP component runs an instruction-set simulation of the assembly
code of the software generated in the backend, driving and sampling the bus wires
according the the simulator’ s outputs and inputs. In case of the vocoder, the instruction-
set simulator (ISS) supplied by Motorola for their DSP56600 processor family was
hooked into the SpecC simulation via the ISS’ C-level API.
The hardware component models are refined into FSMD models of the custom hardware
RTL design. The state machines in the hardware execute the functionality and access the
bus wires in a cycle-accurate manner. The FSMD descriptions of the scheduled hardware
are modeled in the form of SpecC code, which plugs directly into the co-simulation.

60

• Experiment on GSM Vocoder design

• Conclusion
• Productivity gain >2,000X for industrial strength designs
• Enables extensive design exploration (60/day)

Results and Conclusions

Simulation Speed

1

10

100

1000

10000

100000

Spec Arch Comm Impl

N
o

rm
al

iz
ed

 T
im

e

Code Size

0

5000

10000

15000

20000

Spec Arch Comm Impl

N
u

m
b

er
 o

f
L

in
es

Comm→Impl

Automated
User / Refine

Manual
Modified

lines

Spec→Arch

Arch→Comm

3,275

914

30 mins / <2 mins5~6 mons

5 mins/ <0.5 min

3~4 mons.

6,146

15 mins / <1 min

1~2 mons.

Refinement Effort

Total 50 mins / <4 mins9~12 mons10,355

Copyright © 2002 A. Gerstlauer, J. Peng

Results for the different vocoder models are shown here, from system specification
model to implementation model. The tables list the time needed for the simulation, the
number of lines of code for each model and the refinement effort.
To validate the models, we performed simulations at all levels. The simulation
performance at different levels for the vocoder are shown in the graph. As we move down
in the level of abstraction, more timing information is added, increasing the accuracy of
the simulation results. However, simulation time increases exponentially with lower
levels of abstraction. As the results show, moving to higher levels of abstraction enables
more rapid design space exploration. Through the intermediate models, valuable
feedback about critical computation synthesis aspects can be obtained early and quickly.
As the number of lines of code for different models suggests, more lines of code are
added to the model with lower level of abstraction. Reflecting the additional complexity
needed to model the implementation detail introduced with each step.
The refinement effort table demonstrates that by using the automated system level
refinement process, large productivity gains of 2000x or more can be achieved for the
vocoder project.

61

Chapter 4

System Level Refinement

System Level Refinement

Junyu Peng
HaoBo Yu

Dongwan Shin
Daniel Gajski

Center for Embedded Computer Systems
University of California, Irvine

http://www.cecs.uci.edu/~specc

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

62

Motivation and Goals

• Model refinement is a tedious, error-prone and time-
consuming work

• Frequently, many iterations are needed

• Well-defined refinement saves designer time, thus
increasing productivity

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

In order to handle the ever-increasing complexity of System-on-Chip (SoC) design,
system methodologies usually divide the design process into a number of steps.
Accordingly, a number of models are employed to represent the design at each of these
steps, in which, designers make decisions by evaluating several options and selecting the
best one. Each decision results in a new detail being added to the design. Obviously, each
new detail requires modification or refinement of the corresponding model. Refinement
means deleting, adding and rewriting portions of the model, which is an elaborate but
mundane task that designers try to avoid. To make things worse, model refinement must
be repeated for each design option during the design exploration phase.
However, if the models and refinement are well-defined, the tedious and mechanical
refinement task can be automated. With this kind of automation, the exploration and the
design flow become productive and fun.

63

Overview

Specification model

Architecture model

Communication model

Architecture refinement

Communication refinement
Graphical

User Interface
(GUI)

Cycle refinement

FSMD model

RTL refinement

Implementation model

Design EnvironmentDesign Environment

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

In our Design Environment, the design flow (on the right side) is facilitated with a
Graphical User Interface (GUI).
The design flow consists of 5 levels of models (ovals), specification, architecture,
communication, FSMD and implementation models, and 4 synthesis steps (boxes),
architecture, communication, cycle and RTL syntheses. Note that each synthesis step
itself can be iterated, which is not shown in the figure for the sake of clarity.
The GUI provides a bi-directional interface between designers and the design flow. At
each design step, the GUI displays relevant information of the design, such as profiling
data or estimated metrics, for designers to make design decisions. Then, designers’
decisions are passed back into refinement tools through the GUI.
In the following sections, we will explain our design flow, in particular the models and
refinements, by going through a simple example. At the end, we will show some
experiment results on a couple of industrial designs.

64

Behavior Refinement (1/2)

C2
B2 B3

v1

B1
Designer’s Decision
•Select PE1, PE2
•Assign B1, B2 to PE1
•Assign B3 to PE2

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

Our example specification model is shown on the left side. The execution starts with leaf
behavior B1, followed by the parallel composition of leaf behavior B2 and B3. B1
produces variable v1, which is then consumed by both B2 and B3. In addition, the
concurrent behaviors B2 and B3 communicate through channel C2.
As we can see, the specification model describes the overall functionality of the system
without any implementation details. It is also untimed because initially we do not know
on which processing elements (processors, ASICs, IPs…) each behavior is executed. The
specification model is served as the input model in our design flow.
An early design decision in the first synthesis step, architecture synthesis, is to select
processing elements and assign behaviors to the processing elements for execution. As
we mentioned before, in our design environment, this decision is made by the designers
with the help of the GUI.
For our example, since behavior B2 and B3 can be executed concurrently, we can exploit
the parallelism by running them on two different processing elements. Therefore, we will
select components PE1 and PE2. Then behaviors B1 and B2 are assigned to PE1 while
B3 to PE2.

65

Behavior Refinement (2/2)

C2
B2 B3

v1

B1

v1

PE1

PE2

B1

C2B2 B3

CsynDone CntlT1: Add level of hierarchy

T2: Add synchronization

T3: Globalize communication

Designer’s Decision
•Select PE1, PE2
•Assign B1, B2 to PE1
•Assign B3 to PE2

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

With the decisions made, a new model incorporating these decisions can be derived and
shown on the right side.
If we compare these two models, similarities and differences can be easily identified
between each other. Obviously, with three changes (Behavior Refinement), the
specification model (left) can be refined into the desired new model (right) automatically.
First, an additional level of behavior hierarchy, PE1 and PE2, is introduced to represent
the selected components, which were not specified in the original specification model.
PE1 is composed of B1 and B2 while PE2 includes B3 to reflect the behavior assignment
decision.
Then synchronization, a pair of new behaviors Done, Cntl with channel Csyn, is inserted
at appropriate points inside PE1 and PE2 to make sure that B3 (on PE2) will not start
until B1 (on PE1) is finished, as implied by the original specification.
Finally, channel C2 and variable v1 are exposed as global (inter-component)
communication since they are accessed by behaviors on both PE1 and PE2.

66

Variable Refinement (1/2)

v1

PE1

PE2

B1

C2B2 B3

CsynDone Cntl

Designer’s Decision
•Map v1 to PE1
•Map v1 to PE2

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

Till this point, the communication among components is realized through global shared
variables (v1) and global variable channels (Csyn, C2). However, the shared variables
have to be assigned to actual memories in the system architecture and the global channels
assigned to physical connections (ie., busses) among components. We will focus on
shared variables in this section and discuss variable channels later in communication
synthesis.
There are two ways to map a shared variable. First, it can be mapped to a dedicated
shared memory component, allocated in addition to the processing elements. The shared
memory approach tends to reduce the concurrence of the processing elements because the
shared memory becomes the critical component in the system architecture. Alternatively,
it can be mapped to the local memories of the processing elements (PE1 and PE2).
However, additional message-passing mechanism is needed to make all local copies of
the same data consistent.
In our simple example, there is only one global shared variable v1. Behavior B1 produces
v1, which is consumed by B2 and B3. Let us assume that the design exercises the second
option to map v1 into local memories of both PE1 and PE2.

67

Variable Refinement (2/2)

v1

PE1

PE2

B1

C2B2 B3

CsynDone Cntl

v1

PE1

PE2
B1

C2B2 B3

CsynDone Cntl

v1

Cv1Send Recv

Designer’s Decision
•Map v1 to PE1
•Map v1 to PE2

T4: Localize variables

T5: Add communication channels

T6: Add communication behaviors

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

The resulted new model is shown on the right side. Compare with the input model on the
left side, the new model has a few differences. These differences can be made by
performing three refinements on the input model.
First, a local copy of v1 is created in each of PE1 and PE2. The behaviors inside each
component use the corresponding local copy stored in local memory instead of accessing
a global variable.
Then, a message-passing channel Cv1 is created for transferring v1 to PE2.
Finally, a pair of behaviors, Send and Recv, are added in components PE1 and PE2
respectively to transfer the value of v1 from PE1 to PE2.

68

Ordering Refinement (1/2)

v1

PE1

PE2
B1

C2B2 B3

CsynDone Cntl

v1

Cv1Send Recv

Designer’s Decision
•Order on PE1
 B1, Send, Done, B2
•Order on PE2
 Recv, Cntl, B3

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

Inherently, each processing element executes sequentially with single thread of control.
On the contrary, the original specification may include parallel composition of behaviors.
Therefore behaviors assigned to the same component have to be serialized for sequential
execution.
In a static scheduling approach, behaviors are executed in a fixed and pre-determined
order. As the result, the parallel compositions of behaviors in the model are converted
into sequential compositions. In a dynamic scheduling approach, the order of behavior
execution is determined dynamically during runtime. In this case, a central scheduler
behavior (RTOS) is introduced into the model, which dynamically selects a behavior to
execute according to a certain scheduling policy. The insertion of RTOS will be
discussed in detail in the later refinement steps.
For now, let us assume that the designer determines a static schedule for each component
as follows:
Execution order for PE1: B1, Send, Done and B2
Execution order for PE2: Recv, Cntl and B3

69

Ordering Refinement (2/2)

v1

PE1

PE2
B1

C2B2 B3

CsynDone Cntl

v1

Cv1Send Recv

v1

PE1

PE2
B1

C2B2 B3

CsynDone Cntl

v1

Cv1Send Recv

Designer’s Decision
•Order on PE1
 B1, Send, Done, B2
•Order on PE2
 Recv, Cntl, B3

T7: Serialize execution in each PE

T8: Delete redundant synchronization

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

According to the given static schedules, the behaviors are serialized for each component
(bold arrows in the figure). On PE1, behavior B1 executes and writes to v1. Then
behavior Send sends value of v1 to PE2 through channel Cv1. After that, behavior Done
notifies PE2 of completion of B1. Finally, B2 starts execution. Meanwhile, on PE2,
behavior Recv receives value of v1 and stores it in v1. Then behavior Cntl waits for the
completion of B1 on PE1. At the end, B3 reads v1 and starts execution.
After the serialization, it is obvious that the pair of synchronization behaviors, Done and
Cntl, become redundant because the pair of communication behavior for v1, Send and
Recv, already ensure that B3 executes after B1. Therefore we can optimize them away
from the model.
The resulted new model is called the architecture model that reflects the component
structure of the system architecture. In the architecture model, all component behaviors
run concurrently. However, the connectivity among the components is in the form of
point-to-point abstract variable channels. In the next communication refinement step,
these variable channels are refined into physical busses.

70

Channel Refinement (1/2)

v1

PE1

PE2
B1

B2 B3

v1

C2

Cv1Send Recv

Designer’s Decision
•Select Bus1
•Assign Cv1, C2 to Bus1

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

As we mentioned earlier, at this point, the communication among components is realized
through variable channels (Cv1, C2), which transfer data of any size by calling abstract
send/recv methods. In the final implementation, components are usually connected
through system busses. Therefore, the variable channels have to be transformed into
busses with real protocols.
The first decision is to select a number of busses and connect components to them. Then
variable channels are assigned to busses. These decisions are important because they
dictate the connection cost and communication latency, which sometimes dominates the
overall performance of a design. The two extreme approaches include a single-shared-bus
connection and a point-to-point connection. As described by its name, in the single-
shared-bus approach, there is one common bus that connects all components. This
approach is economic in terms of connection cost, however, it may suffer from
competition for the common bus from different components. In the point-to-point
approach, there is a dedicated connection between each pair of components. Therefore, it
avoids the competition for a common resource, but it is much more costly.
In our example, since there are only two components in the system, the designer can
easily decide to use one shared bus, Bus1, to connect PE1 and PE2. Obviously, the two
variable channels, Cv1 and C2 are all mapped onto Bus1.

71

Channel Refinement (2/2)

v1

PE1

PE2
B1

B2 B3

v1

C2

Cv1Send Recv

Designer’s Decision
•Select Bus1
•Assign Cv1, C2 to Bus1

v1

PE1

B1

B2

Send

PE2

B3

v1

Recv

C2

Cv1

Bus1

T9: Introduce bus channels

T10: Group variable channels

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

With the decisions made, the input model is modified accordingly and displayed on the
right side. A couple of transformations (Channel Refinement) were applied to derive the
new mode.
First, a new channel Bus1 is created to represent the selected bus. Bus1 is then
instantiated at the top level to connect components PE1 and PE2.
Then, the variable channels (Cv1, C2), which were at the top level in the input model, are
moved inside the bus channel Bus1. As the result, the behaviors previously connected to
the variable channels are now connected to the bus channel. For instance, behaviors Send
and Recv, which were connected to Cv1, now are all connected to Bus1.
As we can see in the example, channel Bus1 becomes a hierarchical channel since itself
includes other channel instantiations. The idea of having hierarchical channel is very
useful in the communication refinement.

72

Protocol Insertion (1/2)

Designer’s Decision
•Use double-hand-shake
protocol for Bus1

C2

Cv1

Bus1
PE1 PE2

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

After bus selection and variable channel assignment, the bus protocol mechanisms can be
selected and inserted into the model to replace the abstract communication. The bus
protocol is described with yet another channel called protocol channel. The protocol
channel encapsulates the bus wires and implements the bus protocol by driving and
sampling bus wires according to the protocol timing.
The protocols can be any standard bus protocol, such as PCI bus protocol. Or it can be a
custom-tailored protocol to meet unusual performance requirements.
Let us assume that in our example, a simple double-hand-shake protocol is to be used for
Bus1.
The double-hand-shake protocol uses address, data, ready and ack lines. The bus
transfers, send or receive, can only be initiated by the master of the bus, PE1 in this
example. During each data transfer, the master of the bus (PE1) starts by driving the
address lines, and data lines if it is a send transfer. Then the master raises the ready line.
When the slave of the bus (PE2) sees the ready raised, it either uploads (send) or latches
(receive) the data lines. Following that, the ack line is raised by the slave. When the
master sees the raise of ack line, it latches the data line and lowers the ready line. At last,
the slave lowers the ack line.

73

Protocol Insertion (2/2)

Designer’s Decision
•Use double-hand-shake
protocol for Bus1

T11: Insert bus protocol channel

T12: Generate application layer

C2

Cv1

Bus1
PE1 PE2

ready

ac
k

address[15:0
]

data[31:0]

IP
ro

to
co

lS
la

ve

IP
ro

to
co

lM
as

te
r

DblHSProtocol

IB
u

sM
as

te
r

IB
u

sS
la

ve

DblHSBus
PE1 PE2

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

The new model with the inserted double-hand-shake protocol is shown on the right side.
By comparing the two models, we can see that all differences are inside the bus channel
(now called DblHSBus to echo the selected protocol) itself and the rest of the model
remains identical. As we zoom into the bus channel, it becomes clear that two
refinements are applied to the input model.
First, a protocol channel, DblHSProtocol, is taken out from protocol library. This
protocol channel is instantiated inside the bus channel DblHSBus.
Second, an application layer (IBusMaster, IBusSlave) is implemented on top of the
protocol channel. More specifically, the application layer includes a set of abstract
communication methods, which are called directly by the application. For example, a
application layer may have a method to send 64-bytes-array. These methods internally
are implemented by calling the primitive methods provided by the protocol. For example,
the application layer method for sending 64-byte-array can be implemented by calling
sendByte primitive 64 times in a loop. As we can see, the internal implementation of the
application layer is total transparent to the applications. Therefore, different protocols can
be experimented easily.

74

Protocol Inlining (1/2)
PE1

ready

ac
k

address[15:0
]

data[31:0]

IP
ro

to
co

lS
la

ve

IP
ro

to
co

lM
as

te
r

DblHSProtocol

IB
u

sM
as

te
r

IB
u

sS
la

ve

DblHSBus
PE1 PE2

Designer’s Decision
•Inline protocols

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

When the designer is satisfied with the selected protocol, he may decide to inline the bus
protocols into components. The protocol lining basically moves methods of channels (bus
channels, protocol channels, …) into components connected to them. In other words,
before inlining, inter-component communication was implemented by the channels,
which are not part of any component behavior. After inlining, communication becomes
part of each component behavior. The communication of each component will be
synthesized together with the rest of the component’ s functional (computation) behaviors.
After protocol inlining, a bus-functional model is generated, where the connections
between components are represented by bus wires.

75

Protocol Inlining (2/2)

T13: Create bus ports

T14: Generate bus interfaces

ready

ac
k

address[15:0
]

data[31:0]
IP

ro
to

co
lM

as
te

r

PE2Bus

IP
ro

to
co

lS
la

ve

PE1 PE2

IP
ro

to
co

lS
la

ve

IB
u

sM
as

te
r

IB
u

sS
la

ve

PE1Bus PE2Bus

PE1Protocol PE2Protocol

PE1

ready

ac
k

address[15:0
]

data[31:0]

IP
ro

to
co

lS
la

ve

IP
ro

to
co

lM
as

te
r

DblHSProtocol

IB
u

sM
as

te
r

IB
u

sS
la

ve

DblHSBus
PE1 PE2

Designer’s Decision
•Inline protocols

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

When designers decide to inline the bus protocol, a couple of refinements are performed
on the input model to obtain the new model.
First, bus ports (address, data, ready, ack) are created for components, PE1 and PE2.
These ports are needed for connecting to the bus wires.
Then, the part of the bus channel becomes bus interface channel inside the corresponding
component. The interface channel is instantiated and connected to the bus ports. In the
example here, interface channel PE1Bus and PE2Bus are instantiated inside PE1 and
PE2, respectively. (The behaviors in PE1 and PE2 are omitted intentionally for clarity.)
The resulted communication model is a bus-functional model, where each component is a
behavioral description but the communication among them is described with time-
accurate bus protocol. In the following sections, the computations (behaviors) as well as
the inlined communications (channels) are further refined through software synthesis for
software components or hardware synthesis hardware components.

76

Task Creation

PE1
P

E
1B

us

v1

B1

B2

Send

T15: Create tasks

Designer’s Decision
•B1 maps to Task0
•Send, B2 map to Task1

P
E

1B
us

PE1

B1

Task0

Send

B2

Task1

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

The computation represented by the behaviors executing on the programmable processor
component is implemented by the software. Software refinement is the process in which
the behaviors mapped onto a programmable processor are converted into C/C++ code,
compiled into the processor’ s instruction set, and possibly linked against an RTOS. Task
creation is the first step. Task is a piece of sequentially executed code, which has a single
entry and exit point. If the original specification includes parallel composition of
behaviors mapped to a single processor, then each concurrently executed behavior will be
implemented as a task in software.
During the task creation process, an additional level of behavioral hierarchy is introduced
to wrap around the behaviors included in the tasks. Generally, the parallel behaviors in
the specification are refined into parallel tasks while the sequential behaviors are grouped
in one task.
For our simple design example, we assume that the designer maps behavior B1 to Task0,
behavior Send and B2 to Task1, so after task creation, two additional wrapper behaviors
are inserted to represent two tasks: behavior Task0 represents the first task which wraps
around the code of behavior B1 while behavior Task1 represents the second task which
groups the code of behavior Send and B2.

77

RTOS Model Insertion

T16: Insert RTOS model

P
E

1B
us

PE1

B1

Task0

Send

B2

Task1

P
E

1B
us

PE1

B1

Task0

Send

B2

Task1

RTOS Model

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

Usually, tasks can be scheduled statically, but there are cases in which data inter-
dependence between the tasks requires dynamic scheduling. Besides, we want to explore
different dynamic scheduling algorithms and their effects on system performance at an
early stage. In the implementation, scheduling service is provided by a real time
operating system (RTOS). However, at this stage, using a detailed, real RTOS
implementation would negate the purpose of an abstract system model. Furthermore,
information may not be available to target a specific RTOS. Therefore, we need
techniques to capture the abstracted RTOS behavior in system level models. Thus, a high
level model of the RTOS is introduced into the system at this step. The RTOS model
provides an abstraction of the key features that define a dynamic scheduling behavior
independent of any specific RTOS implementation. It maintains a pool of tasks and
dynamically selects a task to execute according to its scheduling algorithm.
In our design example, Task0 and Task1 are created using the RTOS model’ s API and
scheduled by the RTOS model.

78

Code Creation(1/2)

T17: Generation task code

T18: Generation bus driver code

PE1

B1

Task0

Send

B2

Task1

RTOS Model

P
E

1B
us

B
us

 D
riv

er

PE1

task0() {
 B1();
}

task0() {
 B1();
}

task1() {
 Send();
 B2();
}

task1() {
 Send();
 B2();
}

main()
{

}

t0= task_create(task0...);
task_wait (t0);
t1= task_create(task1...);
task_join(t1);

t0= task_create(task0...);
task_wait (t0);
t1= task_create(task1...);
task_join(t1);

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

After the tasks are created for a processor and the RTOS model is introduced, the
designer can selectively simulate the system software part either at this level or at cycle-
accurate level.
If the designer want to simulate at cycle-accurate level for the software part, we need
generate binary code for the processor. The first step of code generation is to create the
ready-to-compile code for the software tasks. First, all the behaviors inside a task are
converted into classes with the behavioral hierarchy converted into class hierarchy and
the ports of the behaviors into class parameters. In the next step, the top level behaviors
inserted during the task creation process are converted to C functions, with each function
implements a task and contains the class code of the behaviors mapped to that task. As
the last step of the code creation process, the communication channels are refined into
bus drivers and each call to send/receive method are replaced by calls to the send/receive
member functions of the corresponding bus driver.
For our design example, first, all the behaviors in the original specification are converted
into C++ classes (class B1, class Send, class B2), then the two additional behaviors
inserted during the task creation process are converted into two C functions (Task0 and
Task1) implementing the two tasks. The channel PE1Bus is converted to a C++ class
containing the bus driver send/receive methods of PE1Bus.

79

Code Creation(2/2)

T19: Insert RTOS

Designer’s Decision
•Select the RTLinux as
RTOS

B
us

 D
riv

er

PE1

task0() {
 B1();
}

task0() {
 B1();
}

task1() {
 Send();
 B2();
}

task1() {
 Send();
 B2();
}

B
us

 D
riv

er

PE1

task0() {
 B1();
}

task0() {
 B1();
}

task1() {
 Send();
 B2();
}

task1() {
 Send();
 B2();
}

main()
{

t0= pthread_create(task0...);
pthread_join (t0);
t1= pthread_create(task1...);
pthread_join(t1);

t0= pthread_create(task0...);
pthread_join (t0);
t1= pthread_create(task1...);
pthread_join(t1);

main()
{

}

t0= task_create(task0...);
task_wait (t0);
t1= task_create(task1...);
task_join(t1);

t0= task_create(task0...);
task_wait (t0);
t1= task_create(task1...);
task_join(t1);

}

}

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

As the next step of code creation, the RTOS model is implemented. The services of the
RTOS model are mapped onto the APIs of a specific standard or custom RTOS. In the
former case, the designer selects a specific RTOS, then the interface of the RTOS model
is implemented either by mapping them to the equivalent services of the selected RTOS
or by creating code on top of the actual RTOS primitives if the service is not provided
natively. After that, the compiled application object code is linked against the specific
RTOS library to produce the executable code for the target PE. If the designer doesn’ t
want to use a standard RTOS, since the number of interface routines of the RTOS model
is small, we make a custom RTOS to implement these RTOS model interface routines.
In our example, the designer select RTLinux as the target RTOS and the two interface
routines of the RTOS model (task_create, task_wait) are mapped into the corresponding
system calls in RTLinux(pthread_create,pthread_join). The code generated in the
previous step is then compiled and linked against RTLinux library to create the final
executable code.

80

Copyright 2002 J. Peng, H. Yu, D. Shin, D. Gajski

Cycle-Accurate Simulation

T20: Simulate the code

B
us

 D
riv

er

PE1

main()
{

}

task0() {
 B1();
}

task0() {
 B1();
}

task1() {
 Send();
 B2();
}

task1() {
 Send();
 B2();
}

t0= pthread_create(task0...);
pthread_join (t0);
t1= pthread_create(task1...);
pthread_join(t1);

t0= pthread_create(task0...);
pthread_join (t0);
t1= pthread_create(task1...);
pthread_join(t1);

PE1

OBJ

ISS

PE1_CLK

Task

Bus driver

RTOS
MCS
nRD

A

D

nWR

As we mentioned previously, the designer can selectively simulate the software part at
different levels. If the designer want to simulate the software code at the cycle-accurate
level, the instruction-set simulator (ISS) executes binary code created in the previous
steps based on the component’ s clock and drives the ports of the programmable processor
according to the inputs and outputs generated by the simulator.
Due to the fact that the component’ s interfaces remain unchanged during the software
refinement process, a mixed-level co-simulation of communication and implementation
models is easily possible. In our example, the instruction-set simulation of the PE1
implementation model can be combined with a bus-functional simulation of other PEs in
communication model. This allows evaluation of the detailed implementation of a single
component together with higher-level models of the other components with the result of
increased simulation speed.

81

Cycle-accurate model refinement(1/2)

PE2

v1

B3

Recv

T21: Generate cycle-accurate model for channels

PE2
Designer’s Decision
• Select clock period

P
E

2B
us

v1

B3

Recv

cy
cl

e-
ac

cu
ra

te
in

te
rf

ac
e

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

The PEs assigned for custom hardware will be implemented with RTL processors. Thus
cycle-accurate refinement converts communication model of PEs to cycle-accurate model
that will execute on user defined RTL processor.
The bus function model of the communication protocol in channel describes timing
diagram of the protocol as events on the wires and associated timing constraints.
The first task of cycle-accurate model refinement is to obtain cycle-accurate interface
model by scheduling bus protocols into the selected clock cycle, while still satisfying
timing constraints. We use FSMD model to represent the cycle accurate model. The
FSMD model is an intermediate model, which contains cycle-accurate descriptions for
each PE.
In this example, bus functional model of PE2Bus is refined into cycle-accurate interface
model.

82

Cycle-accurate model refinement(2/2)

PE2

v1

B3

Recv

T22: Generate cycle-accurate model for behaviors

PE2
Designer’s Decision
• Select clock period
• Allocate resources

V0 = v1+ v2

v2 = v0 * v1

V1 = Recv()

v0
S0

S1

S2

cy
cl

e
ac

cu
ra

te
in

te
rf

ac
e

cy
cl

e
ac

cu
ra

te
in

te
rf

ac
e

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

During cycle-accurate model refinement for behaviors, user will select the clock period
and allocate resources from RTL component database. RTL components database
contains function units and storage units. In this task, the behavioral description of PEs
will be split into clock cycles, which can be represented by FSMD model.
The target architecture for custom hardware is an RTL processor. The RTL processor
consists of a controller and a datapath. Datapath consists of set of storage units, set of
functional units and set of busses. All these RTL components may be connected
arbitrarily through busses. Each component may take one or more clock cycles to
execute, each component may be pipelined and each component may have input or output
latches or registers. The entire datapath can be pipelined in several stages in addition to
components being pipelined themselves. The controller defines the state of the RTL
processor and issues the control signals for the datapath.
In our example, the hierarchy of behaviors (Recv and B3) will be flattened into a behavior
of PE2 which will be divided into clock cycles. For example, variable v0 is obtained by
adding variable v1 and v2 in S0. Interface function call of Recv() will be performed in
state S1. In S2, v2 is the result of multiplication of variable v0 and v1.

83

RTL refinement(1/2)

T23: Split states to resolve resource conflicts

V0 = v1 + v2

V2 = v0 * v1

V1 = Recv()

v0

PE2

S2

bus1 = RF[1];
bus2 = RF[2];
bus3 = alu(bus1,
 bus2, ADD)
RF[0] = bus2

bus3 = Recv()
RF[1] = bus3

bus1 = RF[0];
bus2 = RF[1];
bus3 = mul (bus1,
 bus2)
RF[2] = bus3;

cm
p(

v0
, 0

)

Designer’s Decision
• Bind variables
• Bind functions
• Bind connections

PE2

S0

S1

S0

S1

S2

cy
cl

e-
ac

cu
ra

te
in

te
rf

ac
e

cy
cl

e-
ac

cu
ra

te
in

te
rf

ac
e

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

In this step, variables in behavioral description will be assigned to storage units such as
registers, register files, and memories. The operations will be mapped to function units
such as ALUs, multipliers, logic units and others. The data transfers between variables
and operations will be assigned to busses. All the assignment can be done by user to
maximally utilize user insight. Then behaviors will be split for conflicting resources such
as number of function units, number of ports of the storage units and number of busses.
In our example, variable v0, v1 and v2 are assigned to register file RF[0], RF[1], and
RF[2] respectively. Operation addition (+) and multiplication (*) are mapped to alu unit
and mul units respectively. Alu unit is 1-cycle function unit and mul unit is 2-stage
pipelined unit with input and output latches. Data transfers between variables and
operations are assigned to bus1, bus2 and bus3. Then after all assignment is done by
users, states will be split to resolve the resource conflict. The final FSMD is shown in
right side of above figure.

84

RTL refinement(2/2)

T24: Generate RTL Model in SpecC, SystemC, HDL

S2

bus3 = Recv()
RF[1] = bus3

cm
p(

v0
, 0

)

PE2

S0

S1

cy
cl

e-
ac

cu
ra

te
in

te
rf

ac
e

PE2

MCS
nRD

A

D

nWR

FSM

Register

ALU

Controller
Datapath

control inputs

control outputs

RF Memory

MUL

datapath inputs

Register

datapath outputs

bus1 = RF[0];
bus2 = RF[1];
bus3 = alu(bus1,
 bus2, ADD)
RF[0] = bus2

bus1 = RF[0];
bus2 = RF[1];
bus3 = mul (bus1,
 bus2)
RF[2] = bus3;

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

The final step of RTL refinement is generation of implementation model, which
implements the PE’ s state machine and is structural description of RTL processor. For
each PE, a structural description of the PE’ s controller and datapath in the form of a
netlist of RTL components is available. As such, the implementation model is accurate
down to sub-cycle delays.
Finally, the implementation model is then refined down through traditional design flows.
The structural representation of RTL can be written in SpecC, SystemC, Verilog or
VHDL. The structural RTL description in HDL represents the input to standard EDA
synthesis tools such as Synopsys Design Compiler.

85

Conclusions

• Synthesis steps are separated into decision-making
and model refinement

• Automatic mode refinement made possible
• refinements are well-defined
• steps are simple and small

• Benefits from automation
• Significant productivity gain
• Extensive design space exploration
• Formal verification can be applied

Copyright © 2002 J. Peng, H. Yu, D. Shin, D. Gajski

In this chapter, we illustrated the concept of automatic model refinement using our
example design flow. This kind of automation is based on the separation of the decision-
making task and the model-changing task at each design step. The decision-making
usually needs designers’ involvement meanwhile the model-changing does not.
As shown in the simple example, we identified the specific design decisions needed for
each synthesis step. In addition, the corresponding refinement rules are defined to change
models to reflect design decisions. The refinements are simple and well-defined, which
are necessary for automation.
The benefit of the automatic refinement is multifold. Obviously, model refinement will
significantly shorten the design cycle thus increase productivity. Furthermore, it enables
extensive design space exploration at each step to produce a better design.
This kind of automation also sheds light on the verification problem, which is becoming
more and more critical in the current design practices. First of all, automation totally
eliminates human errors and mistakes, which are hard to avoid when re-writing models
manually. Furthermore, the well-defined nature of the models and refinement rules makes
it possible to formally verify or even guarantee the equivalence of models at different
steps.

86

87

Chapter 5

Design of a JPEG Encoder

Design of a JPEG Encoder
 (Source: ICS TR-99-54)

Andreas Gerstlauer
Center for Embedded Computer Systems

University of California, Irvine
http://www.cecs.uci.edu/~SpecC

Copyright © 2002 A. Gerstlauer

88

JPEG Encoder

• Lossy still-image compression

BMP
Image

File

Image
Fragmentation

DCT Quantization
Entropy
Coding

JPEG
Image

File

Copyright © 2002 A. Gerstlauer

In addition to the JBIG design example, we also applied the system-level modeling
concepts to the example of a JPEG encoder. JPEG is a widely used lossy image
compression standard. Compression is based on the characteristics and limitations of the
human eye and is therefore especially suited, for example, for digital photographs.
There are four modes of the operations in the JPEG standard: the sequential discrete
cosine transform (DCT)-based mode, the progressive DCT-based mode, the lossless
mode, and hierarchical mode. Our design employs the first mode, the sequential DCT-
mode, which is the simplest and the most commonly used mode.
At the core of the JPEG encoding algorithm is a four-stage pipeline. In the first stage, the
source image is divided into non-overlapping data blocks, each of which contains an 8x8
blocks. Next, each block is processed through a discrete cosine transform.
In the quantization block, the DCT output coefficients are quantized. Finally, the AC
coefficients are encoded by using a predictive coder and the DC coefficients are encoded
by using a run-length coder. Then the Huffman coding algorithm is employed to generate
JPEG image.

89

Specification Model

HandleData

Quantization

EncodeStripe

Preshift

ChenDCT

Bound

DCT

ReceiveData

JPEGEncode

HffmnEncod

ZigzagMtr
x

encodeDC

encodeAC

InitTable

SizeTable

codeTable

orderCod

SpecifiedAC

InitTable

 SizeTable

codeTable

orderCod

SpecifiedDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

mduHigh = 1..Height

mduWide = 1..Width

ACEHuff DCEHuff

Copyright © 2002 A. Gerstlauer

At the top of the JPEG specification model shown here, the encoder consists of two
sequential behaviors, JPEGInit followed by JPEGEncode. JPEGInit performs
initialization of the two Huffman tables in two parallel subbehaviors, and writes the
output header. Then, the actual encoding is done in two nested, pipelined loops. The outer
pipeline splits the image into stripes of 8 lines each. The inner pipeline then splits the
stripes into 8x8 blocks and processes each block through DCT, quantization and Huffman
encoding.
As an example of communication, the figure shows the two Huffman tables ACEHuff and
DCEHuff that are sent from JPEGInit to JPEGEncode. Note that since the two behaviors
are composed sequentially, channels can degenerate to simple variables.

90

Architecture Model

SpecifiedHfmAC

SpecifiedHfmDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

HData

SW

DData

PreshiftDCT

ChenDCT

BoundDCT

DCT

SendDData

RecvHData
HandleData

Quantization

HuffmanEncode

EncodeStripe

ReceiveData

JPEGEncode

SendHData

RecvDData

HW

Copyright © 2002 A. Gerstlauer

For the purpose of architecture synthesis, we assumed a mapping of the encoder on a
Motorola Coldfire processor (SW) assisted by a custom hardware co-processor (HW) for
acceleration of the DCT.
Software and hardware communicate via two message-passing channels, sending and
receiving 8x8 blocks from software to the DCT processor and back. Behaviors inside the
SW processor are statically scheduled and serialized. The two nested pipelines are
converted into two nested, sequential loops.
In the JPEG architecture model, the software waits for the result of the DCT before
continuing with any processing. By changing only a few lines of code, we were able to
modify the architecture such that software and hardware operate in a pipelined fashion
(i.e. while the DCT is processing a block the software continues processing of the
previous block and prepares the next one), resulting in 100% utilization of the SW
processor. Similarly, other architectural alternatives can be easily explored in a very short
amount of time with minimal changes in the model.

91

Communication Model

SpecifiedAC

SpecifiedDC

DefaultHuffman

JPEGStart

JPEGHeader

JPEGInit

SW

Preshift

ChenDCT

Bound

DCT

SendDData

RecvHData

HW

MWData[31:0]

MRData[31:0]
MAddr[31:0]

MTSB
MTAB
MWDataOE
MRWB

INTC

T

HandleData

Quantization

HffmnEncode

EncodeStripe

ReceiveData

JPEGEncode

SendHData

RecvDData

Copyright © 2002 A. Gerstlauer

For communication synthesis, we connected the two processors via a single bus using
the Coldfire bus protocol. Furthermore, it was assumed that the protocol of the DCT IP is
fixed and incompatible with the Coldfire protocol, necessitating the inclusion of a
transducer.
The SW processor is the master on the bus and drives the address and control lines. The
HW co-processor listens directly on the address bus and its associated control lines while
the transducer translates between data transfer protocols. For synchronization, the
hardware signals the software through the processor’s interrupt line INTC.
Inside the two PEs, bus drivers and interrupt handlers translate the message-passing calls
of the behaviors into bus transactions by driving and sampling the PE’s bus ports
according to the protocol.

92

Implementation Model

MWData[31:0]

MRData[31:0]
MAddr[31:0]

MTSB
MTAB
MWDataOE
MRWB

INTC

ColdFire
Processor

Transducer

DCT IP

Copyright © 2002 A. Gerstlauer, D. Shin

The final implementation model after communication synthesis and synthesis of the
custom hardware parts is shown above.
For the software part of the JPEG design(ColdFire processor), the corresponding
behaviors will be compiled into binary codes which will be simulated by ISS.
For the custom hardware part of the JPEG design(DCT IP), a corresponding RTL
processor with custom controller and custom datapath was instantiated from IP library.
DCT IP has CMP, ALU, SHIFT and MUL to perform operations and 128x8 internal
memory, 18x32 register files and registers to store run-time data.
For the DCT IP interface, a transducer was synthesized that performs protocol translation
between the DCT IP interface and the system bus (ColdFire bus protocol) based on the
timing diagrams of the two bus protocols. The behavior of the transducer is represented
by FSM.

93

Results and Conclusions

• Simulation Speed & Code size

Code Size

0

500

1000

1500

2000

2500

3000

3500

Spec Arch Comm Impl
N

u
m

b
er

 o
f

L
in

e
s

Simulation Speed

1

10

100

1000

10000

100000

1000000

Spec Ar ch Comm Impl

N
o

rm
al

iz
e

d
 T

im
e

Comm→Impl

Automated
User / Refine

Manual
Modified

lines

Spec→Arch

Arch→Comm

751

492

20 mins / <1 mins3~4 mons

3 mins/ <0.5 min

1~2 mons.

1,278

5 mins / <0.5 min

~1 mons.

Refinement Effort

Total 28 mins <2mins5~7 mons2,521

• Refinement Effort

Copyright © 2002 A. Gerstlauer, J. Peng

Results for the JPEG encoder models in SpecC are shown here from system specification
model to implementation model. The graphs show the time needed for the simulation and
the number of lines of code for each model for encoding of a 116x96 black-and-white
image.
To validate the models, we performed simulations at all levels. As we move down in the
level of abstraction, more timing information is added, increasing the accuracy of the
simulation results. However, simulation time increases exponentially with lower levels of
abstraction. As the results show, moving to higher levels of abstraction enables more
rapid design space exploration. Through the intermediate multiprocessing model,
valuable feedback about critical computation synthesis aspects can be obtained early and
quickly.
As the number of lines of code suggests, refinement between models is minimal and is
limited to the additional complexity needed to model the implementation detail
introduced with each step.
The refinement effort table shows that automated system level refinement process can
achieve 2000 times productivity gains comparing manual refinement process in JPEG
project.

94

95

Chapter 6

Design of a JBIG Encoder

Design of a JBIG Encoder
 (Source: ICS TR-00-13)

Junyu Peng
Center for Embedded Computer Systems

University of California, Irvine
http://www.cecs.uci.edu/~SpecC

Copyright © 2002 J. Peng

96

• An image compression standard (facsimile)

• Distortion-less and progressive encoding

JBIG Encoder

Copyright © 2002 J. Peng

JBIG stands for “Joint Bi-level Image experts Group”. JBIG is one of the image
compression/decompression standards. Facsimile is one of its many applications.
Specifically, it is a lossless progressive encoding of a bi-level image (an image that has
only two colors, like black-and-white). It is lossless because the decoded image is
identical to the original without any distortion. The progressive capability enables the
transmission of the image with different resolutions over networks. As shown in the
figure, when this feature is enabled, a series versions called layers (ID-1, ID-2, …, I0) of the
original input image (ID) at reduced resolutions are extracted, encoded and transmitted
separately.
The specification for the JBIG standard is available as “ITU-T Recommendation T.82”.
There are several software implementations of JBIG available in the public domain. The
one adopted in our design can be found at ftp://ftp.informatik.uni-
erlangen.de/pub/.

97

Specification Model

Copyright © 2002 J. Peng

The behavioral hierarchy as well as some profiling information with a test image of the
derived Specification model in SpecC are shown above.
The whole of JBIG functionality has been encapsulated as jbg_enc_out. It is composed of
two sub-behaviors write_BIH which writes the header information and output_sde.
output_sde is further composed of Resolution_reduction described earlier, encode_sde
which encodes and buffers the code for one horizontal stripe of pixels and jbg_buf_output
which writes the buffered code to file upon the completion of that stripe. Inside of
encode_sde, one of two similar but mutual-exclusive sub-behaviors sde_encode_lowest
(lowest layer) and sde_encode_diff (differential layer) is selected to run.
sde_encode_lowest is composed of two leaf behaviors, determin_ATMOVE and
Typical_prediction, and sde_lowest_encode_line which encodes one line of pixels within
the stripe at a time. sde_lowest_encode-line is further composed of fetch_pixels which
extracts the current pixel out of the line and sde_lowest_encode_pixel which encodes one
pixel at a time.

98

Hardware/Software Estimation
1.

28

6.
23

0.
03

0.
0

9 0.
91

4.
84

3.
2

12
.7

3

3.
05

16
.4

3

1.
5

9

12
.9

3

3.
99

15
.2

1

3.
82

13
.2

5

0

2

4

6

8

10

12

14

16

18

M
ill

io
n

C
lo

ck
 C

yc
le

s

Reso
lu

tio
n R

ed
uctio

n

Dete
rm

in
e A

TMO
VE

Typ
ic

al
 P

re
di

ct
io

n

Dete
rm

in
is

tic
 P

re
dic

tio
n

Arit
hm

eti
c

Enco
der

M
odel T

em
pla

te

Adaptiv
e

Tem
pla

te

Fet
ch

 P
ixe

ls

Hardware
Software

Copyright © 2002 J. Peng

Before we started SW/HW partitioning of the behaviors, a coarse HW and SW
performance estimation for different function blocks was performed to give a distribution
of computation amount.
In our approach, the function blocks are further divided into basic blocks to statically
estimate clock cycles for each basic block.
For estimation of SW implementation, the clock cycles needed to execute a given basic
block are obtained by summing up the clock cycles for all instructions compiled for the
target processor.
Estimation of HW implementation is a little different. First, an RTL architecture that
implements the functionality of the basic block is sketched. Based on the architecture, a
FSMD model can be derived. Thus, the number of clock cycles for executing a given
basic block in hardware can be found by counting the number of states within that basic
block.
Then, we can find out how many times each basic block was executed by simulating the
models with a test image.
For each basic block i, if the number of clock cycles is Ci and the number of executions
is Ni, the total estimation of SW (or HW) implementation is given by ∑Ci*Ni.

99

Partitioning Solution 1

Copyright © 2002 J. Peng

Knowing the HW/SW performance of each function block, now we can consider various
HW/SW partitioning solutions. Since each behaviors could be implemented either in
hardware or in software, theoretically the number of possible partitions is too huge to
handle although most of them are not good in terms of quality. Therefore we need some
heuristics to construct those promising solutions rather than to enumerate all possible
partitions.
First, behaviors that have the most intensive computation are put into hardware to obtain
speed gain. Later on, other behaviors can be added into hardware gradually to further
speed up the design. The selection of these additional behaviors is based on the profiled
information of the specification, which includes the communication between behaviors,
behavior hierarchy, loop counts, data-sharing among behaviors and so on.
In the first solution, only the Arithmetic_encoder behaviors are implemented in hardware.
The rest of the system is to be executed in software. This decision was made based on the
estimated complexity of the Arithmetic_encoder and its high calling frequency, while
minimizing hardware cost.

100

Partitioning Solution 2

Copyright © 2002 J. Peng

As shown in the above figure, composite behaviors sde_lowest_encode_line and
sde_diff_encode_line are completely implemented in hardware.
The reasons for making this partitions are following.
First, either behavior is composed of a group of closely related and connected sub-
behaviors which indicate data-sharing among them.
Secondly, these two behaviors have similar behavior hierarchy and achieve similar
functionality of encoding one line of pixels at a time. The mutual-exclusive execution
between them suggests a resource-sharing implementation.
In addition, their sub-behaviors all contribute significantly to the total computational
complexity, as shown in the earlier estimation.
Finally, there is a frequently iterated loop inside each of them therefore we don’ t want to
make a SW/HW dichotomy inside such a loop since that would introduce large amounts
of SW/HW communication overhead.

101

Partitioning Solution 3

Copyright © 2002 J. Peng

In the third solution, we decided the whole encode_sde behavior to be implemented in
hardware.
The reasons for this partition are similar to those for Solution 2. encode_sde is a
relatively independent function block that encodes a whole stripe of pixels. It includes
many computational behaviors therefore it is profitable to speed up its execution with a
hardware implementation. It also includes a loop that is iterated quite often which
discourages a SW/HW split of encode_sde.
The drawback, of course, is the increased complexity and cost for implementing the
hardware.

102

Partitioning Solution 4

Copyright © 2002 J. Peng

In the fourth solution, we put almost everything but two behaviors (write_BIH and
jbg_buf_output) into hardware. These two behaviors are executed in SW because their
function is writing the code out to the output file, which we don’ t want to handle in
hardware.
Compared to the third solution, Resolution_reduction is also added to hardware in the
hope to further speed up the execution of multi-layer encoding.

103

JBIG Performance
0

11
6.

43

3.
05

10
0.

01

15
.6

7
45

.8
6

16
.6

1
40

.9
3

17
.8

9
34

.6
9

0.
03

11
6.

29

0

20

40

60

80

100

120

M
ill

io
n

 C
lo

ck
 C

yc
le

s

Softw
are

Solu
tio

n 1

Solu
tio

n
2

Solu
tio

n 3

Solu
tio

n
4

Com
mer

ci
al

Software
Hardware

Copyright © 2002 J. Peng

The performance of each of the partitions are evaluated and shown in the above figure.
The graph shows the total performance for each partition and how it is composed out of
time spent in the software and hardware side. Since we used clock cycles as our measure,
we need to normalize SW and HW clock cycles. We found the critical path in the HW
RTL architecture to be <12ns which was then used as the HW clock. We assume the
clock rate of the target processor to be 166Mhz which gives a clock of 6ns. Therefore
each HW cycle is normalized to 2 SW cycles.
As expected, the pure SW solution takes the maximum execution time, since software
tends to be slower than an ASIC. As seen in the above figure, the performance in terms of
speed goes up when more blocks are put into HW. Solution 4 yields the best performance
since the maximum number of blocks are implemented in HW.

104

Communication & Storage

Software Solution 1 Solution 2 Solution 3 Solution 4

SW ⇒ HW 0 2 B 175 B 3 kB 70 kB
HW ⇒ SW 0 2 B 150 B 4 kB 432 kB
HW ⇔ SW 0 4 B 325 B 7 kB 502 kB
Transfers 0 138,355 2,126 108 1
Total 0 550 kB 690 kB 756 kB 502 kB

Software Solution 1 Solution 2 Solution 3 Solution 4

Hardware 30 kB 39 kB 44 kB 54 kB
Software 526 kB 496 kB 487 kB 482 kB 472 kB
Total 526 kB 526 kB 526 kB 526 kB 526 kB

• Communication requirements:

• Memory requirements:

Copyright © 2002 J. Peng

The other metrics we need to look at include SW/HW communication overhead and
memory requirement.
The communication overhead was computed in terms of the total number of bytes of data
that may need to be transferred. First, we compute the bandwidth of one data transfer
between SW and HW. Then we find out how many times such a transfer needs to occur.
The total communication is computed by multiplying these two quantities.
The memory size requirement of both HW and SW for each partition was also tabulated.
As more blocks are implemented in HW, the amount of HW memory increases as well,
but not too dramatically.
All these metrics are needed by the designer in order to choose appropriate partitions for
a variety of design constraints.

105

Selection of Partitioning

• Arithmetic encoding is computation intensive in
one-layer-encoding

• Solution 1 minimizes hardware with comparable
performance to other solutions

Copyright © 2002 J. Peng

Among all these solutions, we had to choose one of them and proceed in our SpecC
methodology. To simplify things, we have chosen Solution 1 since our goal was to verify
the SpecC methodology using this JBIG example.
Solution 1 only has the arithmetic encoder block in hardware, but it does give comparable
performance to other solutions despite of the minimum hardware it needs. Some JBIG
applications, such as FAX, only use one-layer-encoding which relies on arithmetic
encoder even more heavily. That is why the existing design mentioned earlier has similar
partition to Solution 1.

106

Communication Model

Copyright © 2002 J. Peng

The communication model is shown above. Three components, ColdFire, JBIG_HW and
Memory are all connected to System Bus.
System Bus uses ColdFire processor’ s protocol. It consists of control bus MCNTL,
address bus MADDR and data bus MDATA. MCNTL includes control signals, such as
transaction start (MTSB) and read/write signal (MRWB).
All components on the same bus must be clocked at the same speed. The clock of System
Bus is 6ns, which is different from the access time of Memory (12ns) and the clock of
JBIG_HW (~12ns). Therefore, bus interfaces are inserted for both Memory and JBIG_HW
to resolve the timing mismatches.

107

Implementation Model - Interface

Copyright © 2002 J. Peng

In order to obtain the final implementation model, the bus interfaces and the hardware
JBIG_HW have to be synthesized. We will discuss the synthesis of the interfaces first.
Once we have the timing diagrams for the signals on both sides of the interface, a finite-
state-machine (FSM) is constructed to generate desired signals at appropriate time. The
clock of the FSM is the same as the bus clock.
The FSM for the Memory-Bus Interface is shown in the figure. At the initial state S0, the
memory access is disabled. When MTSB (transfer start) is asserted, it goes to S1 or S4
depending on the value of MRWB (read/write). At S1, memory control signals are
generated. Because the read cycle is 12ns and the clock is 6ns, at least one more state
(S2) is needed to maintain the values of those memory signals.
In the last state (S3), OE is asserted to enable the output of data and MTAB is asserted to
notify ColdFire that data is valid. The process is similar for a write transaction.
The finite state machine then can be fed into any high-level synthesis tool to produce gate
netlist of the interface.
The synthesis of the JBIG_Bus Interface can be repeated in a similar way.

108

Implementation Model - JBIG_HW

Copyright © 2002 J. Peng

The RTL architecture of the ASIC component JBIG_HW is sketched above. It consists of
two parts: a Datapath and a Controller.
The Datapath is composed of three types of components: functional units (CMP, ALU,
and Decoder), storage units (Register File, ROM and registers) and interconnection units
(Bus1, Bus2 and Bus3). The Decoder and 5 Reg_IO registers are included to enabble the
communication between ColdFire and JBIG_HW. ColdFire can access these registers
directly using memory read/write instructions by mapping them to the address space of
ColdFire. The Decoder is used to decode the address on the system bus to enable access
to the addressed registers.
The Controller is composed of a State register which stores the current state, a Next State
Logic unit which decides the next state and an Output Logic unit which generates
Datapath control signals for the current state.

109

Conclusions

• SpecC methodology demonstrated with a real example.

• SpecC is capable of transforming an executable
specification into a RTL implementation.

• Basic refinement rules are established and applied to
transform SpecC models.

• With the availability of SpecC automated tools,
productivity gain are achievable of 100X over the
manual approach.

Copyright © 2002 J. Peng

In this presentation, we illustrated our design flow through the design of the JBIG
encoder. It shows that the design flow is capable of refining an executable specification
into its RTL implementation.
Architecture exploration starts with a profiling on the specification and initial estimation
of pure SW and HW implementation. Among several SW/HW partitions, one solution
was selected to determine the system architecture. The SpecC function model was refined
into an architecture model to reflect the design decisions.
Communication synthesis refines the abstract communication in the architecture model
into signal exchanges over actual wires. Interfaces are generated to bridge incompatible
timing protocols. The refined model is the communication model.
Finally, with the compilation of the software component for the selected processor and
refinement of the hardware component into behavioral or structural model that can be
synthesized using high-level synthesis tools, the implementation model was derived and
ready for manufacturing.
At the time of this project, the SpecC tools were not available, therefore most of the work
was done manually. We can expect a 100X speed up for the design cycle with the help of
these tools when they are available.

110

111

References

1. A. Gerstlauer, R. Dömer, J. Peng, D. D. Gajski, System Design: A Practical Guide
with SpecC, Kluwer Academic Publishers, Boston, MA, ISBN 0-7923-7387-1, June
2001.

2. D. D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, SpecC: Specification
Language and Methodology, Kluwer Academic Publishers, Boston, MA, ISBN 0-
7923-7822-9, March 2000, 336 pages.

3. Junyu Peng, Lukai Cai, Anand Selka, Daniel D. Gajski, Design of a JBIG Encoder
using SpecC Methodology, UC Irvine, Technical Report ICS-TR-00-13, June 2000.

4. L. Cai, J. Peng, C. Chang, A. Gerstlauer, H. Li, A. Selka, C. Siska, L. Sun, S. Zhao
and D. Gajski, Design of a JPEG Encoding System, UC Irvine, Technical Report ICS-
TR-99-54, November 1999.

5. Andreas Gerstlauer, Shuqing Zhao, Daniel D. Gajski and Arkady M. Horak, Design
of a GSM Vocoder using SpecC Methodology, UC Irvine, Technical Report ICS-TR-
99-11, March 1999.

6. Andreas Gerstlauer and Daniel D. Gajski, System-Level Abstraction Semantics,
Proceedings of International Symposium on System Synthesis, Kyoto, Japan, October
2002.

7. Junyu Peng and Daniel D. Gajski, Optimal Message-Passing for Data Coherency in
Distributed Architecture, Proceedings of International Symposium on System
Synthesis, Kyoto, Japan, October 2002.

8. W. Mueller, R. Dömer, A. Gerstlauer, The Formal Execution Semantics of SpecC,
Proceedings of International Symposium on System Synthesis, Kyoto, Japan, October
2002.

9. Rainer Dömer, The SpecC System-Level Design Language and Methodology, Part 1,
Embedded Systems Conference, San Francisco, March 2002.

112

