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Abstract—Reducing energy consumption has been an important design issue for large-scale streaming media storage systems. 
Existing energy conservation techniques are inadequate to achieve high energy efficiency for streaming media computing 
environments due to high data migration overhead. To address this problem, we propose in this paper a new energy-efficient 
method called Explicit Energy Saving Disk Cooling or EESDC. EESDC significantly reduces data migration overhead because 
of two reasons. First, a set of disks referred to Explicit Energy Saving Disks (EESD) is explicitly fixed according to temporal 
system load. Second, all the migrated data in EESDC directly contributes on extending the idle time of EESD to conserve more 
energy efficiently. Therefore, the EESDC method is conducive to saving more energy by quickly achieving energy-efficient data 
layouts without unnecessary data migrations. We implement EESDC in a simulated disk system, which is validated against a 
prototype system powered by our EESDC. Our experimental results using both real-world traces and synthetic traces show that 
EESDC can save up to 28.13%-29.33% energy consumption for typical streaming media traces. Energy efficiency of streaming 
media storage systems can be improved by 3.3~6.0 times when EESDC is coupled. 

Index Terms—Energy Conservation; Data Layout; Streaming Media; Data Migration; Storage 
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1 INTRODUCTION

HE energy efficiency has already been a major issue 
in the development of large-scale data centers. In 
2008, 39.6TWh of electricity were needed to power 

data centers throughout Western Europe and the energy 
expenses were as high as €4.9 billion [1]. The energy con-
sumption problem becomes even more critical now with a 
high up to 60 annual growth rate of storage system capac-
ity [2]. In a disk-dominated storage system, disks may 
account for as much as 86% of the electricity cost in the 
entire system [13]. For the popular streaming media ap-
plications, disks are likely to dominate power consump-
tion of storage systems due to large data storage capaci-
ties and heavy I/O load conditions. Therefore, improving 
energy efficiency of streaming media storage systems is a 
critical issue addressed in this study.  

Although flash-based storage devices have excellent 
performance and low power consumption, they have not 
been widely adopted due to high price and poor endur-
ance for erasing operations, which is inevitable for rewrit-
ing. Compared with flash, multi-speed disks have not 
even been a commercialized product due to the expensive 
and complex fabrications. In addition, the cache-based 
energy-saving solutions are inadequate for achieving 
good performance in the realm of streaming media sys-

tems because of the extremely wide capacity gap between 
disks and memory cache. Energy-efficient data layout 
algorithms are the most effective approach to conserve 
energy for streaming media storage systems built with 
conventional disks. 

The effects of energy-efficient data layout algorithms 
depend on the following two key points: 

Unbalanced data layouts can keep more disks idle as 
long as possible to spin down for energy savings.  
Fast and efficient data migrations to achieve the un-
balanced data layouts.  

Motivation. The primary problem of existing energy-
efficient disk data layout algorithms applied in streaming 
media systems is two-fold. First, data migration overhead 
of existing algorithms is too high when facing the huge 
data volume of streaming media. Large-scale data migra-
tions are very time-consuming, thereby making it ineffi-
cient for existing techniques to conserve energy. Second, 
another negative factor that slows down the data migra-
tion process is that the I/O bandwidth reserved for data 
migrations is very limited, because most of the disk 
bandwidth is contributed to provide streaming media 
data for huge amounts of online users to guarantee high 
QoS requirements. Therefore, we address this problem by 
proposing efficient data migration schemes to substan-
tially reduce data migration overhead.  

Table 1 shows the simulated data migration overhead 
of Popular Data Concentration scheme or PDC [4] - a repre-
sentative energy-efficient data layout algorithm. PDC 
features distributing the data on a disk array by data 
popularity in descending order to save energy. We simu-
lated a 10-disk PDC system with a 24h I/O trace from the 
real-world CCTV VOD (video-on-demand) system. Table 
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1 gives the number of migrated blocks, and the migrated 
data size measured in the simulation. In addition, assum-
ing all the 10 disks are only used to transfer the migrated 
blocks at the same time without serving users, the migra-
tion time and energy caused by data migrations are also 
listed. The results indicate that PDC has to migrate 81346 
blocks of 372.78 GB in order to conserve energy for the 
VOD system. It ideally takes 22.3 minutes to migrate the 
data blocks, thereby consuming extra 902853 J energy (see 
Section 5.5.1 for detailed experiments). However, the 
practical migration time will be on the order of hours fill-
ing most of a day, because complete parallelism among 
disks is impossible and most bandwidth must be reserved 
by serving users. We observed from this experiment that 
the time and energy overhead of PDC is very high for 
VOD systems.  

Basic Idea. The low data migration efficiency of tradi-
tional energy-efficient data layout algorithms weakens 
their energy saving effects in streaming media environ-
ment. The reason is their implicit way of energy conserva-
tion. They does not necessarily guarantee that which 
disks can be switched into the standby mode to save en-
ergy, so data migrations that cannot lead to save energy 
are unnecessary and causes the low efficiency. Specially, 
in MAID, copying the hot contents in the disks, which 
will not switch to standby mode, into the cache disks is 
unnecessary for energy saving. In PDC, the data migra-
tion is arranged on the whole disk array to form a specific 
data layout. Because the layout of the data with the low-
est popularity is the key for energy saving, most data mi-
grations in PDC that occur on the data with high or me-
dium-level popularity contribute little to energy savings. 

In this paper, we have proposed a new energy-efficient 
data layout algorithm called Explicit Energy Saving Disk 
Cooling (EESDC). EESDC first explicitly selects some ap-
propriate disks as the Explicit Energy Saving Disks (EESD) 
according to temporal system load. Next, EESDC ex-
changes the “hot” data (i.e., data that is likely to be ac-
cessed) in EESD with the “cold” data in the non-EESD 
disks. In doing so, EESD can be cooled down by the vir-
tue of data migrations to achieve high energy efficiency. 
EESDC can reduce data migration overhead significantly 
by explicitly confirming EESD and then focusing the data 
migrations only on a handful of important “hot” data on 
EESD that preventing EESD from spinning down.  

Our trace-driven simulations under real-world traces 
show that EESDC outperforms other energy-efficient data 
layout algorithms, and saves up to 28.13%-29.33% energy, 
which is 3.3~6.0 times of PDC, for typical practical 
streaming media workloads. Such an improvement in 
energy saving is possible because data migrations caused 
by EESDC are reduced by more than one order of magni-

tude compared with PDC (see Table 1). Moreover, practi-
cal hardware experiments validate that the simulation 
results are accurate and convincing. 

This paper is organized as follows: In section 2 we 
briefly describe the background and the related work. 
Section 3 gives an overview of the explicit energy saving 
disk cooling technique or EESDC. The implementation 
details of EESDC are presented in section 4. In section 5, 
we develop a simulator to evaluate EESDC by comparing 
it with other energy-efficient data layout algorithms. In 
addition, we present in this section a validation of the 
simulator to demonstrate the accuracy of our simulation 
studies. Finally, section 6 concludes this paper with the 
discussion of future work. 

2 BACKGROUND AND RELATED WORK
2.1 Streaming Media and its Characteristics 
In streaming media applications, users can enjoy videos 
or audios as they are being downloaded to computers. 
For streaming media servers, disk bandwidth is usually 
the performance bottleneck, because a large number of 
online users who need video data from server every sec-
ond bring a mass of small-block random disk accesses. 
Generally speaking, streaming media services are consid-
ered as a data-intensive application. However, compared 
with traditional data-intensive applications, streaming 
media systems have their own special features: 

High QoS Constraints 
The QoS (Quality of Service) of streaming media appli-

cations is usually measured in startup delay and jitter 
rather than response time (see Section 5.2.2 for details). 
Moreover, the QoS constraints are much stringent than 
most online and all offline applications; low QoS services 
often mean unacceptable services for streaming media 
users. High bandwidth must be preserved to serve user 
requests to guarantee high QoS, so there is very limited 
bandwidth dedicated for data migrations among disks. In 
other words, streaming media application has weak tol-
erance for high data migration overheads. 

Large and Fast-Growing Storage Demand 
In the world’s newly produced data each year, multi-

media data, especially videos, are forming the largest cat-
egory. Videos are accumulated extremely fast. For exam-
ple, video materials about 12.6 million hours are pub-
lished on YouTube each year [24]. The number of accu-
mulated videos in Facebook grows up as high as 239% 
per year [8]. Such a large and fast-growing storage de-
mand makes streaming media application extraordinarily 
relies on highly cost-effective storage devices, i.e. cheap 
and large-capacity SATA disks instead of expensive mod-
ern storage devices like flash and multi-speed disks. 

The storage capacity required by media libraries is 
tremendously large compared with storage space offered 
by the main memory. Another negative factor is that the 
streaming media users dynamically change their interests 
all the time (e.g., Yu et al. [16] discovered that after one 
hour, the changing rate of the top 200 videos may be high 
up to 60%). Such a high rate of changing and the limited 
capacity of memory compared with disks make the cache 

TABLE 1
COMPARISON OF DATA MIGRATION OVERHEAD IN 24H

 PDC EESDC 

Migrated Block Num 81,436 7,340
Migrated Size 372.78 GB 33.60 GB 

Ideal  Migrating Time  22.3 minutes 2.0 minutes 
Extra Consumed Power 902,853 J 81,377 J 
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hit rate very low.  
In addition, among such a large data volume of 

streaming media, a considerable part of videos are sel-
dom or never accessed after being uploaded to servers 
[25]. Evidence indicates that the primary data set of 
streaming media itself has great potential and require-
ments to save energy, even without relying on redundant 
storage. 

Distinctive Behavior of Streaming Media Users 
The daily workload is drastically fluctuant for stream-

ing media users. In a considerable part of daily time, the 
load is very high (for example, there are a numerous of 
requests in the afternoon and evening, but few requests in 
the early morning [16]). 

In addition, streaming media users usually abort 
watching much before the end of videos. Yu [16] pointed 
out that 37.44% users leaves in the first 5 minutes of 
watching, and the majority of partial sessions (52.55%) are 
terminated by users within the first 10 minutes. Therefore, 
the accuracy of prefetching streaming media data will be 
low in the prefetching-based energy saving algorithms 
[30] because of the numerous unpredicted early aborted 
users. In fact, much of the prefetched data may be useless 
at all, with the results of wasting much storage and 
transmission resources in streaming media applications. 

2.2 Disk Power Management 
Conventional disks spin at full speed regardless of the 
active or idle modes. The disks can completely stop spin-
ning when they are placed in the standby mode to save 
energy without being able to serve any request.  

The goal of disk power management (DPM) schemes is 
to conserve energy by turning disks to the low-power 
mode without adversely affecting I/O performance. 

The FT scheme. The Fixed Threshold scheme or FT is 
the most popular DPM for conventional disks [4]. FT 
places a disk in the low-power mode after a fixed thresh-
old time has elapsed since the last I/O request. The 
threshold is usually set to the break-even time – defined as 
the smallest period for which a disk must stay in the low-
power mode to offset the extra energy spent in spinning 
the disk down and up.  

2.3 Energy Conservation Techniques 

2.3.1 Energy-Efficient Data Layouts  
Colarelli and Grunwald [3] proposed the Massive Arrays 
of Idle Disks (MAID) scheme that uses extra cache disks 
to cache recently visited data. MAID directs some I/O 
requests onto cache disks, thereby can place some non-
cache disks with light load in the low-power mode. How-
ever, MAID’s energy efficiency highly relies on a high 
cache hit rate of cache disks, because MAID makes no 
optimization on any data distribution for non-cache disks. 
If the cache hit rate declines, the performance of MAID is 
similar to the FT scheme. In addition, extra cache disks in 
MAID introduce power consumption overheads. There-
fore, energy savings offered by MAID is limited. 

Popular Data Concentration (PDC) [4] migrates data 
among disks according to data popularity in a descending 
order fixed by Multi Queue (MQ) algorithm [29]. All the 

disks’ load distributes in a descending order. This makes 
the disks storing low popularity content gain greater op-
portunities to stay in the low-power mode. Unlike MAID, 
PDC relies on data migrations rather than copying data. 
Thus, PDC not only optimizes disk data distribution for 
energy savings, but also avoids extra cache disks. The 
experimental results show that PDC outperforms MAID 
in terms of energy savings [4]. However, the data migra-
tion overheads caused by PDC in streaming media sys-
tems are too high, making the systems unlikely to finish 
streaming requests in time. The high migration overheads 
are inevitable because PDC makes uniform and stringent 
data layouts, which significantly weakens PDC’s energy 
 y-saving effect for streaming media applications.  

To illustrate the differences among FT, MAID, PDC 
and our proposed EESDC, we compare the disk I/O load 
distributions imposed by the four schemes in Appendix A. 

2.3.2 Other Energy Saving Approaches 
Tgil et al. [27, 28] proposed an energy-efficient architec-
ture that relies on NAND flash memory to reduce the 
power of main memory and disk in web server platforms. 
The flash memory not only extremely outperforms disks, 
but also is much more energy-efficient than disks. How-
ever, flash-memory-enabled storage systems are not 
widely adopted due to high price and weak endurance 
for erasing operations.  

Multi-speed disks are proposed to spin at different 
lower speeds to provide more opportunities to save en-
ergy. The shifting overhead between two rotational 
speeds of a multi-speed disk is relatively smaller than 
that of power-state transitions between the active and 
standby mode in a conventional disk. Carrera et al. [11] 
and Gurumurthi et al. [12] respectively investigated me-
thods to determine disks’ rotation speed. Zhu et al. [13] 
proposed Hibernator, whose key idea is to set the rota-
tional speed of all disks to appropriate values according 
to the system load, and to distribute data blocks on differ-
ent disk tiers according to the access possibility of the 
data blocks. Unfortunately, it is uncertain that multi-
speed disk products can be widely deployed in the not-
too-distant future due to their prohibitive manufacturing 
cost. 

Zhu et al. [10] studied approaches to conserve energy 
by caching parts of data in memory in order to create op-
portunities for some disks to be switched into or kept in 
low-power mode. Manzanares et al. developed an energy-
efficient prefetching algorithm or PRE-BUD for parallel 
I/O systems with buffer disks [30]. Prefetching data in 
buffer disks provides ample opportunities to increase idle 
periods in data disks, thereby facilitating long standby 
times of disks. However, when they come to streaming 
media applications, it is very hard to cache or prefetch 
accurate to-be-accessed data. Consequently, energy sav-
ings offered by those cache replacement/prefetching al-
gorithms are very insignificant (See Appendix G.1 for 
detailed experiments). 

In addition, some energy-efficient data layout algo-
rithms like EERAID [5], DIV [6], eRAID [7], and PARAID 
[9] were developed to conserve energy for redundant disk 
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arrays. Recently some research work [14, 15] focuses on 
power-proportional storage, which aims at providing a 
low minimum power, a high maximum performance, and 
fast, fine-grained scaling for redundant storage. Although 
these energy saving methods for redundant storage can 
be integrated together with our method to improve en-
ergy saving effects further, our EESDC approach pro-
posed in this paper mainly focuses on saving energy for 
original data sets in streaming media applications. 

2.3.3 Comparison of Energy Conservation Techniques 
Table 2 summarizes a comparison between an array of 

existing energy-efficient approaches and our proposed 
EESDC tailored for the adaptability of streaming media’s 
features. In this table, “ ” means the approach has a con-
flict with one of the streaming media features, whereas 
“ ” indicates that there is no conflict. According to Table 
2, all the existing energy-efficient algorithms designed for 
general-purpose storage systems have conflicting items, 
while EESDC fits streaming media very well. Appendix B 
gives a detailed explanation of this table. 

3 OVERVIEW OF EESDC

3.1 A Motivational Example 
First of all, we use an example to demonstrate the prob-
lem of existing methods. In this section, let us take a close 
look at an example of PDC. In this example shown as Fig. 

1, 16 blocks (0 ~ 15) are randomly distributed on 4 disks 
(see Fig. 1a). Fig. 1b illustrates the block distributions 
made by the MQ algorithm. A new data distribution deci-
sion generated by PDC is given as: Block 3, 0, 6, 14 on 
Disk 0; Block 9, 15, 7, 2 on Disk 1; Block 12, 4, 10, 1 on 
Disk 2; and Block 5, 8, 13, 11 on Disk 3. In this case, 15 
blocks are stored on different disks in the new distribu-
tion compared with the original one. In other words, most 
of the stored blocks may be involved in the data migra-
tions according to PDC in many cases. 

In streaming media systems which have weak toler-
ance for data migration overheads, such low data migra-
tion efficiency cannot lead to good energy saving effects. 
However, what is the reason of such low data migration 
efficiency? 

The reason lies in that existing energy conservation 
techniques like MAID and PDC save energy in an implicit 
way, which means that energy saving is just their implicit 
hidden goal achieved by pursuing the explicit goal of 
caching hot data in cache disks (MAID) or skewed data 
layouts on all disks (PDC). In other words, those algo-
rithms cannot determine which disks are involved in the 
energy saving goal, thus much of the data migration de-
termined by them is not related to the disks which are 
going to standby, but only causes data blocks traveling 
among some active disks. For example, MAID may cause 
many unnecessary additional read operations on the 
disks that will not go into standby; PDC may force data 
migrations occur on disks with high or medium-level 
load. These unnecessary data migrations may account for 
a considerable part of all the data migrations. Therefore, 
MAID and PDC involve too many inefficient data migra-
tions, most of which are unnecessary or contribute little to 
energy savings.  

Specially, the traditional implicit goal-driven energy-
saving approaches have the following limitations:  

Since data migrations must involve all disks in a sys-
tem, excessive data movement overheads become in-
evitable. Data migrations caused by disks that have 
few opportunities to conserve energy are unneces-
sary and adverse for energy efficiency, because the 
unnecessary data migrations can waste I/O band-
width resource of streaming media systems. 

TABLE 2
COMPARISONS OF ENERGY-EFFICIENT APPROACHES ON THE ADAPTABILITY OF STREAMING MEDIA’S FEATURES

High QoS Constraints Large Volume of Data Special Behavior Energy-Efficient Approaches 
Weak tolerance for data 

migrations 
Low 

cost 

Low cache 

hit rate 

Original 

data set 

Fluctuating 

and high load 
Sessions’ early 

terminations 

MAID [3]       
PDC [4]       

Flash-based energy-efficient storage 
[27, 28] 

      

Multi-speed disks [11, 12, 13]       
Energy-efficient caching [10]       

Energy-efficient prefetching [30]       
Energy-efficient redundant disks [5, 6, 

7, 9, 14, 15] 
      

Our EESDC proposed in this paper       

(a) Original Data Distribution on Disks 

(b) Multiple Queues 
Fig. 1 An example of data migration overhead in PDC 
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The implicit goal-driven approaches only indirectly 
control disks’ load. In case that the I/O loads of a ma-
jority of disks in a streaming media system are high, 
these approaches are unable to efficiently save energy.  

3.2 Principles of EESDC 
In EESDC, disks that lead to energy savings are called 
Explicit Energy Saving Disks or EESD; non-EESD disks 
are called Explicit Working Disks (EWD). EESDC explic-
itly controls I/O loads of EESD, making EESD stay in the 
low-power state as long as possible while keeping EWD 
disks active all the time to serve user requests. In our ap-
proach, the number of EESD and EWD varies with dy-
namic workload conditions. When system load is high, an 
increasing number of disks will perform as EWD to pro-
vide high I/O bandwidth. When the system load is low, 
many disks will be marked as EESD to conserve energy. 

Fig. 2 illustrates an example in which EESDC directly 
exchanges “hot” blocks in EESD with “cold” blocks in 
EWD. Note that “hot” blocks have high accessed possi-
bilities; “cold” blocks have low accessed chances. Such a 
data exchanging procedure among the EESD and EWD 
disks are referred to as the “EESD cooling” technique, 
which cools down EESD disks by always making stream-
ing media contents on EESD less likely to be accessed.  

Choosing EESD disks – a nontrivial procedure - affects 
energy efficiency of streaming media systems powered by 
EESDC. Please refer to Section 4.2 for implementation 
details on the procedure of selecting EESD disks. Section 
4.3 will discuss the implementation details of the block 
exchanging between EESD and EWD disks. 

Unlike the implicit goal-driven energy-saving algo-
rithms, our EESDC – an explicit goal-driven approach – 
explicitly identifies EESD disks that can save energy 
based on temporal system loads and keeps EESD disks at 
low power state longer by very limited data migrations. 

3.3 Benefits of EESDC 
A streaming media system can achieve the following two 
benefits from the explicit goal-driven EESDC approach:  

Only hot data blocks residing in EESD disks are eli-
gible for data migrations to save energy. In this way, 
our approach can significantly reduce data migration 
overheads.  
The unbalanced data distribution controlled by 
EESDC is driven only by the explicit goal of energy 
conservation. Our method which directly manages 
the I/O load of EESD disks can offer more energy 
savings.  

3.3.1 Reducing Data Migration Overheads 
When it comes to EESDC, it is possible to reduce data 
migration overheads because of the following three rea-
sons:   

1) Unlike PDC that maintains stringent data distribu-
tions on all disks, EESDC allows flexible and coarse-
grained data distributions. Data blocks are not required to 
be distributed on a particular disk; rather, data blocks can 
be allocated to any disks inside EWD or EESD. In general, 
it is practical to place hot data on most EWDs, or to place 
cold data on any EESD. For example, if a block’s popular-
ity is promoted only a bit, the block may have to be mi-
grated to an adjacent disk based on PDC’s stringent data 
distribution policy. In this case, however, EESDC does 
not cause any data migration. Thus, the flexible and 
coarse-grained data distribution scheme enables EESDC 
to significantly reduce the amount of migrated data. 

2) Because EESDC has explicit energy-saving target 
disks, and uses a disk-oriented way to trigger data migra-
tion activities, only identified hot blocks in EESD are eli-
gible for data migrations to directly conserve energy. Un-
necessary and inefficient data migrations are eliminated 
by EESDC.  

3) EESDC dynamically adjusts the amount of data mi-
grated between EESD and EWD based on temporal sys-
tem workloads. When the system loads are light, EESD 
contains more disks and the amount of migrated data 
may increases because it will keep more disks to save 
energy. Under high system loads, the number of EESD 
disks is small and then only small amount of related data 
migrations are needed. Hence unnecessary data migra-
tions are eliminated. On the contrary, the implicit goal-
driven PDC always treats data migrations in the same 
way regardless of dynamic system loads. 

To cut data migration overhead cost, our EESDC 
scheme dramatically reduces the total amount of data 
migrated. In order to compare with PDC’s data migration 
efficiency, we use the same example shown in Fig. 1. For a 
fair comparison, we assume that access rates of the blocks 
are in the same order as those used in the case of the MQ 
algorithm. According to EESDC, one disk should be cho-
sen as an EESD disk under the given system load; EESDC 
selects Disk 1 as EESD because data blocks on Disk 1 are 
the coldest. In this case, only Block 1 on Disk 1 should be 
exchanged with another cold block. This example intui-
tively illustrates data migration overhead reduction of-
fered by EESDC. Please see Section 5.5 for detailed results 
on data migrations. 

3.3.2 Directly Controlling the I/O Load of EESD 
Except for reducing data migration overhead significantly, 
another benefit of EESDC is to manage the I/O load of 
EESD disks directly. Thus the load of EESD controlled by 
EESDC tends to be very low, which means better energy 
saving efficiency.  

A disk load comparison between EESDC and other 
approaches is presented in Appendix A. It illustrates the 
EESDC’s advantage of efficiently and directly controlling 
EESD’s load in a very low level. In addition, Appendix C 
gives a detailed quantitative analysis to verify that low 

Fig. 2 Explicit Energy Saving Disk Cooling (EESDC) – An explicit 
goal-driven approach 
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disk load of EESD leads to high energy saving efficiency. 

4 IMPLEMENTATION DETAILS

To implement the EESDC approach in a streaming media 
storage system, we must address the following four im-
portant issues:  

How to quantitatively measure the temperatures of 
streaming media blocks? Such measures are impor-
tant because we need a way of identifying hot blocks.  
How to dynamically select EESD disks according to a 
streaming media system’s load? EESD selections di-
rectly affect energy efficiency and QoS of the system. 
How to identify data blocks to be migrated? How to 
efficiently perform data migrations with low over-
heads? A good implementation of the data migration 
module in EESDC can quickly create energy-efficient 
data layouts with little cost. 
How to balance the load among the disks in EWD to 
avoid overloading in some disks?  

4.1 Workflow and Overview of the Four Modules 
Fig. 3 shows EESDC’s workflow that contains four main 
modules, namely, a block processing module or BP, a 
dynamical EESD selecting module or DES, a data migra-
tion module (i.e., DMES) for energy savings, and a data 
migration module for assistant load balance or DMALB. 
These modules are implemented to address the aforemen-
tioned four issues. BP (see Section 4.2) is responsible for 
measuring blocks’ temperature and sorting blocks in the 
increasing order of temperature. DES (see Section 4.3) 
takes charge of dynamically selecting EESD disks. DMES 
(see Section 4.4) migrates data blocks to cool down EESD 
disks and at the same time to balance I/O load among 
EWD disks as much as possible. DMALB (see Section 4.5) 
aims to further improve I/O performance by balancing 
load of the EWD disks. 

The BP module contains two parts. The first part is ex-
ecuted in the initialization phase; the second part - trig-
gered by user requests - updates block temperatures and 
maintains a sorted block list.  

The DES, DMES, DMALB modules are all periodically 
driven. Noteworthy is that the period of DMES - PDMES - 
should be set as a very small value to make DMES adapt 
to the constant changing of user interests in streaming 
media systems. 

4.2 Block Processing (BP) 
4.2.1 Data Splitting and Distributions 
To balance load among all disks in streaming media stor-
age systems, large streaming media files are usually split 
into multiple data blocks. Block sizes are normally be-
tween hundreds of KB to tens of MB. These blocks are 
generally distributed on all disks in a disk array by algo-
rithms like JBOD [17] or Random [26]. In this BP module, 
we choose the most commonly used algorithm – the ran-
dom distribution algorithm. The file splitting and block 
distributions are handled in the initial phase of BP.  

We will show in Section 5.5.2 that block size can affect 
energy efficiency and QoS of energy-saving mechanisms. 

4.2.2 Temperatures of Data Blocks 
Data-block temperatures are calculated using Eq. (1), 
where ATi is the total access time of Block i within a past 
fixed observation time window, Sizei is the size of Block i, 
and  is a prefix weight value. The temperature of Block i, 
i.e. Tpi is proportional to ATi and inversely proportional 
to Sizei.   is a value larger than 1 to increase the tempera-
ture of the current block if Block i is the video prefix; oth-
erwise it is equal to 1. Because most users watch videos 
from the very beginning, and the users often quit after 
watching the early part of a video [16], the higher tem-
perature of a prefix block makes it easier to keep the block 
in EWD to improve QoS and to avoid waking some EESD 
disks up. A large temperature value of a block indicates 
that the bock is hot. 
                               /i i iTp AT Size                                   (1) 

Noteworthy is that the past fixed observation time 
window is usually set as a small value (e.g., 30 minutes) 
in EESDC, because user interests are constantly changing 
in streaming-media applications [16]. In addition, a small 
time window can reduce the overhead of recording and 
tracking user visits.  

4.2.3 Data Block Sorting based on Temperatures 
Both the DES and DMES modules need a data block list 
sorted in an ascending order of temperature; Triggered 
BP maintains such a sorted list for DES and DMES.  

To develop an efficient block-sorting procedure, we 
implement the Heap Sort Algorithm in the BP module. 
Except the initial sorting phase, the block-sorting proce-
dure is very quick because the majority of operations are 
updating the sorted list (i.e. removing blocks with up-
dated temperatures from the list; inserting the removed 
blocks to the list again). The time complexity of the im-
plemented block-sorting procedure is log(M), where M is 
the total number of data blocks.  

In EESDC, because the number of data blocks is much 
larger than the number of disks, time spent in sorting all 
blocks dominates the time complexity. If there are  new 
user requests in a system,  is the upper bound of the 
number of temperature changed blocks. Therefore, the 
time complexity of EESDC is log(M), where M is the 
number of all data blocks, and  is much smaller than M 
for a typical streaming media storage system. 

 
Fig. 3 Workflow of the EESDC mechanism 
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The block-sorting procedure in BP will not slow down 
system performance because of the follows reasons:  

Some user accesses may not trigger the block-sorting 
procedure, since the blocks in EWDs trigger the sort-
ing procedure after accumulating a certain number of 
accesses. Only accesses to blocks in the EESD disks 
will immediately invoke the block-sorting procedure.  
The sizes of streaming media blocks are usually large; 
M is not a very large value in a typical system. Thus, 
the complexity of log(M) is reasonable.  
When it comes to a large-scale storage system, we can 
simply divide the system into a set of small sub-
systems, each of which has small number of storage 
nodes and disks. Each small-scale sub-system can be 
independently controlled to save energy. Therefore, 
M is not too large for individual sub-systems. 

4.3 Dynamical EESD Selecting (DES) 
The overall goal of the DES module is to choose appro-
priate disks to serve as EESD disks to boost energy effi-
ciency while ensuring EWD disks can offer good QoS to 
users with least data migrations. Too few EESDs provide 
very limited energy-saving opportunities. In contrast, a 
too large number of EESDs results in a small number of 
EWDs serving users and exchanging data with EESDs, 
thereby making low energy efficiency and poor QoS. 

4.3.1 Two Phases in DES 
DES is executed in two phases. The first step determines 
the number NEESD of EESD disks and the number NEWD of 
EWD disks according to temporal block temperature dis-
tributions and the estimated system load in the near fu-
ture. The second step chooses disks to perform as EESDs 
and EWDs. 

In fact, after the first phase is done, the second phase 
can be easily implemented as follows. First, mean tem-
perature of all the blocks in each disk is calculated. Next, 
disks are sorted in an ascending order of the mean tem-
perature. Finally, the first NEESD disks are set as EESD and 
the rest of disks are EWD.  

Therefore, a key issue in the DES module is to deter-
mine an appropriate value of  - the proportion of disks 
serving as EESDs. The proportion of disks performing as 
EWD is consequently (1- ). Using ideal block temperature 
distributions on disks, DES can improve energy efficiency 
of streaming media systems. Fig. 4 gives an example of 
dynamic EESD selecting process. In this example, blocks 
are sorted in an increasing order of temperature. Blocks 
with the lowest temperature should be stored in EESD 
disks and the other ones should be residing in EWD disks. 
The portion  should be set as large as possible to maxi-
mize energy savings under the following two conditions.  

The number NEWD of EWD disks must be large 
enough to offer good performance (i.e., good QoS). 
The mean load of EESD disks must be low enough to 
have sufficient idle periods to conserve energy.  

The two conditions guide us to use Eq. (2) to set the 
value of , which suggests that the number of EWD disks 
must be at least (1- max) N to supply sufficient bandwidth.  

                      maxmax , . .
EESD ub

s t
BR

 (2) 

where BREESD in Eq. (2) is the bandwidth ratio of EESD 
disks. The bandwidth ratio is defined as a ratio of current 
used bandwidth to the maximum possible disk band-
width. ub is the upper bound of any EESD disk’s band-
width ratio to ensure good energy savings. 

Fig. 4 suggests that the temperature of the blocks in-
creases from the origin to the horizontal axis direction. 
Therefore, a large value of  leads to a high mean tem-
perature of all the blocks in EESD, i.e. a high ratio BREESD. 
Thus, the maximum valid  makes BREESD be close to but 
not larger than ub. 

max and ub are two important parameters in the 
EESDC approach. Lowering max can offer good QoS with 
reduced energy savings. ub is an empirical parameter, 
and should be set to an appropriate value to achieve the 
best energy efficiency. If ub is too high, there will be too 
few EWD disks to provide enough I/O bandwidth. In this 
case, EESD disks often have to spin up to serve requests, 
introducing high response delays and overheads of pow-
er transitions. If ub is too low, energy savings will be lim-
ited due to a small number of EESD disks.  

4.3.2 Calculating μmax and BREESD

Let m be the total number of data blocks. After data 
blocks are sorted in an ascending order of temperature, 
EWD disks should accommodate the last k blocks of all m 
video blocks in the sorted list whereas EESD disks should 
store the rest blocks in the list. The total required band-
width of the EWD disks in a short coming period (i.e. Best 

EWD

�D��) can be calculated by Eq. (3), where B is the mean 
video bitrates. The future system load estLD  can be esti-
mated using historical access patterns; the statistical visit 
time of block i is ati. 
                            1 1

0
/

m m
est est
EWD i i

i m k i

B B LD at at  (3) 

Let Bdisk 
max  be the maximum bandwidth of disks. Bactual 

EWD  – 
the bandwidth that an EWD disk can achieve – is calcu-
lated as (1-μ)N B disk 

max . Considering the skewed I/O 
workloads among EWD and EESD disks, we make Best 

EWD 
equal to or less than p Bactual 

EWD , where p is a constant in the 
range (0, 1). Configuring B est 

EWD  in this way can avoid 
overloaded disks. Thus μmax can be calculated as Eq. (4) 
below.                           

max
max

1 , (0,1)
est
EWD

disk

B
p

p N B
 (4) 

The total bandwidth provided by EESD disks is N Bdisk 
max. 

Then, bandwidth ratio BREESD can be calculated as 

max

ub

 
Fig. 4 Dynamical EESD Selecting or DES in EESDC 
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i i
EESD disk

B LD at at
BR

N B
 (5) 

4.3.3 The Implementation of DES  
DES is executed periodically (see Fig. 3). In each execu-
tion, DES first checks if the number of EESD disks de-
rived from  is appropriate for temporal conditions (we 
define it as Phase 0). If current value of  has been cor-
rectly configured, this round of DES will be terminated; 
otherwise a new value of  will be calculated in Phase 1 
and a new set of EESD disks is decided in Phase 2 (Phase 
1 and 2 correspond to the two phases in Section 4.3.1). 
Please see Appendix D for the implementation details of 
Phase 0, 1 and 2. 

4.4 Data Migrations for Energy Saving (DMES) 
DMES is responsible for conserving energy through un-
balanced data distributions achieved by direct block ex-
changing between EESD and EWD disks. In other words, 
disks are cooled down by migrating hot blocks from 
EESD to EWD disks and by moving cold blocks from 
EWD to EESD disks. 

To implement the DMES module, we need to deter-
mine a boundary temperature (BOT) between EESD and 
EWD disks. BOT is an important parameter in DMES 
used to identify hot and cold blocks. Thus, blocks whose 
temperatures are higher than or equal to BOT should be 
placed on EWD disks; blocks whose temperatures are 
lower than BOT should be stored on EESD disks. In our 
implementation, BOT is calculated as follows:   

DMES receives a sorted data block list SBL, in which 
blocks are sorted in an increasing order of their tempera-
tures, from the BP module (see Section 4.2). If len(SBL) is 
the length of SBL, the value of BOT can be derived from 
current  and len(SBL) as the approximate lowest tem-
perature of all the temperatures of data blocks stored in 
EWD. Thus, BOT can be expressed as Eq. (6) below: 

   [ ],  ( )BOT Block Temperature of SBL x x len SBL    (6) 

After BOT is determined, DMES can easily identify hot 
blocks residing in EESD disks. Specifically, all blocks 
whose temperatures are higher than BOT are hot blocks 
that may be migrated to EWD disks. Because DMES is 
repeatedly executed with very short period, DMES 
chooses the “hottest” data blocks in EESD disks to mi-
grate each time. This mechanism can guarantee high data 
migration efficiency and quickly adaptively adjust itself 
to dynamically changing user interests in streaming me-
dia applications. In addition, to avoid the phenomenon 
that some EESDs containing many not-very-hot blocks 
are always kept away from the choices, we save some 
chances for EESDs that don’t perform data migrations for 
a long time period larger than a threshold. 

In addition, to balance load across EWD disks, DMES 
migrates hot blocks in EESDs to a target EWD with the 
lightest load among all the EWDs. This strategy speeds 
up the data exchanging, and improves load balancing 
among EWD disks to avoid overload. 

 

4.5 Data Migrations for Assistant Load Balance 
(DMALB) 

Although DMES can balance load among EWD disks to a 
certain extent by choosing lightly loaded EWDs as targets, 
DMES cannot deal with some special cases. For example, 
if one EWD’s load suddenly increases, DMES cannot 
transfer this EWD’s load to other EWD disks. On the con-
trary, the DMALB module directly migrates data blocks 
among EWD disks, thereby further balancing load among 
EWDs. DMALB performs the following two strategies:  

Strategy 1: If an individual EWD disk’s load is higher 
than a threshold (i.e., Thheavy), DMALB exchanges a 
hot block on this disk with a relatively cold block 
stored on another EWD with light load.  
Strategy 2: When some disks have extremely heavy 
loads (i.e., larger than Thtoo-heavy), these disks should 
not be involved in the process of load balancing. This 
is because data migrations occurred on the extremely 
highly loaded disks can worsen QoS.  

5 PERFORMANCE EVALUATION
5.1 Test Bed 
We extended the widely used DiskSim simulator [22] by 
incorporating the file-level interface, file splitting and 
management, the “push” service manner of streaming 
media, the DPM algorithms, and a set of energy-efficient 
data-layout schemes. In our test bed, we simulated a 
streaming media storage system containing a set of 10 to 
50 disks. The specifications for the disks used in our 
study are similar to those of the IBM Ultrastar 36Z15 
disks (see [18] for a detailed disk data sheet). Table 3 
shows key parameters of the simulated disks. 

Four evaluated energy saving schemes are FT (see Sec-
tion 2.2), PDC (see Sections 2.3), EESDC, and offline 
EESDC. The offline EESDC scheme is a variant of our 
EESDC in which accurate user future access patterns are 
utilized instead of estimating it through the methods in 
online EESDC. The offline version of EESDC can provide 
the approximate upper bound of energy savings offered 
by energy-efficient data layout algorithms.  

We used both synthetic and real-world traces to drive 
our simulator. The synthetic traces are used to test the 
four schemes under a wide range of workload conditions; 
the real-world traces are used to evaluate the schemes in 
the context of practical streaming media applications.  

TABLE 3
DISK PARAMETERS

 
IBM Ultrastar 

 36Z15 
Seagate Barracuda 

7200.12 

Interface SCSI SATA 
Disk Rotation Speed 15000 RPM 7200 RPM 
High Power 13.5 W 4.965 W 

Low Power  2.5 W 0.816 W 
Spinup Time 10.9 sec. 3.794 sec. 
Spinup Energy 135 J 63.125 J 

Spindown Time 1.5 sec. 0.291 sec. 
Spindown Energy 13 J 4.419 J 
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5.1.1 Synthetic Trace Generator 
To evaluate EESDC under various workloads, we have 
developed a synthetic-trace generator denoted as WG(r(t), 
l, ), where r(t) is user arrival rate at time t (i.e. how many 
users arrive per time unit around time t). The value of r 
dynamically changes at different time t, since streaming 
media systems have drastic load fluctuations. l is the 
mean session length of all users. Two parameters r(t) and 
l determine the number of online users (i.e., system load) 
in a streaming media system.  - data popularity - is a 
parameter in the Zipf distribution function expressed in 
Eq. (7) where F is the number of streaming media files. 
                          1 1

1
( , , ) 1/ 1/

F

i

p i F i i  (7) 

5.1.2 Two Real-World Traces 
To validate experiments using synthetic traces, we tested 
the four energy-saving schemes by running the simulator 
with two 24-hour real-world traces.  

The first trace represents a real-world streaming media 
system - the CCTV VOD (Video-On-Demand) system in 
Jan. 2005. User arrival rate of this trace is 11.88 per min.; 
the mean session length of all the users is 188.65 sec.. We 
observed from this trace that the CCTV VOD system’s 
load dynamically changes - the number of online users 
during evenings is much larger than that in early morn-
ings. The second trace represents the real-world UUSee 
systems [23]. The user arrival rate of this system is 3.55 
per min.; the mean session length is 1094.48 sec..  

The CCTV VOD trace is a representative trace for 
short-session dominated streaming media applications 
like YouTube; the UUSee trace is a representative one for 
systems with many long sessions. 

5.2 Performance Metrics  

5.2.1 Measuring Energy Saving 
Saved energy percentage is a metric to measure energy 
efficiency. Let E be the energy consumed by a system 
without using any energy saving technique, E(A) be the 
energy consumed by the same system supported by en-
ergy saving algorithm A. The saved energy percentage of 
algorithm A (i.e. SEabs(A)) can be calculated as Eq. (8). 
                    

( ) ( ( )) / 100%absSE A E E A E
 (8) 

5.2.2 Measuring QoS 
QoS in streaming media systems is quantified by two 
metrics - startup delay and jitter. Startup delay measures 
waiting time for users before video starts; jitter reflects 
variation in delay during playback procedure.  

Mean Startup Delay 
Since most streaming media users are impatient, any en-
ergy saving schemes must conserve energy without sig-
nificantly increasing startup delays. In this study, we cal-
culate the Mean Startup Delay or MSD of all users as the 
first QoS metric.  

Mean Delay Jitter 
Jitter measures the variability of delivery times in packet 
streams [19]. A small jitter (i.e., good QoS) means that 

users can watch videos fluently. The jitter used in stream-
ing media applications is called delay jitter - a maximum 
difference in the total delay of different packets. We stud-
ied the Mean Delay Jitter or MDJ of all users to as the sec-
ond QoS metric. Please see Appendix E for the details of 
how to calculate the delay jitter. 

5.3 Results of Synthetic Traces 
The default system parameters of the synthetic traces are 
set as: the user arrival rate = 0.2 user/sec., l = 200 sec.,  = 
0.12, and video bitrates = 320 Kbps. 

5.3.1 Impacts of System Load 
Fig. 5 shows the impacts of user arrival rate on saved en-
ergy percentages of the four schemes. It indicates that the 
saved energy decreases with the increasing arrival rate 
for all the methods. A higher user arrival rate – represent-
ing high system load – makes it hard for all the energy-
saving schemes to conserve energy. 

FT is very sensitive to the system load. When the arri-
val rate is larger than 0.25 user/sec., FT’s saved energy 
percentage is less than 2%. The reason is that FT does not 
change data layouts to conserve energy. PDC’s energy 
efficiency is basically as poor as that of FT. PDC is even 
worse than FT when the user arrival rate is less than 0.15 
user/sec., because the disks lose some opportunities to 
stay in the standby mode due to a large number of data 
migrations arranged by PDC itself.  

Compared with FT and PDC, EESDC offers a much 
higher energy-saving percentage (i.e., anywhere between 
37.58% and 62.25%). Under light system load, energy con-
served by EESDC is even very close to that of the offline 
scheme. Fig. 5 shows that unlike FT and PDC which can 
only save energy effectively under light load, EESDC can 
always maintain a high energy-saving rate under various 
workloads. Of cause, the offline EESDC scheme has the 
highest saved energy percentage, which is between 
54.88% and 63.04%.  

In addition, more experimental results based on syn-
thetic traces, such as the impacts of  in Zipf formula and 
the impacts of system scale when disk number increases 
from 10 to 50, are in Appendix F. 

5.4 Results of Real-System Traces 
We use two 24-hour real-world traces (see Section 5.1.2 
for details on the two traces) to validate results obtained 
from the synthetic traces. Table 4 gives the saved energy 
and QoS of the four approaches for respectively the 
CCTV VOD and UUSee traces. 

TABLE 4
10-DISK SYSTEM’ 24H OVERALL RESULTS.

MSD: MEAN STARTUP DELAY; MDJ: MEAN DELAY JITTER.
FT PDC EESD

C 
Offline 

EESDC 

Saved Energy  2.23% 4.91% 29.33% 55.35% 
MSD (ms) 250.5 419.1 497.0 56.1 

CCTV  
VOD 

MDJ (ms) 246.8 1070.0 554.6 89.4 

Saved Energy  3.33% 8.54% 28.13% 53.69% 
MSD (ms) 196.3 489.2 393.7 53.1 

UUSee 

MDJ (ms) 1016.0 2588.9 839.1 298.9 
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5.4.1 Energy Savings 
Table 4 shows that FT always has the worst energy effi-
ciency. PDC is more energy-efficient than FT; PDC’s 
saved energy percentage is only 2.2 and 2.6 times higher 
than that of FT for the CCTV VOD and UUSee traces. The 
saved energy percentage of EESDC is 13.2 and 6.0 times 
higher than those of FT and PDC in the case of the CCTV 
VOD system. When it comes to the UUSee system, 
EESDC’s saved energy is 8.4 and 3.3 times higher than 
those of FT and PDC. EESDC outperforms FT and PDC 
because EESDC makes an effort to cut data migration 
overheads. The offline EESDC scheme, of cause, has the 
best energy efficiency.   

Many streaming media users only watch the beginning 
part of videos and then decide whether not continue 
watching the videos. Therefore, the beginning parts of 
video files attract many user accesses. The video number 
of UUSee is much smaller than that of the CCTV VOD, 
making the user accesses of UUSee are more skewed and 
focused than that of CCTV VOD. Thus the energy saving 
effects of FT and PDC are better than under CCTV VOD.  

However, the average number of online users- a prod-
uct of the mean user arrival rate and mean user session 
length - of UUSee is higher than that of CCTV VOD. Be-
cause UUSee has higher load than CCTV VOD, it’s harder 
to achieve a high energy-saving rate in UUSee than in 
CCTV VOD. The consequence is that EESDC and offline 
EESDC save a bit less energy than under CCTV VOD 
trace. 

5.4.2 QoS 
In the case of the CCTV-VOD system, MSD and MDJ of 
FT are relatively smaller than those of PDC and EESDC. 
Because FT introduces no data migrations, FT’s delay and 
jitter are only slowed down by disk power-state transi-
tions. Compared with PDC, EESDC achieves similar 
startup delay and better delay jitter. Taken saved energy 
and QoS together, EESDC outperforms PDC significantly. 

After simulating the UUSee system, we observed that 
the delay jitter increases significantly for all the algo-
rithms compared with the CCTV VOD case. The reason is 
that the user session in UUSee is much longer than CCTV 
VOD, which significantly increases the possibility of a 
user encountering a video block stored in EESDs. In 
EESDC, EWD disks do not need to switch between high 
and low power state, thereby offering better QoS for the 
streaming media systems. In the PDC scheme, disks with 
both light and median-high load can be switched into the 
standby mode. Such power-state transitions in PDC have 

negative impacts on QoS. Therefore, EESDC can outper-
form PDC in terms of QoS significantly for UUSee. 

5.5 Data Migration Overheads Analysis 

5.5.1 The Amount of Migrated Data 
The energy efficiencies of PDC and EESDC both rely on 
data migration overheads. Table 1 outlines the amount of 
migrated data for a simulated 24-hour CCTV system 
powered by PDC and EESDC. In what follows, we pro-
vide detailed results on data migration overheads.  

Table 5 shows the number of the migrated data blocks 
or NMDB, and the migrated data amount per 1% saved 
energy (MDA per 1%SE) for PDC and EESDC in synthetic 
traces with different user arrival rates, the CCTV-VOD 
and UUSee traces. We observed that EESDC significantly 
reduced the migrated data amount by anywhere from 
84.01% to 94.31% compared with PDC. What’s more, the 
data migration efficiency for energy saving of EESDC is 
15~22.1 times higher than that of PDC from the results of 
MDA per 1%SE.  

The reduced data migration overheads make it possi-
ble for EESDC to achieve high energy efficiency in 
streaming media systems. All the data migrations made 
by EESDC contribute to energy conservation without 
paying much unnecessary data migration overheads. 

5.5.2 Impacts of Streaming Media Block Size 
Block sizes affect disk access patterns and data migrations 
in streaming media systems, which in turn has impacts on 
energy savings and QoS. Fig. 6 shows the saved energy 
percentage and QoS of EESDC when block size ranges 
from 0.78 MB to 37.5 MB for CCTV VOD trace.  

   
Fig. 5 Saved energy with different loads                   Fig. 6 Saved energy and QoS with different               Fig. 7 Comparison experiment results 

block sizes    

TABLE 5
THE AMOUNT OF DATA MIGRATION.

NMDB: THE NUMBER OF MIGRATED DATA BLOCKS. MDA
PER 1%SE: MIGRATED DATA AMOUNT PER 1% SAVED EN-

ERGY PERCENTAGE. UAR: USER ARRIVAL RATE

PDC EESDC UAR 
NMDB MDA per 1%SE  NMDB MDA per 1%SE 

0.05 34298 2.86 GB 1950 0.143 GB 
0.1 33480 4.31 GB 2880 0.236 GB 
0.15 32678 6.54 GB 3630 0.334 GB 
0.2 32500 9.55 GB 4242 0.424 GB 
0.25 31618 11.78 GB 5018 0.578 GB 
0.3 32140 12.75 GB 5140 0.626 GB 
CCTV 81436 25.31 GB 7340 1.146 GB 
UUSee 68640 12.12 GB 4974 0.809 GB 
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Fig. 6 indicates that the saved energy first sharply in-
creases and then slightly falls down with the increasing 
block size. This trend can be explained by the fact that 
when the block size is large, exchanging hot blocks be-
tween EESD and EWD disks can better utilize spatial lo-
calities. However, when the block size is too big, the data 
migration overhead becomes too large to accomplish in a 
short time and most of the too-far-away data in the block 
will not be accessed. As a result, energy savings slightly 
go down. Fig. 6 suggests that the block size offering the 
best energy saving is approximately 9.38 MB, and the 
highest saved energy percentage is 30.82%.  

Fig. 6 also shows that the mean startup delay (MSD) 
increases when the block size is increasing. The first ac-
cessed block in a streaming media may be stored in a 
standby disk, which gives rise to an increased startup 
delays. Large blocks lead to skewed workload conditions, 
which provide EESDC great opportunities to transit disks 
into the standby mode. Thus, the startup delay increases 
when the block size goes up.  

Another phenomenon is that the mean delay jitter 
(MDJ) first declines and then ascends with increasing 
block size. During a playback, any block stored in a 
standby disk from the EESD set can cause delay jitter. 
When the block size is very small, a video file contains a 
great number of blocks. During an entire playback proc-
ess, there will be a large number of accessed blocks stored 
in a standby disk. As such, delay jitters are large when 
block sizes are very small. In contrast, larger block sizes 
tend to lead to more skewed loads, thereby offering many 
disks chances to switch into the standby mode. Thus, the 
delay jitter becomes larger because users have larger pos-
sibility to encounter data blocks stored in standby disks 
when the block size increases from normal size to very 
large one. The above reasons explain why delay jitter first 
decreases and then increases when the block size in-
creases.  

In addition, more simulation results of the perform-
ance analysis, including the impacts of cache sizes, pa-
rameter BT, and I/O bandwidth limitation, are presented 
in Appendix G. 

5.6 A Real Hardware Prototype and Experimental 
Results 

To validate the simulation results, we first develop a pro-
totype system in a real hardware testbed. Then, we meas-
ure the energy dissipation of our prototype under a typi-
cal real-world streaming media trace, and compare en-
ergy savings achieved in the testbed against those ob-
served in the simulator. In our testbed, a computer con-
tains an AMD Athlon II X2 240 Processor 2800MHz 64bits, 
4GB DDR2 Kingston memory, and eight disks connected 
to additional PCI-SATA cards separately powered by an 
extra power supply. A power meter is used to measure 
the energy consumption of the eight disks. The parame-
ters of the eight Seagate Barracuda 7200.12 500GB disks 
used in the experiments are measured and listed in Table 
3.  

We validate the accuracy of our simulator by compar-
ing energy-saving results between the prototype system 

and our simulated system under the same configuration 
settings and the same typical real-world streaming media 
trace from CCTV VOD service.  

The validation results indicate that for the 10-hour 
CCTV VOD trace, the prototype system consumes 1494.36 
kJ when no energy-efficient algorithm is adopted; the 
prototype consumes 1467.0 kJ when FT is used and only 
983.16 kJ when EESDC is employed. Fig. 7 shows the 
measured power consumption of prototype system, and 
energy-saving percentages under both the prototype sys-
tem and simulated system when no energy-efficient 
scheme, FT and EESDC are respectively adopted.  

The validation results confirm that for both FT and 
EESDC schemes, energy-efficiency values observed from 
the simulator and the prototype agree with each other, 
even though the empirical results are a little bit lower 
than simulation results. In fact, simulated systems are 
constructed based on some primary factors in simulation 
model, but are not able to take all the detailed factors into 
account. This makes the little difference between our 
simulated results and prototype results. However, the 
difference is very small. The simulated results can be con-
sidered as accurate ones. 

Importantly, Table 4 shows that the 10-hour CCTV 
VOD trace exhibits more energy savings than the 24-hour 
CCTV VOD trace replayed in the simulator. This is be-
cause the average load of the first 10-hour part is lighter 
than the whole 24-hour CCTV VOD trace.  

In summary, the validation process confirms that 
EESDC can achieve high energy efficiency in a typical and 
practical streaming media environment, and the simula-
tion results discussed in Section 5.3-5.5 and Appendix F-G 
are accurate. 

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a novel energy conserva-
tion technique called EESDC to save energy in streaming 
media systems with low data migration overheads. The 
three main contributions of this study are given as fol-
lows. First, we emphasize and quantify the importance of 
data migration efficiency for energy saving, especially in 
streaming media storage systems. Second, the explicit 
goal-driven EESDC both reduces the data migration 
overheads and improves energy efficiency and QoS. Fi-
nally, EESDC significantly improves energy efficiency by 
adapting itself to meet the characteristics of streaming 
media applications  

A potential concern about energy saving approaches is 
their impacts on storage systems’ reliability. Recent stud-
ies has re-examined some assumptions regarding factors 
that affect disk lifetime [20, 21]. In the future, we can ex-
tend the EESDC approach by making a good tradeoff be-
tween energy efficiency and reliability of streaming me-
dia systems.  

In addition, with the rapid increasing of disk storage’s 
space and constant falling price, storage systems with 
redundant disks becomes increasingly common. As an 
energy saving approach for the primary data set, EESDC 
will be integrated with other redundancy-based energy-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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saving approaches to further improve energy efficiency of 
streaming media systems. 
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Appendix
A. DISK I/O LOAD COMPARISON BETWEEN EESDC
AND OTHER APPROACHES

Two existing approaches summarized below are closely 
related to EESDC. Fig. 1 shows the I/O workloads in 
terms of IOPS (i.e., Input/Output Operations Per Second) 
of a group of disks managed by MAID, PDC and EESDC, 
respectively. Noteworthy is that Fig. 1 does not directly 
come from experimental measurement, but a schematic 
according to the principles of these algorithms. 

MAID. Cache disks lighten the burden of non-cache 
disks. However, the loads of the non-cache disks are in a 
random distribution, just like FT does (see Fig. 1a). MAID 
makes no optimization on any content distribution for the 
non-cache disks. Thus, idle periods of non-cache disks are 
limited (see Fig. 1b). In addition, extra cache disks in 
MAID bring power consumption overheads.  

PDC. PDC sorts all disks in a descending order of I/O 
load (see Fig. 1c). Disks with the lightest load have oppor-
tunities to save energy. However, disks with medium-
high load have no opportunity to conserve energy while 
offering limited I/O bandwidth for user requests. There-
fore, PDC only achieves good energy efficiency under low 
system load [ref 4 in main body]. PDC is inadequate for 
streaming media systems that usually have high loads. 

Moreover, Data migration overheads in PDC are much 
higher than those of EESDC. PDC makes uniform and 
stringent data layouts (i.e. data blocks have to be distrib-
uted on disks in a descending order of popularity). PDC 
may lead to a huge amount of migrated data because data 
blocks with high, medium or low popularities are all in-
volved in data migrations. This problem becomes even 
worse in streaming media systems, because block popu-
larities are dynamically changing all the time. 

EESDC. Unlike MAID and PDC, EESDC sets an ap-
propriate range of EESD according to current system I/O 
load. EESDC cools down EESDs by directly managing the 

I/O workloads of the EESD disks. Thus, the load of 
EESDs is usually very low. The EWD disks always have 
high loads to actively serve user requests. The skewed 
disk workload distributions of the explicit goal-driven 
EESDC appear to be polarization, as shown in Fig. 1d. 
Skewed data distributions offer energy savings, because 
EWD in EESDC are constantly active to serve streaming 
media users, giving more opportunities for EESD disks to 
stay in the low-power mode to conserve energy. 

B. DETAILED COMPARISONS OF ENERGY-EFFICIENT 
APPROACHES 

Table 2 in Section 2.3.3 gives comparisons between the 
existing energy-saving approaches and our proposed 
EESDC on the adaptability of streaming media’s features. 
Below we explain the six columns of this table in details.  

1. “High QoS Constraints” in streaming media leads to 
its “Weak tolerance for data migrations”. For the implicit 
energy saving approaches (e.g., MAID and PDC) that 
highly rely on data migrations, this feature prevents these 
approaches from offering effective energy-efficient data 
layouts in streaming media environments. Therefore, 
MAID and PDC have “�” in this column, whereas the 
other approaches that don’t rely on data migrations 
among disks or have high data migration efficiency (like 
EESDC), have “�” for this feature. 

2. The feature of “Low cost” makes the energy-efficient 
approaches which rely on expensive storage devices, such 
as flash and multi-speed disks, be unsuitable for stream-
ing media applications. On the contrary, other ap-
proaches like EESDC only needs general commodity 
disks, so it can be implemented in low costs.  

3. The cache-based energy saving methods rely on rela-
tively high cache hit rate to maintain their effectiveness. 
For example, in MAID, if the cache hit rate of the cache 
disks is not high enough, the load of the original disks is 
randomly distributed, which is similar to FT and can’t 

xxxx-xxxx/0x/$xx.00 © 2011 IEEE 

                  
(a) FT                                                                               (b) MAID 

                      
(c) PDC                                                                              (d) EESDC 

Fig. 1 Disk load distributions of FT, MAID, PDC, and EESDC schemes.  
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achieve good energy saving effects. For the flash-based 
and energy-efficient caching or prefetching approaches, 
the situation is similar to MAID.  

What’s more, these methods cannot expect to increase 
the cache hit rate by adding many large-space disks for 
caching, because these additional disks will introduce 
much additional energy consumption, which can offset 
the benefits of energy-efficient algorithms and may make 
the situation worse. The substantial reason is that these 
approaches don’t directly control the data distribution on 
disks, but only rely on caching to decrease the accesses to 
disks. They are non-effective in energy saving when 
there’s a feature of “Low cache hit rate” in streaming me-
dia applications. On the contrary, as an energy-efficient 
algorithm which directly controls the data layout on disks, 
EESDC is not affected by this feature. 

4. The approaches of energy-efficient redundant disks 
work on how to save energy from the disks storing re-
dundant data, while other approaches listed in this table 
including EESDC focus on how to save energy from the 
original data set. In streaming media applications, the 
original data set is already very large, and has great de-
mands and potential of energy saving. In fact, this col-
umn reflects the different design purpose and applying 
scope of different energy conservation techniques. 

5. In streaming media environments, the daily work-
load is drastically fluctuant for streaming media users, 
and in a considerable part of daily time, the load is very 
high. MAID and PDC can only save energy effectively 
under light load [ref 4 in main body] because they usually 
bring a mass of data migrations among disks, so they 
have “�” in the “Fluctuating and high load” column.  

On the contrary, under the drastically fluctuating load 
of streaming media applications, EESDC dynamically 
adjusts the working disk number and the amount of data 
migrated between EESD and EWD based on temporal 
system workloads. When the system loads are light, few-
er disks are expected to work and then EESD contains 
more disks. The amount of migrated data may increases 
because it will keep more disks to save energy. Under 
high system loads, more disks are in EWD, and the num-
ber of EESD disks is small. Then only small amount of 
related data migration is needed (see Section 3.3.1 for de-
tails). 

6. The feature of “Sessions’ early terminations” means 
most of the users leave much before the end of video in 

streaming media applications. This produces a serious 
challenge for the prefetching-based energy-efficient algo-
rithms.  

If the prefetching algorithm chooses to prefetch entire 
videos without considering sessions’ early terminations, 
the majority of the prefetched data may not be accessed 
by users. Such a high penalty means that the prefetched 
and unaccessed data can consume much space as well as 
a great deal of disk bandwidth used to transfer these pre-
fetched blocks. On the contrary, if only a small part of a 
video is prefetched, disks storing cold data to conserve 
energy will still be woken up every now and then, be-
cause there are a handful of users who watch most of or 
even all the video. As a result, prefetching-based energy-
saving algorithms cannot achieve high energy efficiency 
for streaming-media applications, although energy-
efficient prefetching can save energy for high perform-
ance computing where accessed patterns are predicable to 
maintain high enough prefetching accuracy. 

For EESDC, which migrates data blocks among disks 
for saving energy not according to predicting but accord-
ing to the practical history accessing records of data 
blocks, this feature does not have obvious negative effects. 

C. QUANTITATIVE ANALYSIS OF EESDC’S ENERGY 
SAVING EFFICIENCY 
Fig. 2 shows that the power consumption of an EESD disk 
changes with its dynamic I/O load. Please refer to Table 1 
below for the notation used in this figure. The user arrival 
rate of disk i is low enough, i.e. �i�[0, 1/(BT+ L +tu+td)]. In 
Fig. 2, requests from user B and user C both arrive when 
the EESD disk is in the low-power mode. Disk i immedi-
ately spins up to serve the two users at time B’ and C’, 
respectively.  

Since the access pattern of disk i showed in Fig. 2 re-
peatedly appears, we can use the time period between B 
and C to compute the saved energy of disk i in EESD 
within the service time ST, i.e. SEST 

i  as Eq. (1) below.  
[( ) (( )( ) ( ))]ST

i h l i h l u d l d uSE ST P P P P L BT E E P t t�� � � � � � 	 	 	 � 	   (1) 
Eq. (1) shows that the smaller �i (i.e. fewer users) is, the 

larger SEST 
i  is. Specially, when �i is equal to 0, the saved 

energy will be up to ST�(Ph-Pl). All the EESD disks have 
low load, meaning that EESDC can leverage unbalanced 
data distributions to improve energy efficiency of stream-

 
Fig. 2 Power consumption when an EESD disk’s load is low enough 
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ing media systems.  

D. THE IMPLEMENTATION DETAILS OF DES 

Phase 0: Checking Current Status. 
Phase 0.1 Calculating 
max : 

max - The maximum valid value of can be calculated 

according to Eq. (4) in main body. 
Phase 0.2 Calculating bandwidth ratio BREESD: 

Get the sorted the data block list from the BP module 
(see Section 4.2 in main body). Given the value of current 

, the corresponding BREESD can be calculated from Eq. (5) 
in main body by assuming that it is full of blocks with 
lower temperature.  

Phase 0.3 Current Status Judgments: 
If current values of 
, 
max, �ub and BREESD satisfy the 

two conditions in Eq. (2) in main body, this round of DES 
will be terminated; otherwise, the following Phase 1 and 2 
will be executed. 
Phase 1: Calculating an appropriate value of 
 – the 
proportion of EESD disks. 


  is correctly configured in the following three steps: 
1) If the value of μ larger than μmax, a smaller 
 will be 

chosen to satisfy the two conditions in Eq. (2) in main 
body; otherwise current 
 will remain unchanged.  

2) If bandwidth ratio BREESD representing the average 
load of EESD disks is too high from �ub (i.e., idle time pe-
riods in EESD disks are too small to conserve energy), a 
smaller 
 should be chosen to satisfy two conditions in 
Eq. (2) in main body; otherwise current 
 will be kept 
unchanged.  

3) If BREESD is too low from �ub (i.e., there are too few 
EESD disks), a larger 
 will be chosen to satisfy the two 
conditions in Eq. (2) in main body for improving energy 
efficiency; otherwise 
 will not be updated. 
Phase 2: Choosing a new set of EESD disks. 

After an appropriate value of 
 is determined, the av-
erage block temperature of all disks is calculated. 

Next, the disks are sorted in an increasing order of 
their average block temperature. 

Finally, the first �
N� disks will be chosen to serve as 
EESD disks whereas the others are EWD disks. 

E. THE CALCULATION OF DELAY JITTER 

Let � = {ti}n 
i=0 be an arriving time sequence of packets in a 

user stream; X� 
ave denotes the average inter-arrival time of 

�. X� 
ave - calculated by Eq. (2) - is the interval of every two 

adjacent packets in the best situation. In streaming media 
applications, X� 

ave is usually set to 1 second. 
                                     n o

ave
t tX
n

� �
�  (2) 

The delay jitter measures differences in delivery times 
of different packets compared with ideal time difference 
in a periodic sequence, where packets repeatedly arrive 
once every X� 

ave time units. Thus, the delay jitter of time 
sequence � is expressed as 
                     

0 ,
max{| ( ) |}i k avei k n

J t t i k X� �


 

� � � �  (3) 

F. ADDITIONAL SIMULATION RESULTS BASED ON 
SYNTHETIC TRACES 

F.1 Impacts of � in the Zipf Formula 
A large � in Eq. (7) of main body means users are inter-
ested in some special contents; a small � means that all 
the contents are equally likely to be accessed by users. Fig. 
3 shows the impact of � on energy efficiency of the four 
schemes. When � is larger, more accesses will be concen-
trated on a few files, meaning that a majority of disks will 
have greater opportunities to save energy.  

The results plotted in Fig. 3 indicate that FT and PDC 
are greatly affected by �. When � decreases from 0.99 to 
0.01, the saved energy percentage of FT decreases from 
22.76% to 2.65%, whereas that of PDC decreases from 
20.32% to 3.82%. PDC and FT can achieve good energy 
efficiency only when users access a small set of popular 
files. When all the contents are equally popular (i.e., � is 
small), EESDC can improve energy efficiency by 39.54%, 
which is much higher than those of PDC and FT; when 
there are skewed access patterns to video data, the energy 
efficiency of EESDC is even close to that of the offline 
EESDC, which always achieves the best energy savings 
among all the examined strategies. 

F.2 System Scalability 
Fig. 4 shows the energy savings of the four schemes when 
the number of disks in the simulated system increases 
from 10 disks to 50. The energy efficiencies of these ap-
proaches are not very sensitive to the number of disks in a 
system, which indicating that the scalability of these en-
ergy-efficient algorithms is good. We also observe from 
Fig. 4 that EESDC is much more energy-efficient than 
PDC and FT. The results suggest that EESDC can signifi-
cantly conserve energy for large-scale streaming media 
systems. 

G. SIMULATION RESULTS OF PERFORMANCE 
ANALYSIS

G.1 Impacts of Cache Sizes 
Caching can reduce user accesses to disks to further save 
energy in a streaming media system. However, impacts of 
cache on streaming media systems are limited due to the 

TABLE 1
NOTATIONS 

Variables Descriptions 

ST Service time
Ph, Pl High and low power of disk 

tu, td 
Switching time between low and high power 
mode 

Eu, Ed Energy overhead of power mode transition 
N Disk number of a streaming media system 
BT Break-even time 
�i Total user arrival rate of disk i 

L  Mean length of user sessions 
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huge sizes of streaming media contents. Fig. 5 shows the 
impacts of cache size on energy savings. In this set of 
simulations, the ratio of the cache space and the disk stor-
age space is set from 0 to 1/50. The cache algorithm im-
plemented is the famous LRU – the Least Recently Used 
algorithm.  

Results plotted in Fig. 5 suggest that regardless of 
cache size, energy savings almost remain unchanged. For 
example, compared with the case of using no cache, the 
cache improves energy efficiency of EESDC by as little as 
0.34% when the cache-disk space ratio is as large as 1/50. 
Even though we can double the cache performance, such 
improvement will lead to an overall energy-efficiency 
improvement by less than 1%. Moreover, a study shows 
that new energy-efficient cache replacement algorithms 
can only improve energy efficiency over LRU by 22% [ref 
10 in main body]. Therefore, our results imply that in-
creasing the cache size only have marginal effects on 

streaming media systems.   
When it comes to QoS, we draw similar conclusions. 

For example, let us consider the EESDC case. Fig. 6 shows 
MDS and MDJ under different cache sizes. The results 
plotted in Fig. 6 indicate that QoS is not significantly im-
proved with the increase of cache sizes. The reason (see 
also Fig. 6) is that the cache hit rate only slowly increases 
from 0 to 24.28% when cache sizes increases from 0 to 
1/50 of disk storage capacity. Thus, most of the user re-
quests are still served by disks and; therefore, we do not 
observe significant improvements in both energy savings 
and QoS.  

G.2 Impacts of Parameter BT 
Fig. 7 plots saved energy percentage, mean start delay 
(MSD), and mean delay jitter (MDJ) when parameter BT 
is varied from 1 to 40 sec. during a period of 24 hours. 
According the FT scheme, BT is introduced to prevent 

Fig. 5 Saved energy with different cache sizes                                Fig. 6 Cache hit rate and QoS with different cache sizes for EESDC

         Fig. 7 Saved energy and QoS with different Break-even Time                       Fig. 8 Saved energy and QoS with different bandwidth limit

                 
Fig. 3 Saved energy with different �                                                      Fig. 4 Saved energy with different system scale 
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disks from frequent power-state transitions. Fig. 7 shows 
that when BT is 1 sec., the disks change their power-state 
very frequently. Therefore, energy saving percentage is 
high and QoS is poor. If BT is increased, energy saving is 
low and QoS is improved. In our experiments, we set BT 
to 15.2 sec.. Decreasing BT to an appropriate value is an 
efficient way of improving energy efficiency.  

G.3 Impacts of I/O Bandwidth Limitation 
Our EESDC approach relies on efficient data migrations 
among disks to achieve energy savings and good QoS. 
Data migrations consume network and disk I/O band-
width in streaming media systems. Fig. 8 shows the im-
pacts of I/O bandwidth on energy savings and QoS. 
When I/O bandwidth reserved for data migrations in a 
disk is larger than or equal to 80KB/s, the saved energy 
percentage - larger than 20% - decreases slowly with the 
decrease of bandwidth. QoS is improved under low I/O 
bandwidth because EESDC places fewer disks into the 
standby mode when I/O bandwidth is low. However, 
when the bandwidth limit is too low, it takes a long time 
to transfer hot data in EESD to EWD. When users access 
the data, EESD may stay in the standby mode. As a result, 
QoS is dropping (e.g., delay jitter becomes large).  

The bandwidth of IBM Ultrastar 36Z15 disks is around 
7.37MB/s for 40KB read/write (corresponding to 320 
Kbps, a typical video bitrates in streaming media applica-
tions), and the one of Seagate Barracuda 7200.12 is around 
3.01MB/s. Thus, the reserved bandwidth of 80KB/s is 
only a very small portion of the disks’ full bandwidth. 
The result shows that one of the advantages of EESDC 
lies in its efficient data migrations, which make I/O 
bandwidth have insignificant impacts on the EESDC 
scheme. 

G.4 Impacts of MSL 
In this part, we set the Minimum Standby Length (MSL) 
of each EESD from 0 to 120 seconds. It means that once a 
disk is switched into the standby mode, the disk will not 
be waked up unless it has stayed in the standby mode for 
a time period (i.e., MSL). It is obvious that a large MSL 
value can improves energy saving efficiency at the cost of 
QoS. Fig. 9 shows the results of saved energy percentage, 
MSD and MDJ. The results show that increasing MSL is 
not a good policy for energy savings, because QoS de-
creases too quickly when MSL increases. Therefore, in all 
the other simulation studies, MSL is set to be 0, i.e. a disk 
is waked up immediately when a corresponding user re-
quests arrives. 

G.5 Performance Cost for Energy Savings 
Generally speaking, energy savings in storage systems 
come at the cost of performance (e.g., worsen QoS for 
users). If the decline of QoS is very noticeable, energy-
saving algorithms should not be deployed as the de-
graded performance is unacceptable by the users. 

Fig. 10 shows comparisons of saved energy, MSD and 
MDJ (two important QoS indicators in streaming media 
systems) between the normal case without any energy 
saving schemes and three typical energy-efficient algo-
rithms. By testing the four different schemes  Normal, 

FT, PDC and EESDC, we observe that EESDC outper-
forms the others significantly in terms of energy savings. 
On the other side, MSD and MDJ mainly increase with 
the improvement of energy savings. The increases in 
MSD and MDJ indicate the performance cost imposed by 
the energy-saving algorithms. 

Compared with PDC, EESDC delivers similar MSD and 
much lower MDJ while offering good energy savings. In 
order to clearly demonstrate the efficiency of the energy-
saving algorithms, Fig. 11 shows the ratios of the saved 
energy and the MSD/MDJ increments compared with the 
normal case for respectively FT, PDC and EESDC. It is 
obvious that EESDC has the highest rates. In other words, 
our EESDC scheme is the best one in terms of trading per-
formance for high energy efficiency. 

In addition, although Fig. 10 shows that the normal 
case has very small MSD and MDJ values, practical situa-
tions usually have much larger MSD and MDJ because of 
the instability of the data transmission on the Internet. 

Fig. 9 Impact of MSL on saved energy and QoS

Fig. 10 Saved energy and performance cost of the energy saving 
algorithms 

Fig. 11 Efficiencies of trading performance degradation for energy-
savings



6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  MANUSCRIPT ID 

 

Therefore, the impacts of the energy saving algorithms on 
MSD and MDJ will not be much obvious from streaming 
media users’ aspects. 
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