
Implementation of the Typed Call-by-Value �-calculus using a Stack of

Regions

Mads Tofte, University of Copenhagen�

Jean-Pierre Talpin, European Computer-Industry Research Center, y

Abstract

We present a translation scheme for the polymorphi-
cally typed call-by-value �-calculus. All runtime val-
ues, including function closures, are put into regions.
The store consists of a stack of regions. Region in-
ference and e�ect inference are used to infer where
regions can be allocated and de-allocated. Recursive
functions are handled using a limited form of polymor-
phic recursion. The translation is proved correct with
respect to a store semantics, which models a region-
based run-time system. Experimental results suggest
that regions tend to be small, that region allocation is
frequent and that overall memory demands are usually
modest, even without garbage collection.

1 Introduction

The stack allocation scheme for block-structured
languages[9] often gives economical use of memory re-
sources. Part of the reason for this is that the stack
discipline is eager to reuse dead memory locations (i.e.
locations, whose contents is of no consequence to the
rest of the computation). Every point of allocation is
matched by a point of de-allocation and these points
can easily be identi�ed in the source program.
In heap-based storage management schemes[4,19,

18], allocation is separate from de-allocation, the latter
being handled by garbage collection. This separation
is useful when the lifetime of values is not apparent
from the source program. Heap-based schemes are less
eager to reuse memory. Generational garbage collec-

�Postal address: Department of Computer Science (DIKU),
University of Copenhagen, Universitetsparken 1, DK-2100
Copenhagen �, Denmark; email: tofte@diku.dk.

yWork done while at Ecole des Mines de Paris. Cur-
rent address: European Computer-Industry Research Center
(ECRC GmbH), Arabella Stra�e 17, D-81925 M�unchen; email:
jp@ecrc.de

tion collects young objects when the allocation space
is used up. Hayes[11] discusses how to reclaim large,
old objects.

Garbage collection can be very fast. Indeed, there
is a much quoted argument that the amortized cost of
copying garbage collection tends to zero, as memory
tends to in�nity[2, page 206]. Novice functional pro-
grammers often report that on their machines, mem-
ory is a constant, not a variable, and that this constant
has to be uncomfortably large for their programs to
run well. The practical ambition of our work is to
reduce the required size of this constant signi�cantly.
We shall present measurements that indicate that our
translation scheme holds some promise in this respect.

In this paper, we propose a translation scheme for
Milner's call-by-value �-calculus with recursive func-
tions and polymorphic let[22,7]. The key features of
our scheme are:

1. It determines lexically scoped lifetimes for all run-
time values, including function closures, base val-
ues and records;

2. It is provably safe;

3. It is able to distinguish the lifetimes of di�erent
invocations of the same recursive function;

This last feature is essential for obtaining good mem-
ory usage (see Section 5).

Our model of the runtime system involves a stack
of regions, see Figure 1. We do not expect always to
be able to determine the size of a region when we allo-
cate it. Part of the reason for this is that we consider
recursive datatypes, such as lists, a must; the size of
a region which is supposed to hold the spine of a list,
say, cannot in general be determined when the region
is allocated. Therefore, not all regions can be allo-
cated on a hardware stack, although regions of known
size can.

Our allocation scheme di�ers from the classical
stack allocation scheme in that it admits functions as
�rst-class values and is intended to work for recursive
datatypes. (So far, the only recursive datatype we
have dealt with is lists.)

r0 r1 r2 r3

. . .

Figure 1: The store is a stack of regions; a region is a
box in the picture.

Ruggieri and Murtagh[28] propose a stack of regions
in conjunction with a traditional heap. Each region is
associated with an activation record (this is not neces-
sarily the case in our scheme). They use a combination
of interprocedural and intraprocedural data-
ow anal-
ysis to �nd suitable regions to put values in. We use a
type-inference based analysis. They consider updates,
which we do not. However, we deal with polymor-
phism and higher-order functions, which they do not.

Inoue et al.[15] present an interesting technique for
compile-time analysis of runtime garbage cells in lists.
Their method inserts pairs of HOLD and RECLAIM�
instructions in the target language. HOLD holds on
to a pointer, p say, to the root cell of its argument
and RECLAIM� collects those cells that are reachable
from p and �t the path description �. HOLD and RE-
CLAIM pairs are nested, so the HOLD pointers can be
held in a stack, not entirely unlike our stack of regions.
In our scheme, however, the unit of collection is one
entire region, i.e., there is no traversal of values in con-
nection with region collection. The path descriptions
of Inoue et al. make it possible to distinguish between
the individual members of a list. This is not possible
in our scheme, as we treat all the elements of the same
list as equal. Inoue et al. report a 100% reclamation
rate for garbage list cells produced by Quicksort[15,
page 575]. We obtain a 100% reclamation rate (but
for 1 word) for all garbage produced by Quicksort,
without garbage collection (see Section 5).

Hudak[13] describes a reference counting scheme for
a �rst-order call-by-value functional language. Refer-
ence counting may give more precise use information,
than our scheme, as we only distinguish between \no
use" and \perhaps some use."

George�[10] describes a implementation scheme for
typed lambda expressions in so-called simple form to-
gether with a transformation of expressions into simple
form. The transformation can result in an increase in

the number of evaluation steps by an arbitrarily large
factor[10, page 618]. George� also presents an imple-
mentation scheme which does not involve translation,
although this relies on not using call-by-value reduc-
tion, when actual parameters are functions.
We translate every well-typed source language ex-

pression, e, into a target language expression, e0, which
is identical with e, except for certain region annota-
tions. The evaluation of e0 corresponds, step for step,
to the evaluation of e. Two forms of annotations are

e1 at �

letregion � in e2 end

The �rst form is used whenever e1 is an expression
which directly produces a value. (Constant expres-
sions, �-abstractions and tuple expressions fall into
this category.) The � is a region variable; it indicates
that the value of e1 is to be put in the region bound
to �.
The second form introduces a region variable � with

local scope e2. At runtime, �rst an unused region, r,
is allocated and bound to �. Then e2 is evaluated
(probably using r). Finally, r is de-allocated. The
letregion expression is the only way of introducing
and eliminating regions. Hence regions are allocated
and de-allocated in a stack-like manner.
The device we use for grouping values according

to regions is uni�cation of region variables, using es-
sentially the idea of Baker[3], namely that two value-
producing expressions e1 and e2 should be given the
same \at �" annotation, if and only if type check-
ing, directly or indirectly, uni�es the type of e1 and
e2. Baker does not prove safety, however, nor does he
deal with polymorphism.
To obtain good separation of lifetimes, we introduce

explicit region polymorphism, by which we mean that
regions can be given as arguments to functions at run-
time. For example, the successor function succ =
�x:x+ 1 is compiled into

�[�,�0]:�x:letregion �00

in (x+ (1 at �00)) at �0

end

which has the type scheme

8�; �0:(int; �)
fget(�);put(�0)g
�������������!(int; �0)

meaning that, for any � and �0, the function accepts an
integer at � and produces an integer at �0 (performing
a get operation on region � and a put operation on
region �0 in the process). Now succ will put its result
in di�erent regions, depending on the context:

��� succ[�12; �9](5 at �12) ��� succ[�1; �4](x)

Moreover, we make the special provision that a recur-
sive function, f , can call itself with region arguments
which are di�erent from its formal region parameters
and which may well be local to the body of the recur-
sive function. Such local regions resemble the activa-
tion records of the classical stack discipline.
We use e�ect inference[20,21,14] to �nd out where to

wrap letregion � in . . . end around an expression.
Most work on e�ect inference uses the word \e�ect" as
a short-hand for \side-e�ect". We have no side-e�ects
in our source language | our e�ects are side-e�ects
relative to an underlying region-based store model.
The idea that e�ect inference makes it possible to

delimit regions of memory and delimit their lifetimes
goes back to early work on e�ect systems[6]. Lucassen
and Gi�ord[21] call it e�ect masking. Lucassen and
Gi�ord[21] and Talpin and Jouvelot[29] prove that ef-
fect masking is safe, with respect to a store semantics
where regions are not reused.
We have found the notion of memory reuse surpris-

ingly subtle, due to, among other things, pointers into
de-allocated regions. Since memory reuse is at the
heart of our translation scheme, we prove that our
translation rules are sound with respect to a region-
based operational semantics, where regions explicitly
are allocated and de-allocated. This is the main tech-
nical contribution of this paper.
The rest of this paper is organised as follows. The

source and target languages are presented in Section 2.
The translation scheme is presented in Section 3. The
correctness proof is in Section 4. In Section 5 we dis-
cuss strengths and weaknesses of the translation and
give experimental results.
Due to space limitations, most proofs have been

omitted. Detailed proofs (and an inference algorithm)
are available in a technical report[30].

2 Source and target languages

2.1 Source language

We assume a denumerably in�nite set Var of variables.
Each variable is either an ordinary variable, x, or a
letrec variable, f . The grammar for the source lan-
guage is1

e ::= x j �x:e j e1e2 j let x = e1 in e2 end

j letrec f(x) = e1 in e2 end

A �nite map is a map with �nite domain. The
domain and range of a �nite map f are denoted
Dom(f) and Rng(f), respectively. When f and g
are �nite maps, f + g is the �nite map whose do-
main is Dom(f) [Dom(g) and whose value is g(x), if

1For brevity, we omit pairs and projections from this paper.
They are treated in [30].

x 2 Dom(g), and f(x) otherwise. f # A means the
restriction of f to A.
A (non-recursive) closure is a triple hx; e; Ei, where

E is an environment, i.e. a �nite map from variables to
values. A (recursive) closure takes the form hx; e; E; fi
where f is the name of the function in question. A
value is either an integer or a closure. Evaluation rules
appear below.

Source Expressions E ` e! v

E(x) = v

E ` x! v

E(f) = v

E ` f ! v
(1)

E ` �x:e! hx; e; Ei
(2)

E ` e1 ! hx0; e0; E0i E ` e2 ! v2
E0 + fx0 7! v2g ` e0 ! v

E ` e1 e2 ! v
(3)

E ` e1 ! hx0; e0; E0; fi E ` e2 ! v2
E0 + ff 7! hx0; e0; E0; fig+ fx0 7! v2g ` e0 ! v

E ` e1 e2 ! v
(4)

E ` e1 ! v1 E + fx 7! v1g ` e2 ! v

E ` let x = e1 in e2 end! v
(5)

E + ff 7! hx; e1; E; fig ` e2 ! v

E ` letrec f(x) = e1 in e2 end! v
(6)

2.2 Target language

Let � range over a denumerably in�nite set RegVar of
region variables. Let r range over a denumerably in-
�nite set RegName = fr1; r2; . . .g of region names.
Region names serve to identify regions uniquely at
runtime, i.e. a store, s, is a �nite map from region
names to regions. Let p range over the set of places, a
place being either a region variable or a region name.
The grammar for the target language is:

p ::= � j r

e ::= x j �x:e at p j e1e2

j let x = e1 in e2 end

j letrec f[~�](x) at p = e1 in e2 end

j f [~p] at p

j letregion � in e end

where ~� ranges over �nite sequences �1,���,�k of region
variables and ~p ranges over �nite sequences p1,���,pk

of places (k � 0). We write j~p j for the length of a se-
quence ~p. For any �nite set f�1; . . . ; �kg of region vari-
ables (k � 0), we write letregion ~� in e end for

letregion �1
in ��� letregion �k in e end ���
end

A region is a �nite map from o�sets, o, to storable
values. A storable value, sv, is either an integer or a
closure. A (plain) closure is a triple hx; e; VEi, where
e is a target expression and VE is a variable environ-
ment, i.e. a �nite map from variables to addresses. A
region closure takes the form h~�; x; e; VEi where ~� is a
(possible empty) sequence �1,���,�k of distinct region
variables, called the formal region parameters of the
closure. Region closures represent region-polymorphic
functions. For any sequence ~p = p1,���,pk, the simul-
taneous substitution of pi for free occurrences of �i in
e (i = 1 . . .k), is written e[~p=~�].
For simplicity, we assume that all values are boxed.

Hence a value v is an address a = (r; o), where r is a
region name and o is an o�set.
A region-based operational semantics appears be-

low. We are brief about indirect addressing. Thus,
whenever a is an address (r; o), we write s(a) to mean
s(r)(o) and we write a 2 Dom(s) as a shorthand for
r 2 Dom(s) and o 2 Dom(s(r)). Similarly, when s is a
store and sv is a storable value, we write s+ f(r; o) 7!
svg as a shorthand for s + fr 7! (s(r) + fo 7! svg)g.
We express the popping of an entire region r from a
store s by writing \snnfrg", which formally means the
restriction of s to Dom(s) n frg.

Target Expressions s; VE ` e! v; s0

VE(x) = v

s; VE ` x! v; s
(7)

VE(f) = a; s(a) = h~�; x; e; VE0i j~� j = j~p j
o =2 Dom(s(r)) sv = hx; e[~p=~�]; VE0i

s; VE ` f[~p] at r ! (r; o); s+ f(r; o) 7! svg
(8)

o =2 Dom(s(r)) a = (r; o)

s; VE ` �x:e at r ! a; s+ fa 7! hx; e; VEig
(9)

s; VE ` e1 ! a1; s1 s1(a1) = hx0; e0; VE0i
s1; VE ` e2 ! v2; s2

s2; VE0 + fx0 7! v2g ` e0 ! v; s0

s; VE ` e1 e2 ! v; s0
(10)

s; VE ` e1 ! v1; s1 s1; VE + fx 7! v1g ` e2 ! v; s0

s; VE ` let x = e1 in e2 end! v; s0

(11)

o =2 Dom(s(r)) VE0 = VE + ff 7! (r; o)g
s + f(r; o) 7! h~� ; x; e1; VE

0ig; VE0 ` e2 ! v; s0

s; VE ` letrec f[~�](x) at r = e1 in e2 end! v; s0

(12)

r =2 Dom(s) s+ fr 7! fgg; VE ` e[r=�]! v; s1
s; VE ` letregion � in e end! v; s1 nn frg

(13)

For arbitrary �nite maps f1 and f2, we say that f2
extends f1, written f1 � f2, if Dom(f1) � Dom(f2)
and for all x 2 Dom(f1), f1(x) = f2(x). We then say
that s2 succeeds s1, written s2 w s1 (or s1 v s2), if
Dom(s1) � Dom(s2) and s1(r) � s2(r), for all r 2
Dom(s1).

Lemma 2.1 If s; VE ` e ! v; s0 then Dom(s) =
Dom(s0) and s v s0.

The proof is a straightforward induction on the depth
of inference of s; VE ` e! v; s0.

Example The source expression

let x = (2,3) in � y :(fst x, y)end 5

translates into

e0 � letregion �4; �5
in letregion �6

in let x = (2 at �2, 3 at �6) at �4
in (� y :(fst x, y) at �1) at �5
end

end

5 at �3
end

Notice that �1, �2 and �3 occur free in this expression.
That is because they will hold the �nal result (a fact
which the translation infers). To start the evaluation
of e0, we �rst allocate three regions, say r1, r2 and
r3. Then we substitute ri for �i in e0 (i = 1::3).
Figure 2 shows three snapshots from the evaluation
that follows, namely (a) just after the closure has been
allocated; (b) just before the closure is applied and (c)
at the end. The maximal depth of the region stack is
6 regions and the �nal depth is 3 regions. Notice the
dangling, but harmless, pointer at (b).

r1 r2 r3 r4

(a)

r5 r6

6 6

?

2 (� ; �) hy; (fst x, y)at r1; fx 7! �gi 3

r1 r2 r3 r4

(b)

r5

6 6

?

2 5 (� ; �) hy; (fst x, y)at r1; fx 7! �gi

r1 r2 r3

(c)

6

?

(� ; �) 2 5

Figure 2: Three snapshots of an evaluation

3 The Translation

Let � and � range over denumerably in�nite sets of
type variables and e�ect variables, respectively. We
assume that the sets of type variables, e�ect variables,
region variables and region names are all pairwise dis-
joint. An e�ect, ', is a �nite set of atomic e�ects. An
atomic e�ect is either a token of the form get(�) or
put(�), or it is an e�ect variable. Types, � , decorated
types, �, simple type schemes, �, and compound type
schemes, �, take the form:

� ::= int j � �:'���!�

� ::= (�; p)

� ::= � j 8�:� j 8�:�

� ::= � j 8�:� j 8�:� j 8�:�

The reason for the apparent redundancy between
the productions for simple and compound type
schemes is this. In the target language there is
a distinction between plain functions and region-
polymorphic functions. The former are represented
by plain closures, the latter by region closures that
must be applied to zero or more places in order to
yield a plain closure. Thus plain functions and region-
polymorphic functions have di�erent e�ects (even in
the case of region-polymorphic functions that are ap-
plied to zero places). We choose to represent this dis-
tinction in the type system by a complete separation
of simple and compound type schemes. Only region-
polymorphic functions have compound type schemes.
(The underlining in the production � ::= � makes it
possible always to tell which kind a type scheme is.)
When a type � is regarded as a type scheme, it is
always regarded as a simple type scheme.

An object of the form �:' (formally a pair (�; ')) is
called an arrow e�ect. Here ' is the e�ect of calling
the function. The \�:" is useful for type-checking pur-
poses, as explained in more detail in Appendix A. A
type environment, TE, is a �nite map from ordinary
variables to pairs of the form (�; p) and from letrec
variables to pairs of the form (�; p).

A substitution S is a triple (Sr ; St; Se), where Sr is a
�nite map from region variables to places, St is a �nite
map from type variables to types and Se is a �nite
map from e�ect variables to arrow e�ects. Its e�ect is
to carry out the three substitutions simultaneously on
the three kinds of variables.

For any compound type scheme

� = 8�1����k8�1����n8�1����m:�

and type � 0, we say that � 0 is an instance of � (via
S), written � � � 0, if there exists a substitution
S = (f�1 7! p1; . . . ; �k 7! pkg; f�1 7! �1; . . . ; �n 7!
�ng; f�1 7! �01:'1; . . . ; �m 7! �0m:'mg) such that S(�) =
� 0. Similarly for simple type schemes.
We infer sentences TE ` e) e0 : �; ', read: in TE,

e translates to e0, which has type and place � and ef-
fect '. In the example in Section 2.2, � is ((int; �2) �
(int; �3); �1), ' is fput(�1);put(�2);put(�3)g and
TE is empty.

Translation TE ` e) e0 : �; '

TE(x) = (�; p) � � �

TE ` x) x : (�; p); ;
(14)

TE + fx 7! �1g ` e) e0 : �2; ' ' � '0

TE ` �x:e) �x:e0 at p : (�1
�:'0

���!�2; p); fput(p)g

(15)

TE ` e1) e01 : (�
0 �:'0���!�; p); '1

TE ` e2) e02 : �
0; '2

' = '0 ['1 ['2 [f�g [fget(p)g

TE ` e1 e2) e01 e
0
2 : �; '

(16)

TE ` e1) e01 : (�1; p1); '1
�1 = 8~� 8~� :�1 fv(~�;~�) \ fv(TE;'1) = ;
TE + fx 7! (�1; p1)g ` e2) e02 : �; '2

TE ` let x = e1 in e2 end)
let x = e01 in e02 end : �; '1 ['2

(17)

� = 8~� 8~�:� fv(~�;~�) \ fv(TE;'1) = ;
TE + ff 7! (�; p)g ` �x:e1) �x:e01 at p : (�; p); '1

�0 = 8~�:� fv(~�) \ fv(TE;'1) = ;
TE + ff 7! (�0; p)g ` e2) e02 : �; '2

TE ` letrec f(x) = e1 in e2 end)
letrec f[~�](x)atp = e01 in e02 end : �; '1 ['2

(18)

TE(f) = (�; p0) � = 8�1����k:8~�:8~�:� 0

� � � via S ' = fget(p0);put(p)g

TE ` f) f[S(�1),. . .,S(�k)] at p : (�; p); '
(19)

TE ` e) e0 : �; ' '0 = Observe(TE; �)(')
f�1; . . . ; �kg = frv(' n '0)

TE ` e) letregion �1����k in e0 end : �; '0

(20)

For any semantic object A, frv(A) denotes the set
of region variables that occur free in A, frn(A) denotes
the set of region names that occur free in A, ftv(A)
denotes the set of type variables that occur free in A,
fev(A) denotes the set of e�ect variables that occur
free in A and fv(A) denotes the union of all of the
above.
Rule 14 is essentially the usual instantiation rule for

polymorphic variables in Milner's type discipline[22,
7]. In rule 18, notice that f can be used region-
polymorphically, but not type-polymorphically, inside
e01.
As for rule 20, assume TE ` e) e0 : �; ' and that

� is a region variable which occurs free in ', but does
not occur free in TE or in �. Then � is purely lo-
cal to the evaluation of e0, in the sense that the rest
of the computation will not access any value stored
in �. Since � is no longer needed, we can introduce
a \letregion � in ��� end" around e0 and discharge
any e�ect containing � from '. Thus, following Talpin
and Jouvelot [29], for every e�ect ' and semantic ob-
ject A, we de�ne the observable part of ' with respect
to A, written Observe(A)('), to be the following sub-
set of ':

Observe(A)(') = fput(p) 2 ' j p 2 fv(A)g

[fget(p) 2 ' j p 2 fv(A)g

[f� 2 ' j � 2 fev(A)g

Every expression which is typable in Milner's type
system[7] can be translated using our rules, by refrain-
ing from using region polymorphism, abstaining from
rule 20, choosing a �xed region �0 everywhere and
choosing the arrow e�ect �0:fget(�0);put(�0); �0g ev-
erywhere. (A good region inference algorithm natu-
rally does the exact opposite and makes all regions as
distinct and local as possible.)

Lemma 3.1 If TE ` e) e0 : �; ' then S(TE) ` e)
S(e0) : S(�); S('), for all substitutions S.

4 Correctness

In an attempt to prove that the translation rules are
sound, one might try to de�ne a \consistency relation"
between values in the source language semantics and
values in the target language semantics and prove a
theorem to the e�ect that consistency is preserved: if
E and VE are consistent in store s and e translates to
e0 and E ` e ! v then there exists a store s0 and a
value v0 such that s; VE ` e0 ! v0; s0 [25,8]. However,
no matter how we tried to de�ne the notion of con-
sistency, we were unable to prove such a preservation
theorem.

De�nition The relation Consistent is the largest relation satisfying:

�Consistent(R;�; v; s; v0) w.r.t.' () (writing � as (�; p) and v0 as (r0; o0))
if get(p) 2 '
then v0 2 Dom(s) and r0 = R(p) and

1) If v is an integer i then � = int and s(v0) = i;
2) If v is a closure hx; e; Ei then s(v0) is a closure hx; e0; VEi, for some e0 and VE,

and there exist TE, R0 and e00 such that
TE ` �x:e) �x:e00 at p : �; fput(p)g
and Consistent(R; TE;E; s; VE) w.r.t.'
and R0 and R agree on '
and R0(e00) = e0;

3) If v is a closure hx; e; E; fi then s(v0) = hx; e0; VEi, for some e0 and VE, and
there exist TE, �, p0, R0 and e00 such that
TE + ff 7! (�; p0)g ` �x:e) �x:e00 at p : �; fput(p)g
and Consistent(R; TE + ff 7! (�; p0)g; E + ff 7! vg; s; VE) w.r.t.'
and R0 and R agree on '
and R0(e00) = e0;

�Consistent(R; (�; p); v; s; v0) w.r.t. ' () (writing v0 as (r0; o0))
if get(p) 2 '
then v0 2 Dom(s) and r0 = R(p)

and for all � , if � � � then Consistent(R; (�; p); v; s; v0) w.r.t.';

�Consistent(R; (�; p); v; s; v0) w.r.t.' () (writing v0 as (r0; o0))
if get(p) 2 '
then v is a recursive closure hx; e; E; fi

and s(v0) = h~�0; x; e0; VEi, for some ~�0, e0 and VE,
and there exist TE, R0 and e00 such that
Consistent(R; TE + ff 7! (�; p)g; E + ff 7! vg; s; VE) w.r.t. '
and � can be written in the form 8~�:8~�8~�:�
where none of the bound variables occur free in (TE; p),

and TE + ff 7! (�; p)g ` �x:e) �x:e00 at p : (�; p); fput(p)g

and R0 and R agree on ' and R0h~�; x; e00; VEi = h~�0; x; e0; VEi

�Consistent(R; TE;E; s; VE) w.r.t.' ()
DomTE = DomE = DomVE and for all x 2 DomTE, Consistent(R; TE(x); E(x); s; VE(x)) w.r.t.'

Figure 3: The de�nition of Consistent

The key observation is that consistency, in an abso-
lute sense, is not preserved { rather it decreases mono-
tonically. In the example in Section 2, the consistency
that existed between the pair (2,3) and its representa-
tion in the store at point (a) is obviously only partially
preserved at point (b). The saving fact is that there
is always enough consistency left!

We therefore de�ne consistency with respect to an
e�ect, which, intuitively speaking, stands for the ef-
fect of executing the rest of the program. A region
environment, R is a �nite map from region variables
to places. R connects ' to s, if frv(R(')) = ; and
frn(R(')) � Dom(s). Two region environments R1

and R2 agree on e�ect ', if R1(�) = R2(�), for all
� 2 frv(').

Region environments can be applied to target ex-
pressions and even to region closures h~�; x; e; VEi pro-
vided one renames bound region variables, when nec-
essary, to avoid capture.
The consistency relation is de�ned in Figure 3. It

is the maximal �xed point of a monotonic operator
on sets; properties about consistency can therefore be
proved using co-induction [23]. For example, one can
prove[30] that consistency is preserved under increas-
ing stores, with respect to decreasing e�ects:

Lemma 4.1 If Consistent(R;�; v; s1; v
0)w.r.t.'1 and

'2 � '1 and s1 v s2 then Consistent(R;�; v; s2; v
0)

w.r.t.'2.

This lemma is a special case of a the following lemma,

which we shall see an application of later:

Lemma 4.2 If Consistent(R1; �; v; s1; v
0) w.r.t. '1

and '2 � '1 and R2 and R1 agree on '2 and s1 #
frn(R2'2) v s2 then Consistent(R2; �; v; s2; v

0) w.r.t.
'2.

The next lemma states that, in certain circumstances,
consistency can even be preserved with respect to in-
creasing e�ects!

Lemma 4.3 If Consistent(R; TE;E; s; VE) w.r.t. '
and � =2 frv(TE;'), r =2 Dom(s) and '0 �
fput(�);get(�)g [f�1; . . . ; �kg, where �1; . . . ; �k are
e�ect variables (k � 0) then Consistent(R + f� 7!
rg; TE;E; s+ fr 7! fgg; VE) w.r.t.'0 ['.

The proof of Lemma 4.3 has to deal with the possibil-
ity that there are old pointers into r[30]. This lemma
will be used in the proof of the soundness of rule 20.

Here is the main theorem:

Theorem 4.1 If TE ` e) e0 : �; ' and
Consistent(R; TE;E; s; VE)w.r.t.'['0 and E ` e! v
and R connects '['0 to s and R0 and R agree on '['0

then there exist s0 and v0 such that s; VE ` R0(e0) !
v0; s0 and Consistent(R;�; v; s0; v0) w.r.t.'0.

Proof The proof is by depth of the derivation of E `
e! v with an inner induction on the number of rule 20
steps that terminate the proof of TE ` e) e0 : �; '.
The inner inductive argument is independent of e. We
show the (inner) inductive step concerning letregion
and the (outer) case concerning function application,
as examples. In both cases, we assume

TE ` e) e0 : �; ' (21)

Consistent(R; TE;E; s; VE) w.r.t.' ['0 (22)

E ` e! v (23)

R connects ' ['0 to s (24)

R0 and R agree on ' ['0 (25)

Inner proof case: the letregion rule was applied

Assume (21) takes the form TE ` e)
letregion �1����k in e01 : �; ' which must have been
inferred by rule 20 on the premises

TE ` e) e01 : �; '
+ (26)

' = Observe(TE; �)('+) (27)

f�1; . . . ; �kg = frv('+ n ') (28)

Without loss of generality we can choose �1; . . . ; �k
such that f�1; . . . ; �kg \ frv('0) = ; as well as (27)-
(28). Thus f�1; . . . ; �kg \ frv(TE;' ['0) = ;. Let
r1; . . . ; rk be distinct addresses none of which are in
Dom(s). Then by repeated application of Lemma 4.3
starting from (22) we get

Consistent(R+; TE;E; s+; VE) w.r.t.'+ ['0 (29)

where R+ = R + f�1 7! r1; . . . ; �k 7! rkg and s+ =
s+ fr1 7! fg; . . . ; rk 7! fgg. Also by (24)

R+ connects '+ ['0 to s+ (30)

and by (25)

R0+ and R+ agree on '+ ['0 (31)

where R0+ = R0 + f�1 7! r1; . . . ; �k 7! rkg. By induc-
tion on (26), (29), (23), (30) and (31) there exist s01
and v0 such that

s+; VE ` R0+(e01)! v0; s01 (32)

Consistent(R+; �; v; s01; v
0) w.r.t. '0 (33)

Write R0(letregion �1����k in e01 end) in the form
letregion �01����

0
k in e001 end. Then

e001 [r1=�
0
1; . . . ; rk=�

0
k] = R0+e01

Thus, repeated application of rule 13 starting from
(32) gives

s; VE ` R0(letregion �1����k in e01 end)! v0; s0

where s0 = s01 nn fr1; . . . ; rkg. Note that R+ and R
agree on '0 (as f�1; . . . ; �kg \ frv('0) = ;). Also, s01 #
frn(R'0) v s0 by (24). Then by Lemma 4.2 on (33)
we get Consistent(R;�; v; s0; v0) w.r.t.'0, as required.

Application of non-recursive closure, rule 3 Here

e � e1e2, for some e1 and e2. For the base case of
the inner inductive proof we have that e0 � e01e

0
2, for

some e01 and e02 and that (21) was inferred by rule 16
on premises

TE ` e1) e01 : (�
0 �:'0���!�; p); '1 (34)

TE ` e2) e02 : �
0; '2 (35)

' = '1 ['2 [f�;get(p)g ['0 (36)

Moreover, (23) was inferred by rule 3 on premises

E ` e1 ! v1; v1 = hx0; e0; E0i (37)

E ` e2 ! v2 (38)

E0 + fx0 7! v2g ` e0 ! v (39)

Let '0
1 = '2 [f�;get(p)g ['0 ['0, i.e. the e�ect

that remains after the computation of e01. Note that
' ['0 = '1 ['0

1 so from (22), (24) and (25) we get

Consistent(R; TE;E; s; VE) w.r.t.'1 ['0
1 (40)

R connects '1 ['0
1 to s (41)

R0 and R agree on '1 ['0
1 (42)

By induction on (34), (40), (37), (41) and (42) there
exist s1 and v01 such that

s; VE ` R0(e01)! v01; s1 (43)

Consistent(R; (�0 �:'0���!�; p); v1; s1; v
0
1)w.r.t.'

0
1 (44)

Notice that get(p) 2 '0
1. Thus, by the de�nition of

Consistent, (44) tells us that v01 2 Dom(s1) and r of
v01 = R(p) and there exist e00, VE

0
0, TE0, e

00
0 and R0

such that
s1(v

0
1) = hx0; e

0
0; VE

0
0i (45)

TE0 ` �x0:e0) �x0:e
00
0 at p : (�

0 �:'0���!�; p); fput(p)g
(46)

Consistent(R; TE0; E0; s1; VE0) w.r.t.'
0
1 (47)

R0 and R agree on '0
1 (48)

R0(e
00
0) = e00 (49)

Let '0
2 = f�;get(p)g ['0 ['0, i.e. the e�ect that

remains after the computation of e02. Note that '2 [
'0
2 � ' ['0 and s v s1, so by Lemma 4.1 on (22) we

have

Consistent(R; TE;E; s1; VE) w.r.t.'2 ['0
2 (50)

Also, from (24) and (25) we get

R connects '2 ['0
2 to s1 (51)

R0 and R agree on '2 ['0
2 (52)

By induction on (35), (50), (38), (51) and (52) there
exist s2 and v02 such that

s1; VE ` R0(e02)! v02; s2 (53)

Consistent(R;�0; v2; s2; v
0
2) w.r.t.'

0
2 (54)

Let TE+
0 = TE0 + fx0 7! �0g. By (46) there exists a

'0
0 such that '0

0 � '0 and

TE+
0 ` e0) e000 : �; '

0
0 (55)

By Lemma 4.1 on (47) and '0
0 � '0 we have

Consistent(R; TE0; E0; s2; VE0) w.r.t.'
0
0 ['0 (56)

and by Lemma 4.1 on (54) and '0
0 � '0 we get

Consistent(R;�0; v2; s2; v
0
2) w.r.t.'

0
0 ['0 (57)

Let E+
0 = E0+fx0 7! v2g and let VE

+
0 = VE0+fx0 7!

v02g. Combining (56) and (57) we get

Consistent(R; TE+
0 ; E

+
0 ; s2; VE

+
0) w.r.t.'

0
0 ['0 (58)

Also, by (24) and s v s2 we get

R connects '0
0 ['0 to s2 (59)

and by (48)

R0 and R agree on '0
0 ['0 (60)

Then by induction on (55), (58), (39), (59) and (60)
there exist s0 and v0 such that

s2; VE
+
0 ` R0(e

00
0)! v0; s0 (61)

Consistent(R;�; v; s0; v0) w.r.t.'0 (62)

But by (49) we have R0(e
00
0) = e00 so (61) reads

s2; VE0 + fx0 7! v2g ` e00 ! v0; s0 (63)

From (43), (45), (53) and (63) we get

s; VE ` R0(e01 e
0
2)! v0; s0 (64)

which together with (62) is the desired result.

5 Strengths and weaknesses

In Standard ML[24], recursive functions cannot be
used polymorphically within their own declaration.
At �rst sight, our translation rules resemble the Mil-
ner/Mycroft calculus[26], in which recursive functions
can be used polymorphically within their own body.
The type-checking problem for the Milner/Mycroft is
equivalent to the semi-uni�cation problem[12,1], and
semi-uni�cation is unfortunately undecidable[17].

fib(15) The computation of the 15th Fibonacci number by the \na��ve" method (e.g. [16,
page 235]). The computation of fib(n) requires number of function calls which is
exponential in n.

sum(100) Here sum(n) computes the sum �n
i=1i, by n recursive calls, none of which are tail

recursive.
sumit(100) As above, but the sum is computed iteratively, by n tail recursive calls.
hsumit(100) As above, but computed by folding the plus operator over the list [1; ::; 100]:

foldr (op +) 0 [1,..,100];
acker(3,6) Ackermann's function, as de�ned in [16, page 239], except that our version is not

curried.
ackerMon(3,6) As above, but with Ackermann's function made region monomorphic.
appel1(100) A program, which Appel discusses in his chapter on space complexity [2, page

134]:

fun s(0) = nil | s(i) = 0 :: s(i-1)

fun f (n,x) =

let val z = length(x)

fun g() = f(n-1, s(100))

in

if n=0 then 0 else g()

end

val result = f(100,nil);

appel2(100) Same as appel1, but with g() replaced by g() + 1. (Discussed by Appel[2, page
135]

inline(100) A variant of the appel1 obtained by in-lining g and making f region monomorphic.
(Not present in Appel's book.)

quick(n) Generation of list of n random numbers, followed by Quicksort (from Paulson[27,
pp. 96{98].)

Figure 4: Test programs

In a technical report[30] we describe an inference al-
gorithmwhich appears to be sound with respect to the
rules in this paper and appears always to terminate.
(This rather weak statement due to the fact that we
do not have a proof, as yet.) The algorithm is, in a
mild sense, incomplete with respect to the inference
system.
The algorithm has been implemented. The imple-

mentation also handles pairs, lists, and conditionals,
so that one can write non-trivial programs. We wrote
roughly 1500 lines of test programs. After translation,
the target programs were run on an instrumented in-
terpreter, written in Standard ML. No garbage collec-
tor was implemented. The purpose of the experiments
was to understand memory behaviour, not to estimate
execution times.
After translation, the system performs a simple stor-

age mode analysis to discovers cases, where regions can
be updated destructively. This helps to get a good
handling of tail recursion. One more optimization is
mentioned in Appendix B. These were the only opti-
mizations performed.

The quantities measured were:

(1) Maximal depth of region stack (unit: one region)

(2) Total number of region allocations

(3) Total number of value allocations

(4) Maximum number of storable values held (unit: 1
sv)

(5) Number of values stored in the �nal memory (unit:
1 sv)

The test programs in Figure 4 are representative of
best and worst behaviour. The results are shown in
the tables below. The numbers in the �rst column
always refer to the the quantities enumerated above.

fib(15) sum(100) sum(n)

(1) 47 205 2n+ 5
(2) 15,030 606 6n+ 6
(3) 15,030 606 6n+ 6
(4) 32 104 n+ 4
(5) 1 1 1

Notice that fib and sum used very little memory, at
the expense of very frequent region allocation and de-
allocation. From lines (2) and (3) we see that the re-
gion analysis can be so �ne-grained that there is a one-
to-one correspondence between values and regions. In
the above examples, this is due to region polymor-
phism. The third column gives the exact �gures, as a
function of n. These are obtained by inspection of the
target program, which appears in Appendix B.

sumit(100) hsumit(100)

(1) 6 12
(2) 406 715
(3) 707 1,214
(4) 6 507
(5) 1 101

The results for sumit illustrate the behaviour on
tight, tail-recursive loops. When computing sumit(n),
the number of the highest region, namely 6, and the
maximum memory size, also 6, are both independent
of n.
When we compute the sum by folding the plus op-

erator over the list (hsumit(100)), all the results of
the plus operation are put into one region, because the
operator is a lambda-bound parameter of the fold op-
eration and hence cannot be region-polymorphic. In
this case, however, the analysis of storage modes does
not discover that destructive updates are possible, so
the �nal memory size is 101, of which only one word
is live.

acker(3,6) ackerMon(3,6)

(1) 3.058 514
(2) 1,378,366 1,119,767
(3) 1,378,367 1,550,599
(4) 2,043 86,880
(5) 1 1

The strength of region polymorphism is illus-
trated by the di�erences observed between acker and
ackerMon. The latter, where region polymorphismhas
been disabled, has a much larger maximal memory
size, 86,880, than the former, 2,043.

quick(50) quick(500)

(1) 170 1,520
(2) 2,729 45,691
(3) 3,684 65,266
(4) 603 8,078
(5) 152 1,502

quick(1000) quick(5000)

(1) 3,020 15,020
(2) 86,915 556,369
(3) 122,793 795,376
(4) 10,525 61,909
(5) 3,002 15,002

A list occupies three regions: one for the elements,
one for the constructors (cons and nil) and one for the
pairs, to which cons is applied. Thus, a list with n
di�erent integers is represented by 3n+ 1 values.
We see that, apart from one word, the �nal results

are the only values left at the end of the computation.2

Also, the maximal number of regions allocated (line 1)
is roughly the same as the number of values in the �nal
result. The ratio between the maximal memory size
and the �nal memory size varies between roughly 4.0
and 5.5.

appel1(100) appel2(100) inline(100)

(1) 911 1,111 311
(2) 81,714 81,914 81,113
(3) 101,614 101,814 101,413
(4) 20,709 20,709 411
(5) 1 1 1

The programs appel1 and appel2 use �(N2) space
(line 4), although �(N) ought to be enough.
This is an example of a de�ciency which our scheme
has in common with the classical stack discipline: cre-
ating a large argument for a function which only uses
it for a small part of its activation leads to waste of
memory (see also Chase [5]). inline(100) uses only
�(N) space, as the storage mode analysis discovers
that updates are possible.

Garbage collection

If one wants to combine region allocation with garbage
collection, dangling pointers are a worry. They can
be avoided by adding the extra side-condition 8y 2
FV(�x:e): frv(TE(y)) � frv('0) to rule 15. This a�ects
the precision of the inference rules, but obviously not
their soundness.

6 Conclusion

The experiments presented in this report suggest that
the scheme in many cases leads to very economical
use of memory resources, even without the use of
garbage collection. They also reveal that region al-
location and de-allocation are very frequent and that
many regions are small and short-lived. Regions with
statically known, �nite size can be allocated on a hard-
ware stack; small regions can in principle even be held
in machine registers. Magnus Vejlstrup is working on
inferring the sizes of regions. Lars Birkedal is writing
a compiler from region-annotated programs to C, to-
gether with a runtime system in C. In this system, a
variable-sized region is represented by a linked list of

2The one additional value stems from the last iteration of
the random number generator.

�xed-size pages, which are taken from and returned to
a free-list.

Acknowledgments

Fritz Henglein's expertise on semi-uni�cation was
most helpful. Peter Sestoft contributed in essential
ways to the storage mode analysis mentioned in Sec-
tion 5. Lars Birkedal wrote parts of the current imple-
mentation. Andrew Appel, David MacQueen, Flem-
ming Nielson, Hanne Riis Nielson, David Schmidt and
David N. Turner contributed with discussions and
valuable criticism.
This work is supported by Danish Research Council

grant number 5.21.08.03 under the DART project.

References

[1] J. Tiuryn A. J. Kfoury and P. Urzyczyn. Type
reconstruction in the presence of polymorphic
recursion. ACM Transactions on Programming
Languages and Systems, 15(2):290{311, April
1993.

[2] Andrew W. Appel. Compiling with Continua-
tions. Cambridge University Press, 1992.

[3] Henry G. Baker. Unify and conquer (garbage col-
lection, updating, aliasing, ...) in functional lan-
guages. In Proceedings of the 1990 ACM Con-
ference on Lisp and Functional Programming,
pages 218{226, June 1990.

[4] H.G. Baker. List processing in real time on a
serial computer. Communications of the ACM,
21(4):280{294, April 1978.

[5] David R. Chase. Safety considerations for stor-
age allocation optimizations. In Proceedings of
the SIGPLAN '88 Conference on Programming
Language Design and Implementation, pages 1{
10, ACM Press, June 22-24 1988.

[6] J. M. Lucassen D. K. Gi�ord, P. Jouvelot and
M.A. Sheldon. FX-87 Reference Manual. Techni-
cal Report MIT/LCS/TR-407, MIT Laboratory
for Computer Science, Sept 1987.

[7] L. Damas and R. Milner. Principal type schemes
for functional programs. In Proc. 9th Annual
ACM Symp. on Principles of Programming Lan-
guages, pages 207{212, Jan. 1982.

[8] Jo�elle Despeyroux. Proof of translation in natu-
ral semantics. In Proc. of the 1st Symp. on Logic
in Computer Science, IEEE, Cambridge, USA,
1986.

[9] E. W. Dijkstra. Recursive programming. Nu-
merische Math, 2:312{318, 1960. Also in
Rosen: \Programming Systems and Languages",
McGraw-Hill, 1967.

[10] Michael George�. Transformations and reduc-
tion strategies for typed lambda expressions.
ACM Transactions on Programming Languages
and Systems, 6(4):603{631, Oct 1984.

[11] Barry Hayes. Using key object opportunism to
collect old objects. In Proceedings: Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications, Sigplan Notices, Vol 26,
Number 11, 1991.

[12] Fritz Henglein. Type inference with polymorphic
recursion. ACM Transactions on Programming
Languages and Systems, 15(2):253, April 1993.

[13] Paul Hudak. A semantic model of reference
counting and its abstraction. In ACM Symposium
on List and Functional Programming, pages 351{
363, 1986.

[14] Pierre Jouvelot and D.K. Gi�ord. Algebraic re-
construction of types and e�ects. In Proceedings
of the 18th ACM Symposium on Principles of
Programming Languages (POPL), 1991.

[15] Hiroyuki Seki Katsuro Inoue and Hikaru Yagi.
Analysis of functional programs to detect run-
time garbage cells. ACM Transactions on Pro-
gramming Languages and Systems, 10(4):555{
578, 1988.

[16] �Ake Wikstr�om. Functional Programming Using
Standard ML. Series in Computer Science, Pren-
tice Hall, 1987.

[17] A. Kfoury, J. Tiuryn, and P. Urzyczyn. The
undecidability of the semi-uni�cation problem.
In Proc. 22nd Annual ACM Symp. on Theory
of Computation (STOC), Baltimore, Maryland,
pages 468{476, May 1990.

[18] Donald E. Knuth. Fundamental Algorithms. Vol-
ume 1 of The Art of Computer Programming,
Addison-Wesley, 1972.

[19] Henry Lieberman and Carl Hewitt. A real-time
garbage collector based on the lifetimes of ob-
jects. Communications of the ACM, 26(6):419{
429, June 1983.

[20] J. M. Lucassen. Types and E�ects, towards the
integration of functional and imperative program-
ming. PhD thesis, MIT Laboratory for Computer
Science, 1987. MIT/LCS/TR-408.

[21] J.M. Lucassen and D.K. Gi�ord. Polymorphic
e�ect systems. In Proceedings of the 1988 ACM
Conference on Principles of Programming Lan-
guages, 1988.

[22] R. Milner. A theory of type polymorphism in
programming. J. Computer and System Sciences,
17:348{375, 1978.

[23] Robin Milner and Mads Tofte. Co-induction in
relational semantics. Theoretical Computer Sci-
ence, 87:209{220, 1991.

[24] Robin Milner, Mads Tofte, and Robert Harper.
The De�nition of Standard ML. MIT Press, 1990.

[25] F. L. Morris. Advice on structuring compilers
and proving them correct. In Proc. ACM Symp.
on Principles of Programming Languages, 1973.

[26] A. Mycroft. Polymorphic type schemes and re-
cursive de�nitions. In Proc. 6th Int. Conf. on
Programming, LNCS 167, 1984.

[27] Laurence C. Paulson. ML for the Working Pro-
grammer. Cambridge University Press, 1991.

[28] Cristina Ruggieri and Thomas P. Murtagh. Life-
time analysis of dynamically allocated objects.
In Proceedings of the 15th Annual ACM Sympo-
sium on Principles of Programming Languages,
pages 285{293, January 1988.

[29] Jean-Pierre Talpin and Pierre Jouvelot. Polymor-
phic type, region and e�ect inference. Journal of
Functional Programming, 2(3), 1992.

[30] Mads Tofte and Jean-Pierre Talpin. A Theory of
Stack Allocation in Polymorphically Typed Lan-
guages. Technical Report DIKU-report 93/15,
Department of Computer Science, University of
Copenhagen, 1993.

Appendix A. Arrow e�ects

The purpose of this appendix is to motivate the use
of arrow e�ects of the special form �:'. The \�:" has
to do with type checking. E�ects are sets. Having
sets on the function arrow[14,29] forces one to re-think
the use of uni�cation as the basic mechanism for type
checking.
Milner's algorithm W [22] works on the following

principle. Let e be an expression and let TE be a
type environment giving the types of the free vari-
ables of e. Then W (TE; e) attempts to �nd not just
a type � for e, but also a substitution S, such that
S(TE) ` e : � . Informally speaking, the substitution
says how the types in the type environment must be
\re�ned" in order to make e typable.

In e�ect systems an important form of \type re�ne-
ment" is that of increasing an e�ect (under the order-
ing of set inclusion). For example, consider the type
checking of the expression

�h: if e then h else (�x:x+ 1)

where we assume that e is an expression which con-
tains an application of h. Assume for the moment
that arrow e�ects are just e�ects. After the then

branch has been analysed, the type environment might

contain the binding: fh 7! ((�; �1)
;�!(�; �2); �3)g.

Next, the type of (�x:x + 1) might be inferred to be

((int; �01)
fget(�0

1
);put(�0

2
)g

��������������!(int; �02); �
0
3). We want

the uni�cation of these types to re�ne the type of h
to have the e�ect fget(�01);put(�

0
2)g on the function

arrow.

Talpin and Jouvelot[29] introduce e�ect variables to
achieve this. In their algorithm, one always has just
an e�ect variable on every function arrow. In addi-
tion, their algorithm infers a set of constraints of the
form � � '. Their algorithm then alternates between
solving constraint sets and inferring types. Our arrow
e�ects give a variation of their scheme which allows
substitution to do all \re�nement" without constraint
sets. In the present system, under the assumption

fh 7! ((�; �1)
�1:;���!(�; �2); �3)g the type of the then

branch above is ((�; �1)
�1:;���!(�; �2); �3) and the type

of the else branch is

((int; �01)
�2:fget(�0

1
);put(�0

2
)g

���������������!(int; �02); �
0
3)

Uni�cation then gives a substitution on region and
type variables, but it also produces the e�ect substi-
tution

Se = f �1 7! �1:fget(�01);put(�
0
2)g;

�2 7! �1:fget(�01);put(�
0
2)gg

Thus the resulting type of h in the type environment
is

((int; �01)
�1:fget(�0

1
);put(�0

2
)g

���������������!(int; �02); �
0
3)

Another technical point about e�ect variables is
that � is included in the e�ect of e01e

0
2 in rule 16. Sup-

pose type checking reveals that the arrow e�ect �:'0
in that rule should be re�ned to �0:('0['0), say. Then
application of the substitution f� 7! �0:'0g to ' (see
rule 16) will yield a set which contains f�0g ['0, so
again the re�nement of � has been propagated with
the aid of substitution alone. If � had not been in-
cluded in ', it is not clear how one would recognize
that the subset '0 of ' stems from the application of
a function with arrow e�ect '0.

Appendix B. A larger example

The source program sum mentioned in Section 5 is

letrec sum = � x .

if x=0 then 1 else x+sum(x-1)
in sum(100)

end

It translates into the target program:

letregion �1
in

letrec sum[�2,�3] at �1 =

(� x:(int,�2).
if letregion �4

in letregion �5
in (x=(0 at �5)) at �4
end

end

then 1 at �3
else

letregion �6
in

(x+
letregion �7,�8
in

sum[�8,�6] at �7
letregion �9
in (x-(1 at �9)) at �8
end

end

) at �3
end

) at �1
in letregion �10,�11

in sum[�11,�0] at �10
(100 at �11)

end

end

end

Note that sum becomes region-polymorphic and
that this region polymorphism is exploited inside the
body of sum itself: regions �6 and �8 are local to the
function body and are passed to the recursive call (�8
holds the argument and �6 is where the result is to
be placed). Note that the regions are allocated and
de-allocated much as they would be in the classical
stack discipline. In fact we can count how many re-
gions will be allocated, as a function of n. For n = 0,
the maximal stack depth is 6 (�0, �1, �10, �11, �4 and
�5). For n > 0, the maximal stack depth is 6+3n (the
three regions being �6, �7 and �8 | �9 disappears be-
fore the recursive call). The optimization which we
hinted at in Section 5 discovers that �7 and �10 can be
de-allocated before the calls they serve, bringing the
maximal stack depth down to 2n+ 5.

For some functions (typically tail-recursive func-
tions), a simple inspection of the target program al-
lows one to deduce that the function will run in con-
stant space.

