
1

Search-based Procedural Content Generation:

A Taxonomy and Survey
Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, Cameron Browne

Abstract— The focus of this survey is on research in applying
evolutionary and other metaheuristic search algorithms to
automatically generating content for games, both digital and
non-digital (such as board games). The termsearch-based
procedural content generation is proposed as the name for this
emerging field, which at present is growing quickly. A taxonomy
for procedural content generation is devised, centering onwhat
kind of content is generated, how the content is represented
and how the quality/fitness of the content is evaluated; search-
based procedural content generation in particular is situated
within this taxonomy. This article also contains a survey ofall
published papers known to the authors in which game content
is generated through search or optimisation, and ends with an
overview of important open research problems.

I. I NTRODUCTION

This paper introduces the field ofsearch-based procedural
content generation, in which evolutionary and other stochas-
tic and metaheuristic search techniques generate content
for games. As the demand from players for ever more
content rises, the video game industry faces the prospect
of continually rising costs to pay for the artists and pro-
grammers to supply it. In this context a novel application
for AI has opened up that focuses more on the creative
and artistic side of game design [1], [2], [3], [4], [5], [6]
than on the tactical and strategic considerations common
to NPC AI [7], [8], [9], [10]. Algorithms that can produce
desirable content on their own can potentially save significant
expense. Moreover, the possibilities in this area are largely
uncharted; the breadth of content potentially affected is only
beginning to be understood, raising the question of whether
computers will ultimately yield designs that compete with
human imagination.

This review examines the first steps that researchers have
taken towards addressing this question as this nascent field
begins to coalesce. The aim is to investigate what can
and cannot be accomplished with such techniques and to
outline some of the main research challenges in the field.
Distinctions will be introduced between different approaches,
and a comprehensive survey of published examples will
be discussed and classified according to these distinctions.
First, the overarching area of procedural content generation
is introduced.

JT and GNY are with IT University of Copenhagen, Rued Lang-
gaards Vej 7, 2300 Copenhagen, Denmark. KOS is with University of
Central Florida, 4000 Central Florida Blvd. Orlando, Florida 32816,
USA. CB is with Imperial College London, London SW7 2AZ, UK.
emails: julian@togelius.com, yannakakis@itu.dk, kstanley@eecs.ucf.edu,
cameron.browne@btinternet.com

Procedural content generation(PCG) refers to creating
game content automatically, through algorithmic means. In
this paper, the termgame contentrefers to all aspects
of the game that affect gameplay other thannon-player
character(NPC) behaviour and the game engine itself. This
set includes such aspects as terrain, maps, levels, stories,
dialogue, quests, characters, rulesets, dynamics and weapons.
The survey explicitly excludes the most common application
of search and optimization techniques in academic games
research, namely NPC AI, because the work in that area is
already well-documented in the literature [7], [8], [9], [10]
while other areas of content are significantly less publicized.
The review also puts less weight on decorative assets such
as lighting, textures and sound effects, insofar as they do not
directly affect gameplay. (It should be noted that there is a
rich literature on procedural generation of textures [11],e.g.
for use as ornamentation in games [12], which will not be
covered here.) Typically, PCG algorithms create a specific
content instance from a short description (parameterisation
or seed), which is in some way much smaller than the
“expanded” content instance. The generation process is often,
but not always, partly random.

There are several reasons for game developers to be inter-
ested in procedural content generation. The first is memory
consumption – procedurally represented content can typically
be compressed by keeping it “unexpanded” until needed. A
good example is the classic space trading and adventure game
Elite (Acornsoft 1984), which managed to keep hundreds of
star systems in the few tens of kilobytes of memory available
on the hardware of the day by representing each planet as
just a few numbers; in expanded form, the planets had names,
populations, prices of commodities, etc.

Another reason for using PCG is the prohibitive expense
of manually creating game content. Many current generation
AAA titles employ software such asSpeedTree(Interactive
Data Visualization, Inc) to create whole areas of vegetation
based on just a few parameters, saving precious development
resources while allowing large, open game worlds. This
argument becomes ever more important as expectations about
the amount and level of detail of game content continue to
increase in pace with game hardware improvements.

A third argument for PCG is that it might allow the
emergence of completely new types of games, with game
mechanics built around content generation. If new content
can be generated with sufficient variety in real time then it
may become possible to create truly endless games. Further,
if this new content is created according to specific criteria,
such as its suitability for the playing style of a particular



2

player (or group/community of players) or based on partic-
ular types of player experience (challenge, novelty, etc.), it
may become possible to create games with close to infinite
replay value. Imagine a game that never ends — wherever
you go, whatever you do, there is always something new
to explore, and this new content is consistently novel while
at the same time tuned to your playing style and offering
the type of challenges you want. Persistent-world games in
which players demand a continual stream of new content
in particular can benefit from such a capability. While PCG
technology is not yet impacting commercial games in this
way, this vision motivates several researchers within search-
based PCG, as discussed in this article.

Finally, PCG can augment our limited, human imagination.
Not every designer is a genius, at least not all the time, and
a certain amount of sameness might be expected. Off-line
algorithms might create new rulesets, levels, narratives,etc.,
which can then inspire human designers and form the basis
of their own creations. This potential also motivates several
search-based PCG researchers, as discussed in this paper.

II. D ISSECTING PROCEDURAL CONTENT GENERATION

While PCG in different forms has been a feature of various
games for a long time, there has not been an academic com-
munity devoted to its study. This situation is now changing
with the recent establishment of a mailing list1, an IEEE CIS
Task Force2, a workshop3 and a wiki4 on the topic. However,
there is still no textbook on PCG, or even an overview paper
offering a basic taxonomy of approaches. To fill this gap,
this section aims to draw some distinctions. Most of these
distinctions are not binary, but rather a continuum wherein
any particular example of PCG can be placed closer to one or
the other extreme. Note that these distinctions are drawn with
the main purpose of clarifying the role of search-based PCG;
of course other distinctions will be drawn in the future as the
field matures, and perhaps the current distinctions will need
to be redrawn. More distinctions are clearly needed to fully
characterize e.g. PCG approaches that are not search-based.
Still, the taxonomy herein should be useful for analyzing
many PCG examples in the literature, as well as published
games.

A. Online versus offline

The first distinction is whether the content generation is
performedonline during the runtime of the game, oroffline
during game development. An example of the former is
when the player enters a door to a building and the game
instantly generates the interior of the building, which was
not there before; in the latter case an algorithm suggests
interior layouts that are then edited and perfected by a human
designer before the game is shipped. Intermediate cases are

1http://groups.google.com/proceduralcontent
2http://game.itu.dk/pcg/
3http://pcgames.fdg2010.org/
4http://pcg.wikidot.com

possible, wherein an algorithm running on, for example, a
real time strategy(RTS) server suggests new maps to a
group of players daily based on logs of their recent playing
styles. Online PCG places two or three main requirements
on the algorithm: that it is very fast, that it has a predictable
runtime and (depending on the context) that its results are of
a predictable quality.

B. Necessary versus optional content

A further distinction relating to the generated content is
whether that content isnecessaryor optional. Necessary
content is required by the players to progress in the game —
e.g. dungeons that need to be traversed, monsters that need to
be slain, crucial game rules, and so on — whereas optional
content is that which the player can choose to avoid, such as
available weapons or houses that can be entered or ignored.
The difference here is that necessary content always needs
to be correct; it is not acceptable to generate an intractable
dungeon, unplayable ruleset or unbeatable monster if such
aberrations makes it impossible for the player to progress.It
is not even acceptable to generate content whose difficulty
is wildly out of step with the rest of the game. On the
other hand, one can allow an algorithm that sometimes
generates unusable weapons and unreasonable floor layouts
if the player can choose to drop the weapon and pick another
one or exit a strange building and go somewhere else instead.

Note that it depends significantly on the game design and
the game fiction whether content is categorised as necessary
or optional, and to what extent optional content is allowed
to “fail”. The first-person shooterBorderlands (Gearbox
Software 2009) has randomly generated weapons, many of
which are not useful, yet exploring these items is a core
part of the gameplay and consistent with the game fiction.
On the other hand, a single poorly designed and apparently
“artificial” plant or building might break the suspension of
disbelief in a game with a strong focus on visual realism such
as Call of Duty 4: Modern Warfare(Infinity Ward 2007).
Also note that some types of content might be optional in one
class of games, and necessary in another (see e.g. optional
dungeons). Therefore the analysis of what content is optional
should be done on a game-for-game basis.

C. Random seeds versus parameter vectors

Another distinction concerning the generation algorithm
itself is to what extent it can be parameterised. All PCG
algorithms create “expanded” content of some sort based on a
more compact representation. At one extreme, the algorithm
might simply take a seed to its random number generator
as input; at another extreme, the algorithm might take as
input a multidimensional vector of real-valued parameters
that specify the properties of the content it generates. Forex-
ample, a dungeon generator might be called with parameters
specifying such properties as the number of rooms, branching
factor of corridors, clustering of item locations, etc. Another
name for the random seed–parameter vector continuum is the
number ofdegrees of control.



3

D. Stochastic versus deterministic generation

A distinction only partly orthogonal to those outlined so
far concerns the amount of randomness in content generation.
The right amount of variation in outcome between different
runs of an algorithm with identical parameters is a design
question. It is possible to conceive of deterministic generation
algorithms that always produce the same content given
the same parameters, but many algorithms (e.g. dungeon-
generation algorithms in roguelike games) do not. (Note
that the random number generator seed is not considered
a parameter here; that would imply that all algorithms are
deterministic.)

Completely deterministic PCG algorithms can be seen as
a form of data compression. A good example of this use of
PCG techniques is the first-person shooter.kkrieger (.thep-
rodukkt 2004), which manages to squeeze all of its textures,
objects, music and levels together with its game engine in 96
kilobytes of storage space. Another good example isElite,
discussed above.

E. Constructive versus generate-and-test

A final distinction is between algorithms that can be called
constructiveand those that can be described asgenerate-and-
test. A constructive algorithm generates the content once,
and is done with it; however, it needs to make sure that
the content is correct or at least “good enough” while it is
being constructed. This can be done through only performing
operations, or sequences of operations, that are guaranteed to
never produce broken content. An example of this approach
is the use of fractals to generate terrains [13].

A generate-and-test algorithm incorporates both a generate
and a test mechanism. After a candidate content instance is
generated, it is tested according to some criteria (e.g. is there
a path between the entrance and exit of the dungeon, or does
the tree have proportions within a certain range?). If the test
fails, all or some of the candidate content is discarded and
regenerated, and this process continues until the content is
good enough.

The Markov chain algorithm is a typical constructive
method. In this approach, content is generated on-the-fly
according to observed frequency distributions in source ma-
terial [14]. This method has generated novel but recognisable
game names [3], natural language conversations, poetry,
jazz improvisation [15], and content in a variety of other
creative domains. Similarly, generate-and-test methods such
as evolutionary algorithms are widely used for PCG in non-
game domains, for example in the generation of procedural
art; the evaluation function for this very subjective content
may be a human observer who specifies which individuals
survive each generation [16], [17] or a fully automated
process using image processing techniques to compare and
judge examples [18]. Although PCG has been successfully
applied to a range of creative domains, we shall focus on its
application to games in this survey.

III. SEARCH-BASED PROCEDURAL CONTENT

GENERATION

Search-based procedural content generationis a special
case of the generate-and-test approach to PCG, with the
following qualifications:

• The test function does not simply accept or reject the
candidate content, but grades it using oneor a vector
of real numbers. Such a test function is variously called
a fitness, evaluationand utility function; here, we will
use “evaluation function” and call the number or vector
it assigns to the content thefitnessor simply thevalue
of the content.

• Generating new candidate content is contingent upon the
fitness value assigned to previously evaluated content
instances; in this way the aim is to produce new content
with higher value.

While most examples in this article rely on evolution-
ary algorithms, we chose the term “search-based” rather
than “evolutionary” for several reasons. One is to avoid
excluding other common metaheuristics, such as simulated
annealing [19] and particle swarm optimization [20], or
simple stochastic local search. Our definition of “search-
based” explicitly allows all forms of heuristic and stochastic
search/optimisation algorithms. (Some cases of exact search,
exhaustive search and derivative-based optimization might
qualify as well, though in most cases the content evaluation
function is not differentiable and the content space too big
to be exhaustively searched.) Another reason is to avoid
some connotations of the word “evolutionary” in the belief
that search-based is more value-neutral. Finally, the term
search-based for a similar range of techniques is established
within search-based software engineering [21], [22]. The
over-representation of evolutionary algorithms in this paper
is simply a reflection of what papers have been published in
the field.

Almost all of the examples in section IV use some form
of evolutionary algorithm as the main search mechanism,
as evolutionary computation has so far been the method of
choice among search-based PCG practitioners. In an evolu-
tionary algorithm, a population of candidate content instances
are held in memory. Each generation, these candidates are
evaluated by the evaluation function and ranked. The worst
candidates are discarded and replaced with copies of the good
candidates, except that the copies have been randomly mod-
ified (i.e. mutated) and/or recombined. Figure 1 illustrates
the overall flow of a typical search-based algorithm, and
situates it in relation to constructive and simple generate-
and-test approaches.

As mentioned above, search-based PCG does not need
to be married to evolutionary computation; other heuris-
tic/stochastic search mechanisms are viable as well. In our
experience, the same considerations about representationand
the search space largely apply regardless of the approach
to search. If we are going to search a space of game
content, we need to represent the content somehow, and the
representation (and associated variation operators) shapes the



4

Fig. 1. Three approaches to procedural content generation:con-
structive, simple generate-and-test and search-based. Note that not all
search/optimisation algorithms suitable for PCG keep a population of
candidate content, but most of the commonly used ones do.

search space. Regardless of the algorithm chosen we will also
need to evaluate the content, and the design of the evaluation
function is another key design decision. Some terminology
from evolutionary computation will be used in this section,
simply because that field has a well-developed conceptual
apparatus suitable for adapting to our purposes.

A. Content representation and search space

A central question in stochastic optimization and meta-
heuristics concerns how to represent whatever is evolved.
In other words, an important question is howgenotypes
(the data structures that are handled by the evolutionary
algorithm) are mapped tophenotypes(the data structure or
process that is evaluated by the evaluation function)5. The
distinction between genotype and phenotype can be thought
of as the distinction between a blueprint and a finished
building, alternatively as between an algorithm and the output
of the algorithm. In a game content generation scenario, the
genotype might be the instructions for creating a game level,
and the phenotype the actual game level. We can always talk
of a genotype/phenotype distinction when stochastic search
is employed, even in simple cases such as searching for the
roots of an equation; in this case, the variable values are
the genotype, the result of substituting these values for the
variables the genotype and the calculation of the left-hand
side of the equation the genotype-to-phenotype mapping.

An important distinction among representations is between
direct encodingsand indirect encodings. Direct encodings
imply relative computational simplicity in the genotype-
to-phenotype mapping, i.e. that the size of the genotype
is linearly proportional to the size of the phenotype and
that each part of the genome maps to a specific part of
the phenotype. In indirect encodings, the genotype maps

5This terminology is taken from evolutionary computation, but similar
distinctions and considerations can be found in other formsof optimisation.

nonlinearly to the phenotype and the former need not be
proportional to the latter; often, complex computation is
necessary to create the phenotype from the genotype ([23],
[24], [25]; see [26] for a review).

The study of representations is a broad research field
within evolutionary computation, and has produced several
original concepts that are relevant to search-based PCG [27].
A particularly well-studied case is that in which candidates
are represented as vectors of real numbers. These can easily
be analyzed, and many standard algorithms are more readily
applied to such representations compared to more unusual
representations. In order to search the space effectively,the
vector should have the right dimensionality. Short vectors
that are incapable of properly representing the content (or
that introduce the wrong bias in search space) should be
avoided, while at the same time avoiding the “curse of
dimensionality” associated with vectors that are too large
(or, alternatively, the algorithm should find the right dimen-
sionality for the vector [28]). Another principle is that the
representation should have a highlocality, meaning that a
small change to the genotype should on average result in a
small change to the phenotype and a small change to the
fitness value.

Apart from these concerns, it is important that the chosen
representation is capable of representing all the interesting
solutions. However, this ideal can be hard to attain in practice
for indirect encodings, for which there might be areas of
phenotype space to which no genotypes map, and no simple
way of detecting this. With direct encodings, it is in general
easy to ascertain that any particular area of solution space
could in principle be found by the search process.

These considerations are important for search-based PCG,
as the representation and search space must be well-matched
to the domain for the process to perform at a high level. There
is a continuum within search-based PCG between direct and
indirect representation. As a concrete example, a maze (for
use e.g. in a “roguelike” dungeon adventure game) might be
represented:

1) directly as a grid where mutation works on the contents
(e.g. wall, free space, door, monster) of each cell,

2) more indirectly as a list of the positions, orientations
and lengths of walls (an example of this can be found
in [29]),

3) even more indirectly as a repository of different
reusable patterns of walls and free space, and a list
of how they are distributed (with various transforms
such as rotation and scaling) across the grid,

4) very indirectly as a list of desirable properties (number
of rooms, doors, monsters, length of paths and branch-
ing factor), or

5) most indirectly as a random number seed.

These representations yield very different search spaces.
In the first case, all parts of phenotype space are reachable,
as the one-to-one mapping ensures that there is always a
genotype for each phenotype. Locality is likely to be high
because each mutation can only affect a single cell (e.g. turn



5

it from wall into free space), which in most cases changes
the fitness of the map only slightly. However, because the
length of the genotype would be equal to the number of cells
in the grid, mazes of any interesting size quickly encounter
the curse of dimensionality. For example, a100× 100 maze
would need to be encoded as a vector of length10, 000,
which is more than many search algorithms can effectively
approach.

At the other end of the spectrum, option5 does not suffer
from high search space dimensionality because it searches a
one-dimensional space. The question of whether all interest-
ing points of phenotype space can be reached depends on the
genotype-to-phenotype mapping, but it is possible to envision
one where they can (e.g. iterating through all cells and
deciding their content based on the next random number).
However, the reason this representation is unsuitable for
search-based PCG is that there is no locality; one of the
main features of a good random number generator is that
there is no correlation between the numbers generated by
neighbouring seed values. All search performs as badly (or
as well) as random search.

Options2 to 4 might thus all be more suitable represen-
tations for searching for good mazes. In options2 and 3
the genotype length would grow with the desired phenotype
(maze) size, but sub-linearly, so that reasonably large mazes
could be represented with tractably short genotypes. In option
4 genotype size is independent of phenotype size, and can be
made relatively small. On the other hand, the locality of these
intermediate representations depends on the care and domain
knowledge with which each genotype-to-phenotype mapping
is designed; both high- and low-locality mechanisms are
conceivable.

B. Evaluation functions

Once a candidate content item is generated, it needs to be
evaluated by the evaluation function and assigned a scalar (or
a vector of real numbers6) that accurately reflects its suitabil-
ity for use in the game. In this paper the word “fitness” has
the same meaning as “utility” in some optimisation contexts,
and the words could be used interchangeably. Another term
that can be found in the optimisation literature is “cost”; an
evaluation function, as defined here, is the negative of a cost
function.

Designing the evaluation function is ill-posed; the designer
first needs to decide what, exactly, should be optimised and
then how to formalise it. For example, one might intend
to design a search-based PCG algorithm that creates “fun”
game content, and thus an evaluation function that reflects
how much the particular piece of content contributes to
the player’s sense of fun while playing. Or, alternatively,
one might want to consider immersion, frustration, anxiety
or other emotional states when designing the evaluation
function. However, emotional states are not easily formalised,

6In the case of more than one fitness dimension, a multiobjective
optimisation algorithm is appropriate [30], which leads toconsiderations
not discussed here.

and it is not entirely clear how to measure them even
with multiple modalities of user input (such as physiolog-
ical measures, eye-gaze, speech and video-annotated data)
and a psychological profile of the player. With the current
state of knowledge, any attempt to estimate the contribution
to “fun” (or affective states that collectively contributeto
player experience) of a piece of content is bound to rely
on conflicting assumptions. More research within affective
computing and multimodal interaction is needed at this time
to achieve fruitful formalisations of such subjective issues;
see [31] for a review. Of course, the designer can also try
to circumvent these issues by choosing to measure narrower
and more game-specific properties of the content.

Three key classes of evaluation function can be distin-
guished for the purposes of PCG:direct, simulation-based
andinteractiveevaluation functions. (A more comprehensive
discussion about evaluation functions for game content can
be found in a recently published overview paper [32].)

1) Direct evaluation functions:In a direct evaluation
function, some features are extracted from the generated
content and mapped directly to a fitness value. Hypothetical
features might include the number of paths to the exit in
a maze, firing rate of a weapon, spatial concentration of
resources on an RTS map, material balance in randomly
selected legal positions for board game rule set, and so on.
The mapping between features and fitness might be linear
or non-linear, but ideally does not involve large amounts
of computation and is likely specifically tailored to the
particular game and content type. This mapping might also
be contingent on a model of the playing style, preferences
or affective state of the player, which means that an element
of personalisationis possible.

An important distinction within direct evaluation func-
tions is betweentheory-drivenanddata-drivenfunctions. In
theory-driven functions, the designer is guided by intuition
and/or some qualitative theory of player experience to derive
a mapping. On the other hand, data-driven functions are
based on data collected on the effect of various examples
of content via, for example, questionnaires or physiological
measurements, and then using automated means to tune the
mapping from features to fitness values.

2) Simulation-based evaluation functions:It is not always
apparent how to design a meaningful direct evaluation func-
tion for some game content — in some cases, it seems that
the content must be sufficiently experienced and manipulated
to be evaluated. Asimulation-basedevaluation function,
on the other hand, is based on an artificial agent playing
through some part of the game that involves the content
being evaluated. This approach might include finding the
way out of a maze while not being killed or playing a board
game that results from the newly-generated rule set against
another artificial agent. Features are then extracted from the
observed gameplay (e.g. did the agent win? How fast? How
was the variation in playing styles employed?) and used to
calculate the value of the content. The artificial agent might
be completely hand-coded, or might be based on a learned



6

behavioural model of a human player, making personalisation
possible for this type of evaluation function as well.

Another key distinction is betweenstatic and dynamic
simulation-based evaluation functions. In a static evaluation
function, it is not assumed that the agent changes while
playing the game; in a dynamic evaluation function the
agent changes during the game and the evaluation func-
tion somehow incorporates this change. For example, the
implementation of the agent can be based on a learning
algorithm and the fitness value can be dependent onlearn-
ability: how well and/or fast the agent learns to play the
content that is being evaluated. Learning-based dynamic
evaluation functions are especially appropriate when little
can be assumed about the content and how to play it. Other
uses for dynamic evaluation functions include capturing e.g.
order effects and user fatigue. It should be noted that while
simulating the game environment can typically be executed
faster than real-time, simulation-based evaluation functions
are in general more computationally expensive than direct
evaluation functions; dynamic simulation-based evaluation
functions can thus be time-consuming, all but ruling out
online content generation.

3) Interactive evaluation functions: Interactiveevaluation
functions score content based on interaction with a player in
the game, which means that fitness is evaluated during the
actual gameplay. Data can be collected from the player either
explicitly using questionnaires or verbal cues, orimplicitly
by measuring e.g. how often or long a player chooses to
interact with a particular piece of content [33], [2], when
the player quits the game, or expressions of affect such
as the intensity of button-presses, shaking the controller,
physiological response, eye-gaze fixation, speech quality,
facial expressions and postures.

The problem with explicit data collection is that it can
interrupt the gameplay, unless it is well integrated in the
game design. On the other hand, the problems with indirect
data collection are that the data is often noisy, inaccurate,
of low-resolution and/or delayed, and that multimodal data
collection may be technically infeasible and/or expensive
for some types of game genres — e.g. eye-tracking and
biofeedback technology are still way too expensive and
unreliable for being integrated within commercial-standard
computer games. However, such technology can more easily
be deployed in lab settings and used to gather data on which
to base player models that can then be used outside of the
lab.

C. Situating search-based PCG

At this point, let us revisit the distinctions outlined in
Section II and ask how they relate to search-based PCG. In
other words, the aim is to situate search-based PCG within
the family of PCG techniques. As stated above, search-based
PCG algorithms are generate-and-test algorithms. They might
take parameter vectors or not. If they do, these are typically
parameters that modify the evaluation function, such as the
desired difficulty of the generated level. As evolutionary and

similar search algorithms rely on stochasticity for e.g. mu-
tation, a random seed is needed; therefore, these algorithms
should be classified as stochastic rather than deterministic.
There is no way of knowing exactly what you’ll get with
search-based PCG algorithm, and in general no way of
reproducing the same result except for saving the result itself.

As there is no general proof that any metaheuristic al-
gorithms ultimately converge (except in a few very simple
cases), there is no guaranteed completion time for an search-
based PCG algorithm, and no guarantee that it will produce
good enough solutions. The time taken depends mostly on
the evaluation function, and because an evaluation function
for a content generation task would often include some kind
of simulation of the game environment, it can be substantial.
Some of the examples in the survey section below take
days to run, others produce high-quality content in under
a second. For these reasons it might seem that search-based
PCG would be less suitable for online content generation,
and better suited for offline exploration of new design ideas.
However, as we shall see later, it is possible to successfully
base complete game mechanics on search-based PCG, at least
if the content generated is optional rather than necessary.

We can also choose to look at the relation between indirect
representation and search-based PCG from a different angle.
If our search-based PCG algorithm includes an indirect
mapping from genotype to phenotype, this mapping can be
viewed as a PCG algorithm in itself, and an argument can
be made for why certain types of PCG algorithms are more
suitable than others for use as part of an search-based PCG
algorithm. In other words, this “inner” PCG algorithm (the
genotype-to-phenotype mapping) becomes a key component
in the main PCG algorithm. We can also see genotype-
to-phenotype mapping as a form of data decompression,
which is consistent with the view discussed in section II
that deterministic PCG can be seen as data compression. It
is worth noting that some indirect encodings used in various
evolutionary computation application areas bear strong sim-
ilarities to PCG algorithms for games; several such indirect
encodings are based on L-systems [34], as are algorithms for
procedural tree and plant generation [35], [24].

IV. SURVEY OF SEARCH-BASED PCG

Search-based PCG is a new research area and the volume
of published papers is still manageable. In this section, we
survey published research in search-based PCG. While no
review can be guaranteed to cover all published research in
a field, we have attempted a thorough survey that covers
much of the known literature.

The survey proceeds in the following order: it first ex-
amines work on generating necessary game content, and
then proceeds to generating optional content, following the
distinction in section II-B. Of course, this distinction isnot
always clear cut: some types of content might be optional
in one game, but necessary in another. Within each of these
classes we distinguish between types of content: rules and
mechanics, puzzles, tracks, levels, terrains and maps are



7

deemednecessary, whereas weapons, buildings and camera
placement are deemedoptional. Within each content type
section, we discuss each project in approximate chronolog-
ical order, based on the years in which the relevant papers
were first published.

A. Necessary content

1) Rules and mechanics:Game rules and their associated
game mechanics might be said to be the most fundamental
type of content; it is hard to conceive of a game without any
rules. It is also very uncommon to change the rules while
a game is being played, though such examples exist. This
perspective places rules firmly on the “necessary” end of
content that can be generated.

Hom and Marks [36] evolved two-player board game
rules for balance. Rules are represented relatively directly
as expression trees in theZillions of Games(ZOG) game
description language [37], with the search space constrained
to games similar to Tic-Tac-Toe, Reversi and Checkers;
a total of 5616 games are contained in this space. The
evaluation function is simulation-based, static and theory-
driven: a game is tested by playing two sides against each
other in the ZOG game engine. Quality values are calculated
as the negative of the score difference between the two
players, assuming that board games are better when there
is no advantage for either side.

Togelius and Schmidhuber [38] conducted an experiment
in which rulesets were evolved offline for grid-based games
in which the player moves an agent, in a manner similar to a
discrete version of Pac-Man. Apart from the agent, the grid is
populated by walls and “things” of different colours, which
can be interpreted as items, allies or enemies depending on
the rules. Rulesets are represented fairly directly as fixed-
length parameter vectors, interpreted as the effects on various
objects when they collided with each other or the agent, and
their behaviour. For example, blue things could move clock-
wise around the grid and kill red things upon collision, but be
teleported away and increase the game score when colliding
with the agent. A relatively wide range of games can be
represented using this vocabulary, and genotype generation is
deterministic except for the starting position of objects.The
evaluation function is simulation-based, dynamic and theory-
driven: an evolutionary reinforcement learning algorithm
learns each ruleset and the ruleset is scored according to
how well it learned. Games that are impossible or trivial are
given low fitness values, whereas those that can be learned
after some time score well.

Browne [3] developed theLudi system for offline design of
rules for board games using a form of genetic programming.
Game rules are represented relatively directly as expression
trees, formulated in a game description language that was
specially designed for the project. This language allows
the representation of a sufficiently wide variety of board
games, including many well-known games. The evolutionary
process that creates new rule sets is non-standard in the sense

Crossover

Mutate

Rule Check
Well

Formed?

N

Y
Baptise

Too
Slow?

Y

NChoose
Policy

Drawish?

N

Y

Inbred?

N

Y

Evaluate

Bin

Population

Select Parents

Fig. 2. TheLudi system for generating game rules.

that suboptimal children with poor performance or badly-
formed rules are not discarded but are instead retained in the
population with a lower priority, to maintain a necessary level
of genetic diversity. The evaluation function is a complex
combination of direct measures and static simulation-based
measures: for example, standard game-tree search algorithms
are used to play the generated game as part of the content
evaluation, to investigate issues such as balance and time to
play the game. While hand-coded, the evaluation function
is based on extensive study of existing board games and
measurements of user preferences for board games that
exhibited various features. An illustration of the architecture
of Ludi is shown in Fig. 2.

Smith and Mateas [5] provide a representation of game
rules for simple games that differ from most SBPCG, but
which could easily form part of a search-based approach.
Game rules and ontologies are represented relatively indi-
rectly as answer sets in answer set programming (ASP),
which is a form of constraint programming. Each ruleset
is a list of assertions of arbitrary length, in which each
assertion can specify the existence of a kind of NPC, the
effect of two entities colliding, a winning condition, etc.
Using this encoding, many questions about the game (such
as “is it winnable?” and “can it be won without shooting
anyone?”) can be answered through deduction rather than
playthrough. Sets of games that correspond to positive an-
swers to stated questions (rules that satisfy stated constraints)
can be generated through simply posing the relevant question.
In the current implementation of the idea, in which games
are generated as part of a meta-game in which players
explore the space of game mechanics, a simple generate-
and-test procedure is used where games that are unplayable
are rejected by the user. Depending on the implementation
of ASP within the solver, the generation of answer sets that
fit the specified constraints might or might not be seen as a
search-based (as we use the term) generation process.

Salge and Mahlmann [39] propose a simulation-based
evaluation function based on the information-theoretic con-
cept of relevant information, which could be adapted to



8

evaluate game mechanics in a wide range of game types.
The relevant information of a game mechanic is defined in
this context as the minimum amount of information (about
the game state) needed to realise an optimal strategy. This
threshold can be approximated by evolving a player for
the game in question and measuring the mutual information
between sensor inputs (state description) and actions taken
by the player. The authors argue that several common game
design pathologies correlate to low relevant information.

2) Puzzles:Puzzles are often considered a genre of gam-
ing, though opinion is divided on whether popular puzzles
such asSudokushould be considered games or not. Ad-
ditionally, however, puzzles are part of very many types
of games: there are puzzles inside the dungeons of the
Legend of Zelda(Nintendo 1986) game series, in locations of
classic adventure games such asThe Secret of Monkey Island
(LucasArts 1990), and there are even puzzles of a sort inside
the levels offirst-person shooter(FPS) games such asDoom
(id Software 1993). Usually, these puzzles need to be solved
to progress in the game, which means they are necessary
content.

Oranchak [40] constructed a genetic algorithm-based puz-
zle generator forShinro, a type of Japanese number puzzle,
somewhat similar to Sudoku. A Shinro puzzle is solved
by deducing which of the positions on an8 × 8 board
contain “holes” based on various clues. The puzzles are
directly encoded as matrices, wherein each cell is empty
or contains a hole or arrow (clue). The evaluation function
is mainly simulation-based through a tailor-made Shinro
solver. The solver is applied to each canditate puzzle, and
then its entertainment value is estimated based on both how
many moves are required to solve the puzzles, and some
direct measures including the number of clues and their
distribution.

Ashlock [41] generated puzzles of two different but related
types – chess mazes and chromatic puzzles – using evolu-
tionary computation. Both types of puzzles are represented
directly; in the case of the chess mazes, as lists of chess
pieces and their positions on the board, and in case of
the chromatic puzzles as8 × 8 grids in which a number
in each cell indicates its colour. The evaluation function is
simulation-based and theory-driven: a dynamic programming
approach tries to solve each puzzle, and fitness is simply the
number of moves necessary to solve the puzzle. A target
fitness is specified for each type of puzzle, aiming to give
an appropriate level of challenge.

3) Tracks and levels:Most games that focus on the player
controlling a single agent in a two- or three-dimensional
space are built around levels, which are regions of space
that the player-controlled character must somehow traverse,
often while accomplishing other goals. Examples of such
games include platform games, FPS games, two-dimensional
scrolling arcade games and even racing games.

Togelius et al. [42], [43] designed a system for of-
fline/online generation of tracks (necessary or optional con-
tent, depending on game design) for a simple racing game.

Tracks are represented as fixed-length parameter vectors. A
racing track is created from the parameter vector by inter-
preting it as the parameters for b-spline (a sequence of Bezier
curves) yielding a deterministic genotype-to-phenotype map-
ping. The resulting shape forms the midline of the racing
track. The evaluation function is simulation-based, static and
personalised. Each candidate track is evaluated by lettinga
neural network-based car controller drive on the track. The
fitness of the track is dependent on the driving performance
of the car: amount of progress, variation in progress and
difference between maximum and average speed. (Note that
it is the track that is being tested, not the neural network-
based car controller.) The personalisation comes from the
neural network previously having been trained to drive in
the style of the particular human player for which the new
track is being created. This somewhat unintuitive process
was shown effective in generating tracks suited to particular
players.

Pedersen et al. [44] modified an open-source clone of the
classic platform gameSuper Mario Brosto allow person-
alised level generation. Levels are represented very indirectly
as a short parameter vector describing mainly the number,
size and placement of gaps in the level. This vector is
converted to a complete level in a stochastic fashion. The
evaluation function is direct, data-driven and personalised,
using a neural network that converts level parameters and
information about the player’s playing style to one of
six emotional state predictors (fun, challenge, frustration,
predictability, anxiety, boredom), which can be chosen as
components of an evaluation function. These neural networks
are trained through collecting both gameplay metrics and data
on player preferences using variants of the game on a web
page with an associated questionnaire.

Sorenson and Pasquier [45] devised an indirect game
level representation aimed at games across a number of
different but related genres. Their representation is based
on “design elements”, which are elements of levels (e.g.
individual platforms or enemies, the vocabulary would need
to be specified for each game by a human designer) that
can be composed into complete levels. The design elements
are laid out spatially in the genome, to simplify crossover.
Levels are tested in two phases: first, the general validity of
the level is tested by ensuring e.g. that all areas of the level
are appropriately connected, or that the required number of
design elements of each type are present. Any level that
fail the test are relegated to a second population, using
the FI-2Pop evolutionary algorithm [46] that is specially
designed for constraint satisfaction problems. Valid levels are
then assessed for fitness by a direct or weakly simulation-
based theory-driven evaluation function, which estimatesthe
difficulty of the level and rewards intermediately challenging
levels. This function might be implemented as the length
from start to finish, or the size of gaps to jump over,
depending on the particular game.

Jennings-Teats et al. [47] describe initial work towards
creating platform game levels that adapt their difficulty to



9

a human player during runtime. The generation process is
based on generate-and-test, but is not completely search-
based, as no optimisation mechanism is employed. Initially,
player data are collected to rank short level segments ac-
cording to their difficulty. The level is then generated as
it is played by composing the segments in front of the
player, based on a rhythm-based generation mechanism. The
generated level part is then evaluated by a number of “critics”
based on the acquired difficulty ratings of the constituent
level segments. Level parts that are rejected by the critics
are simply re-generated until parts of appropriate difficulty
are found. The ensemble of critics can therefore be conceived
as a direct, data-driven binary evaluation function.

4) Terrains and maps:A large number of games are built
around terrains or maps, which can be loosely defined as two-
or two-and-a-half-dimensional planes with various features
situated within them that might or might not be gameplay-
related (e.g. types of surface, or impassable rocks or rivers)
and possibly a heightmap specifying elevations of various
parts of the maps. In particular, many strategy games are
heavily dependent on maps and the character of the map can
strongly influence the gameplay. The category of terrains and
maps partly overlaps with the previous category, as e.g. FPS
levels can also be considered as maps.

Frade et al. [48] evolved terrains for the video game
Chapas. The terrain was represented very indirectly as ex-
pression trees, which were evolved with genetic program-
ming using an approach similar to the CPPN [25] encoding.
The elevation at each point is determined by querying the
evolved expression trees, substituting the current position
coordinates for constants in the tree. The evaluation function
is direct and theory-driven, based on “accessibility”; this
function scores maps depending on the largest connected
area of flat or almost-flat terrain (this value is bounded to
prevent the evolution of completely flat maps). An interesting
result was that whereas the algorithm produced useful maps,
they were sometimes visually unpleasant and required human
inspection before being used.

Togelius et al. [49], [50] designed a method for generating
maps for RTS games. Two semi-direct representations were
investigated, one for a generic heightmap-based strategy
game and one for the seminal RTSStarCraft (Blizzard
1998). In both representations, positions of bases and re-
sources are represented directly as(x, y) coordinates, but
other terrain features are represented more indirectly. For
the heightmap-based representation, positions, standardde-
viations and heights of several two-dimensional Gaussians
are evolved, and the height of the terrain at each point is
calculated based on those. For the StarCraft representation,
mountain formations are drawn using a stochastic (but deter-
ministic) method inspired by “turtle graphics”. A collection
of direct and lightly simulation-based, theory-driven evalua-
tion functions are used to evaluate the maps. These functions
were directly motivated by gameplay considerations and are
to a large extent based on the A* search algorithm; for
example, the resource balance evaluation function penalises

Fig. 3. An evolved map for theStarCraft RTS game.

the difference in the closest distance to resources between
the players. The search mechanism in this method differs
considerably from most other search-based PCG research
because it is based on amultiobjective evolutionary algorithm
(MOEA) [30] (the particular algorithm used is the SMS-
EMOA [51]). Because each of the evaluation functions is
partially conflicting with several of the other evaluation
functions, the MOEA tries to find the optimal tradeoffs
between these objectives, expressed as a Pareto front. A
human designer, or a game-balancing algorithm, can then
choose solutions from among those on the Pareto front. An
example of a map generated using this method can be seen
in Fig. 3.

It should be noted that there is a substantial body of lit-
erature on constructive methods for generating maps, which
is not extensively discussed here as it is not search-based.
Terrain generation systems for games based on fractals (such
as the diamond-square algorithm [52], [53]), on agent-based
simulated erosion [54] or on cellular automata [55] have
been proposed previously; while most such algorithms enjoy
a short and predictable runtime, they cannot generally be
controlled for the level of gameplay properties (e.g. there
is no way to guarantee a balanced map, or maybe not
even to guarantee one wherein all areas are accessible). An
interesting approach is that ofDiorama, a map generator
for the open-source strategy gameWarzone 2100that uses
answer set programming. Some commercial games, such
as those in theCivilization series, feature procedural map
generation, but that is usually accomplished through simple
methods, such as seeding islands in the middle of the ocean
and letting them grow in random directions.

Ashlock et al. [56] proposed an indirect search-based
method for landscape generation based on an evolvable L-
system representation and used this approach to evolve fractal
landscapes to fit specific shapes; however, no concern was
given to the suitability of these landscapes for games. Some
recent work has focused on integrating various dissimilar ter-
rain generation algorithms into mixed-initiative models [6].



10

5) Narrative and storytelling: Many games are built
around or contain some form of story/narrative — this is the
case for most first-person shooters and platform games, and
all role-playing games, but arguably not for many other types
of games, such as matching tile games likeTetris (Alexey
Pajitnov 1984) orBejeweled(PopCap 2007) [57]. (It should
be noted that there is a debate about to what degree all
games contain or constitute narrative, and some people would
argue thatTetris is a game with narrative [58].) Attempts to
automatically generate narrative for games go back a few
decades, and a variety of approaches have been developed
for problems that can variously be described as online and
offline. Some systems construct background stories and/or
playable scenarios from scratch, whereas others are focused
on controlling the actions of NPCs in response to the player
character so as to fulfill dramatic goals. The approaches taken
can variously be described as constructive and generate-
and-test. The core mechanism in many of these systems
is some version of classical AI planning [59], [60], [61]
(including Facade, the most famous example of procedural
storytelling [62]), though there are a few examples of search-
based approaches [63].

Due to the sheer volume of work in this area, and the
fact that most of it is not search-based in the sense we have
defined above, we will not survey work on narrative and
storytelling as part of this paper. The reader is referred to
Wardrip-Fruin’s recent book [64] for a history and critique
of that field.

B. Optional content

Because optional content is not always critical to the game
(i.e. it is forgiving), it can sometimes support more creative
exploration, as discussed in this section.

1) Weapons:Because combat is a common facet of mod-
ern games, weapons are well-suited for procedural gener-
ation. While most games that feature weapons require their
usage for the player to make progress within the game, many
let their players carry a number of the weapons at the same
time, which means that each particular weapon is optional
(i.e. a useless weapon will simply not be used, and exchanged
at the next opportunity).

Hastings et al. [33], [2] developed a multi-player game
built on search-based PCG calledGalactic Arms Race, in
which players guide a spaceship through the sectors of a
galaxy, engaging in firefights with enemies and collecting
weapons. A fixed-size array of weapons can be carried, and
the player can choose to exchange any particular weapon
currently being carried each time a new weapon is found.
Weapons are represented indirectly as variable-size vectors
of real values, which are interpreted as connection topologies
and weights for neural networks, which in turn control
the particle systems that underlie the weapons [65]. The
evaluation function is interactive, implicit and distributed.
The fitness of each weapon depends on how often the
various users logged onto the same server choose to fire
the weapon relative to how long it sits unused in their

Fig. 4. The Galactic Arms Racegame, featuring online distributed
interactive evolution of weapons.

weapons cache. This evaluation function is appealing because
players in effect indicate their preferences implicitly by
simply playing without needing to know the mechanics or
even existence of the underlying evolutionary algorithm. The
game is illustrated in Fig. 4.

The same authors [66] recently added a method that
enables more directly player-controlled weapons generation
to Galactic Arms Race. Through the same representation as
that described above, this feature allows players to perturb
individual genes of their choice within the genome of a
chosen weapon. This newweapons labfeature in effect adds
a kind of genetic engineering to the game, which the players
must earn the right to access.

An interesting parallel in the world of commercial games
is Borderlands(Gearbox Interactive 2009), a collaborative
online FPS in which all weapons are procedurally generated.
However, there is no search-based process; rather, weapon
parameters are simply selected at random, and the approxi-
mate efficacy of the weapon is capped at the current level of
the player character.

2) Buildings: Martin et al. [67] designed a system for
interactively evolving buildings for the prototype video game
Subversion, in development by the commercial video game
developer Introversion. In this game, whole cities are proce-
durally generated by the player, meaning that the individual
buildings could be seen as optional content. The buildings
are represented relatively indirectly in a custom mark-up
language, which describes each building from the bottom
up as a stack of three-dimensional objects. Each object is
in turn a two-dimensional shape that is vertically extruded,
and various transformations can be applied to objects or
groups of objects. The explicit interactive evaluation function
(which is similar to functions commonly used in evolutionary
art [68]), works as follows: each “generation” the user selects
two parent buildings and the system produces a new screen
of 16 offspring buildings. Variation is achieved through
both structurally recombining the parents and mutating the
numerical parameters of the offspring.

Substantial work has been done on procedural modelling



11

of architecture within the computer graphics community.
For example, shape grammars have been invented that take
advantage of the regularity of architectural feature to enable
compact and artist-friendly representation of buildings [69],
[70], as well as techniques for semi-automatically extracting
the “building blocks” for use in such description from
archetypical building models [71]. Such description lan-
guages, somewhat similar to L-systems, could conceivably
be used as representations in future search-based approaches
to building and city generation.

3) Camera control:Many games feature an in-game vir-
tual camera through which the player experiences the world.
Camera control is defined as controlling the placement, angle
and possibly other parameters of the depending on the state
of the game. Camera control is an important content class for
many game genres, such as 3D platformers, where the player
character is viewed from a third-person vantage point. We
consider camera control to be optional content, as a game is
typically playable, though more challenging, with suboptimal
camera control. Nevertheless, camera control may be viewed
as necessary content for some third-person games since, in
certain occasions, a poor camera controller could make the
game completely unplayable.

Camera control coupled with models of playing behavior
may guide the generation of personalised camera profiles.
Burelli and Yannakakis [72], [73] devised a method for
controlling in-game camera movements to keep specified
objects (or characters) in view and potentially other objects
out of view, while ensuring smooth transitions. Potential
camera configurations are evaluated by calculating the visi-
bility of the selected objects. A system based on probabilistic
roadmaps and artificial potential fields then smoothly moves
the camera towards the constantly re-optimised best global
position. The quality of camera positions may feed an
SBPCG component which, in turn, can set the weighting
parameters of various camera constraints according to a
metaheuristic (e.g. a player model).

Yannakakis et al. [74] introduce the notion of affect-
driven camera control within games by associating player
affective states (e.g. challenge, fun and frustration) to camera
profiles and player physiology. The affective models are
constructed using neuro-evolutionary preference learning on
questionnaire data from several players of a 3D Pac-Man like
game named Maze-Ball. Camera profiles are represented as a
set of three parameters:distanceandheight from the player
character and frame-to-frame coherence (camera speed in
between frames). This way, personalised camera profiles can
be generated to maximise a direct, data-driven evaluation
function which is represented by the neural network predictor
of emotion.

4) Trees: Talton et al. [75] developed a system for offline
manual exploration of design spaces of 3D models; their
main prototype focuses on trees. This system lets users view
a two-dimensional pane of tree models, and navigate the
space by zooming in on different parts of the pane. At all
times the user can see the tree models that are generated

at the selected point as well as nearby point; in other
words this approach is an interactive evaluation function.
The tree models are represented as fixed-length vectors of
real-numbers. As the vector dimensionality is always higher
than two, the vector is mapped to the two-dimensional pane
through dimensionality reduction and estimation of density.
The underlying algorithms is therefore comparable to an
estimation of distribution algorithm (EDA) with interactive
fitness.

C. A note on chronology

The first published search-based PCG-related papers that
we know of are Togelius et al.’s first paper on racing track
evolution [42], published in 2006, Hastings et al.’s paper on
NEAT Particles (a central part ofGalactic Arms Race) [65],
and Hom and Marks’ paper on balanced board games [36].
Two publications on evolving rules for games (the paper
by Togelius and Schmidhuber [38] and the PhD thesis of
Cameron Browne [3]) appeared in 2008; the work in these
two papers was carried out independently of each other and
independently of Hom and Marks’ work, though Browne’s
work was started earlier. Most of the subsequent papers
included in this survey, though not all, were in some way
influenced by these earlier works, and generally acknowledge
this influence within their bibliographies.

D. Summary

Of the 14 projects described above in this section that are
unequivocally search-based,

• 6 use direct evaluation functions, 4 of those are theory-
driven rather than data-driven;

• 2 use interactive and 6 use simulation-based evaluation
functions;

• 12 use a single fitness dimension, or a fixed linear
combination of several evaluation functions;

• 6 represent content as vectors of real numbers;
• 4 represent content as (expression) trees of some form;
• 3 represent content directly in matrices where the geno-

type is spatially isomorphic to the phenotype.

Some patterns are apparent. Most of the examples of
evolving rules and puzzles represent the content as expression
trees and all use simulation-based evaluation functions. This
could be due to the inherent similarity of rules to program
code, which is often represented in tree form in genetic
programming, and the apparent hardness of devising direct
evaluation functions for rules. On the other hand, levels and
maps are mostly evaluated using direct evaluation functions
and represented as vectors of real numbers. Only two studies
use interactive evaluation functions, and only two use data-
driven evaluation functions (based on player models). There
does not seem to be any clear reason why these last two
types of evaluation functions are not used more, nor why
simulation-based evaluation functions are not used much
outside of rule generation.



12

V. OUTLOOK

As can be seen in the previous section, there are already
a number of successful experiments in search-based PCG.
About half of these were published in 2010, indicating that
this field is currently drawing considerable interest from
within the game AI and Computational Intelligence and
Games (CIG) communities.

By classifying these experiments according to the tax-
onomies presented in this paper, it can be seen both that
(1) though all are examples of SBPCG, they differ from
each other in several important dimensions, and (2) there is
room for approaches other than those that have already been
tried, both within the type of content being generated and the
algorithmic approach to it generation. Indeed, given the large
variety of game genres and types of game content out there,
there is arguably plenty of low-hanging fruit for researchers
interested in this field. At the same time, there are several
hard and interesting research challenges. It is important that
research is carried out both on those easier problems for
which more or less immediate success is probable, and
ideally that search-based PCG techniques are included in
shipped games. But it is equally important that research
continues on hard problems where we are currently nowhere
near producing content of a sufficient quality for includingin
commercial games. Such research could both lead to viable
content generators in the future, and help advance the science
of game design. Below is an attempt to identify the major
research challenges in SBPCG:

• Which types of content are suitable to generate?It is
clear that some types of content are easier than others to
generate using search or optimisation algorithms. The
overarching question is which types can be generated
well enough, fast enough and reliably enough to be
used in actual production games rather than the type of
research prototypes that most of the papers above are
based on. The answer will partly depend on whether the
content will be generated offline, in which case genera-
tion speed and reliability is less important while quality
can be emphasised, or online, in which case speed
is very important but some aspects of quality might
be sacrificed. The importance of reliability depends
partly on whether the content generated is optional
or necessary; when generating optional content, larger
variations in quality are more acceptable.

• How can we avoid catastrophic failure?One of the main
arguments against PCG in general from representatives
of the games industry, at least when discussing online
generation of necessary content, is lack of reliability –
or more precisely, the risk ofcatastrophic failure[76].
Given the way most commercial games are designed,
any risk of the player being presented with unplayable
content is unacceptable. One response to this challenge
is to invent new game designs for which all content is to
some extent optional, or occasional unplayable content
is otherwise tolerable. Another response is to ensure
that all content is of sufficient quality. Such a guarantee

might be possible through the content representation,
though this approach would likely limit the diversity
of content that can be generated. The evaluation func-
tion can also enforce a guarantee. For many content
types, it is likely that better simulation-based evaluation
functions can avoid catastrophic failure by automatically
playing through the content thoroughly; however, that
approach might be computationally prohibitively expen-
sive.

• How can we speed up content generation?The compu-
tational expense of search-based PCG can be prohibitive
for online generation, and sometimes even for offline
generation. A key challenge is to speed up the genera-
tion process as much as possible. It is well-known that,
depending on the representation and shape of the search
space, some stochastic optimisation algorithms are more
efficient than others. For vectors of real numbers there
is an especially large assortment of powerful optimisers
available, including non-evolutionary techniques such
as Particle Swarm Optimisation [20]. Regardless of
representation, there are algorithms available that take
good advantage of characteristics of the search space,
such as the presence of constraints.

• How is game content best represented?For most content
types, multiple representations are possible, as discussed
in section III-A. The most appropriate representation
for each content generation problem is likely to vary
depending on a number of factors, e.g. the desired
novelty/reliability tradeoff. However, when designing a
representation for a new problem, it would be useful to
have a set of principles and best practices for content
representation. The particular type of content being gen-
erated will also significantly affect the representational
options available. Some types of content are easier to
represent than others and the amount of expertise require
to parameterise a particular class of content may impact
the cost of creating a game around it.

• How can player models be incorporated into evalua-
tion functions?With a few exceptions, the experiments
discussed above use theory-driven evaluation functions,
which assume that some particular feature of some
content type provides a good playing experience for
players in general. For many applications, it would be
advantageous to move to data-driven evaluation func-
tions based on experiments on real players, making
it possible to adapt the content to optimise predicted
fun for particular classes of players. TheSuper Mario
Bros level generation and the Maze-Ball camera profile
generation experiments discussed above suggests a way
to base direct evaluation functions on recorded player
preferences when the content is represented as vectors
of real numbers, but how to do that for simulation-based
evaluation functions or when content is represented in
a less straightforward manner is an open research topic.
Player affective and cognitive models deriving from
the fusion of multiple modalities of player input may



13

provide some answers to the problem.
• Can we combine interactive and theory-driven evalu-

ation functions?Interactive evaluation functions show
great promise by representing the most accurate and
relevant judgment of content quality, but they are not
straightforward to implement for most content gen-
eration problems. Major outstanding issues are how
to design games so that effective implicit evaluation
functions can be included, and how to speed up the
optimisation process given sparse human feedback. One
way to achieve the latter could be to combine the inter-
active evaluation of content with data-driven evaluation
functions, thereby allowing the two evaluation modes to
inform each other.

• Can we combine search-based PCG with top-down
approaches?Coupled with the right representation and
evaluation function, a global optimisation algorithm can
be a formidable tool for content generation. However,
one should be careful not to see everything as a nail
just because one has a hammer; not every problem
calls for the same tool, and sometimes several tools
need to be combined to solve a problem. In particular,
the hybridization of the form of bottom-up perspec-
tive taken by the search-based approach with the top-
down perspective taken in AI planning (commonly used
in narrative generation) could be very fruitful. It is
currently not clear how these two perspectives would
inform each other, but their respective merits make the
case for attempting hybrid approaches quite powerful.

• How can we best assess the quality and potential of
content generators?As the research field of procedural
content generation continues to grow and diversify, it
becomes ever more important to find ways of evaluating
the quality of content generators. One way of doing this
is to organise competitions where researchers submit
their separate solutions to a common content generation
problem (with a common API), and players play and
rank the generated content. The recent Mario AI level
generation competition is the first example of this.
In this competition, participants submitted personalised
level generators for a version of Super Mario Bros,
and attendants at a scientific conference played levels
generated just for them decided which of the freshly
generated levels they liked best [77]. However, it is
also important to assess other properties of content
generators, such as characterising theirexpressive range:
the variation in the content generated a by a specific
content generator [78]. Conversely, it is important to
analyse the range of domains for which a particular
content generator can be effective.

We believe that progress on these problems can be aided
by experts from fields outside computational intelligence
such as psychology, game design studies, human-computer
interface design and affective computing, creating an op-
portunity for fruitful interdisciplinary collaboration.The po-
tential gains from providing good solutions to all these

challenges are significant: the invention of new game genres
built on PCG, streamlining of the game development process,
and deeper understanding of the mechanisms of human
entertainment are all possible.

ACKNOWLEDGEMENTS

This paper builds on and extends a previously published
conference paper by the same authors [1]. Compared to the
previous paper, this paper features an updated taxonomy,
a substantially expanded survey section and an expanded
discussion on future research directions and challenges.

We would like to thank the anonymous reviewers for their
substantial and useful comments. We would also like to thank
all the participants in the discussions in the Procedural Con-
tent Generation Google Group. The research was supported
in part by the Danish Research Agency, Ministry of Science,
Technology and Innovation; projectAGameComIn(number
274-09-0083).

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” inProceedings of EvoApplica-
tions, vol. 6024. Springer LNCS, 2010.

[2] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content
generation in the galactic arms race video game,”IEEE Transactions
on Computational Intelligence and AI in Games, vol. 1, no. 4, pp.
245–263, 2010.

[3] C. Browne, “Automatic generation and evaluation of recombination
games,” Ph.D. dissertation, Queensland University of Technology,
2008.

[4] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player Ex-
perience for Content Creation,”IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 1, pp. 54–67, 2010.

[5] A. M. Smith and M. Mateas, “Variations forever: Flexiblygenerating
rulesets from a sculptable design space of mini-games,” inProceedings
of the IEEE Conference on Computational Intelligence and Games
(CIG), 2010.

[6] R. M. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra, “Integrat-
ing procedural generation and manual editing of virtual worlds,” in
Proceedings of the ACM Foundations of Digital Games. ACM Press,
June 2010.

[7] R. Miikkulainen, B. D. Bryant, R. Cornelius, I. V. Karpov, K. O.
Stanley, and C. H. Yong, “Computational intelligence in games,” in
Computational Intelligence: Principles and Practice, G. Y. Yen and
D. B. Fogel, Eds. IEEE Computational Intelligence Society,2006.

[8] S. M. Lucas and G. Kendall, “Evolutionary computation and games,”
IEEE Computational Intelligence Magazine, vol. 1, pp. 10–18, 2006.

[9] S. Rabin,AI game programming wisdom. Charles River Media, 2002.
[10] D. M. Bourg and G. Seemann,AI for game developers. O’Reilly,

2004.
[11] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S.Worley,

Texturing and Modeling: A Procedural Approach (Third Edition).
Morgan Kaufmann, 2002.

[12] J. Whitehead, “Towards procedural decorative ornamentation in
games,” inProceedings of the FDG Workshop on Procedural Content
Generation, 2010.

[13] G. S. P. Miller, “The definition and rendering of terrainmaps,” in
Proceedings of SIGGRAPH, vol. 20, 1986.

[14] B. W. Kernighan and R. Pike,The Practice of Programming. Mas-
sachussets: Addison-Wesley, 1999.

[15] F. Pachet, “Beyond the cybernetic fantasy jam: the continuator,” IEEE
Computer Graphics and Applications, vol. 24, no. 1, pp. 31–35, 2004.

[16] K. Sims, “Artificial evolution for computer graphics,”Proceedings of
SIGGRAPH, vol. 25, no. 4, pp. 319–328, 1991.

[17] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell,
and K. O. Stanley, “Picbreeder: Evolving pictures collaboratively
online,” in CHI ’08: Proceedings of the twenty-sixth annual SIGCHI
conference on Human factors in computing systems. New York, NY,
USA: ACM, 2008, pp. 1759–1768.



14

[18] P. Machado and A. Cardoso, “Computing aesthetics,” inProceedings
of the Brazilian Symposium on Artificial Intelligence, 1998, pp. 219–
229.

[19] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,”Science, vol. 220, p. 671680, 1983.

[20] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of the IEEE Conference on Neural Networks, 1995, pp. 1942–
1948.

[21] M. Harman and B. F. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, pp. 833–839, 2001.

[22] P. McMinn, “Search-based software test data generation: a survey,”
Software Testing, Verification and Reliability, vol. 14, pp. 105–156,
2004.

[23] P. J. Bentley and S. Kumar, “The ways to grow designs: A comparison
of embryogenies for an evolutionary design problem,” inProceedings
of the Genetic and Evolutionary Computation Conference, 1999, pp.
35–43.

[24] G. S. Hornby and J. B. Pollack, “The advantages of generative
grammatical encodings for physical design,” inProceedings of the
Congress on Evolutionary Computation, 2001. [Online]. Available:
http://demo.cs.brandeis.edu/papers/long.html#hornbycec01

[25] K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development,”Genetic Programming and Evolvable
Machines (Special Issue on Developmental Systems), vol. 8, no. 2,
pp. 131–162, 2007.

[26] K. O. Stanley and R. Miikkulainen, “A taxonomy for artificial
embryogeny,”Artificial Life, vol. 9, no. 2, pp. 93–130, 2003. [Online].
Available: http://nn.cs.utexas.edu/keyword?stanley:alife03

[27] F. Rothlauf,Representations for Genetic and Evolutionary Algorithms.
Heidelberg: Springer, 2006.

[28] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,”Evolutionary Computation, vol. 10, pp. 99–
127, 2002.

[29] D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse
collection of robot path planning problems,” inProceedings of the
Congress On Evolutionary Computation, 2006, pp. 6728–6735.

[30] K. Deb, Multi-objective optimization using evolutionary algorithms.
Wiley Interscience, 2001.

[31] G. N. Yannakakis, “How to Model and Augment Player Satisfaction:
A Review,” in Proceedings of the 1st Workshop on Child, Computer
and Interaction. Chania, Crete: ACM Press, October 2008.

[32] G. N. Yannakakis and J. Togelius, “Experience-driven procedural
content generation,”IEEE Transactions on Affective Computing, p.
in press, 2011.

[33] E. Hastings, R. Guha, and K. O. Stanley, “Evolving content in
the galactic arms race video game,” inProceedings of the IEEE
Symposium on Computational Intelligence and Games (CIG), 2009.

[34] Lindenmayer, “Mathematical models for cellular interaction in devel-
opment parts I and II,”Journal of Theoretical Biology, vol. 18, pp.
280–299 and 300–315, 1968.

[35] P. Prusinkiewicz, “Graphical applications of l-systems,” in Proceedings
of Graphics Interface / Vision Interface, 1986, pp. 247–253.

[36] V. Hom and J. Marks, “Automatic design of balanced boardgames,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 2007, pp. 25–30.

[37] J. Mallett and M. Lefler, “Zillions of games,” 1998. [Online].
Available: http://www.zillions-of-games.com

[38] J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG), 2008.

[39] C. Salge and T. Mahlmann, “Relevant information as a formalised
approach to evaluate game mechanics,” inProceedings of the IEEE
Conference on Computational Intelligence and Games (CIG), 2010.

[40] D. Oranchak, “Evolutionary algorithm for generation of entertaining
shinro logic puzzles,” inProceedings of EvoApplications, 2010.

[41] D. Ashlock, “Automatic generation of game elements viaevolution,”
in Proceedings of the IEEE Conference on Computational Intelligence
and Games (CIG), 2010.

[42] J. Togelius, R. De Nardi, and S. M. Lucas, “Making racingfun through
player modeling and track evolution,” inProceedings of the SAB
Workshop on Adaptive Approaches to Optimizing Player Satisfaction,
2006.

[43] ——, “Towards automatic personalised content creationin racing
games,” inProceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG), 2007.

[44] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling player ex-
perience in super mario bros,” inProceedings of the IEEE Symposium
on Computational Intelligence and Games (CIG), 2009.

[45] N. Sorenson and P. Pasquier, “Towards a generic framework for
automated video game level creation,” inProceedings of the European
Conference on Applications of Evolutionary Computation (EvoAppli-
cations), vol. 6024. Springer LNCS, 2010, pp. 130–139.

[46] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a
feasible-infeasible two-population (fi-2pop) genetic algorithm for con-
strained optimization: Distance tracing and no free lunch,” European
Journal of Operational Research, vol. 190, 2008.

[47] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin, “Polymorph:
A model for dynamic level generation,” inProceedings of Artificial
Intelligence and Interactive Digital Entertainment, 2010.

[48] M. Frade, F. F. de Vega, and C. Cotta, “Evolution of artificial
terrains for video games based on accessibility,” inProceedings of the
European Conference on Applications of Evolutionary Computation
(EvoApplications), vol. 6024. Springer LNCS, 2010, pp. 90–99.

[49] J. Togelius, M. Preuss, and G. N.Yannakakis, “Towards multiobjective
procedural map generation,” inProceedings of the FDG Workshop on
Procedural Content Generation, 2010.

[50] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelb¨ack, and G. N.
Yannakakis, “Multiobjective exploration of the starcraftmap space,”
in Proceedings of the IEEE Conference on Computational Intelligence
and Games (CIG), 2010.

[51] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjec-
tive selection based on dominated hypervolume,”European Journal of
Operational Research, vol. 181, no. 3, pp. 1653–1669, 2007.

[52] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of
stochastic models,”Communications of the ACM, vol. 25, no. 6, 1982.

[53] J. Olsen, “Realtime procedural terrain generation,” University of
Southern Denmark, Tech. Rep., 2004.

[54] J. Doran and I. Parberry, “Controllable procedural terrain generation
using software agents,”IEEE Transactions on Computational Intelli-
gence and AI in Games, 2010.

[55] L. Johnson, G. N. Yannakakis, and J. Togelius, “Cellular Automata
for Real-time Generation of Infinite Cave Levels,” inProceedings of
the ACM Foundations of Digital Games. ACM Press, June 2010.

[56] D. A. Ashlock, S. P. Gent, and K. M. Bryden, “Evolution ofl-systems
for compact virtual landscape generation,” inProceedings of the IEEE
Congress on Evolutionary Computation, 2005.

[57] J. Juul, “Swap adjacent gems to make sets of three: A history of
matching tile games,”Artifact Journal, vol. 2, 2007.

[58] G. Frasca, “Ludologists love stories, too: notes from adebate that
never took place,” inLevel Up: Digital Games Research Conference
Proceedings, 2003.

[59] R. Aylett, J. Dias, and A. Paiva, “An affectively-driven planner for
synthetic characters,” inProceedings of ICAPS, 2006.

[60] M. O. Riedl and N. Sugandh, “Story planning with vignettes: Toward
overcoming the content production bottleneck,” inProceedings of the
1st Joint International Conference on Interactive DigitalStorytelling,
Erfurt, Germany, 2008, pp. 168–179.

[61] Y.-g. Cheong and R. M. Young, “A computational model of narrative
generation for suspense,” inAAAI 2006 Computational Aesthetic
Workshop, 2006.

[62] M. Mateas and A. Stern, “Facade: An experiment in building a fully-
realized interactive drama,” inProceedings of the Game Developers
Conference, 2003.

[63] M. J. Nelson, C. Ashmore, and M. Mateas, “Authoring an interactive
narrative with declarative optimization-based drama management,”
in Proceedings of the Artificial Intelligence and InteractiveDigital
Entertainment International Conference (AIIDE), 2006.

[64] N. Wardrip-Fruin, Expressive Processing. Cambridge, MA: MIT
Press, 2009.

[65] E. Hastings, R. Guha, and K. O. Stanley, “Neat particles: Design, rep-
resentation, and animation of particle system effects,” inProceedings
of the IEEE Symposium on Computational Intelligence and Games
(CIG), 2007.

[66] E. J. Hastings and K. O. Stanley, “Interactive genetic engineering of
evolved video game content,” inProceedings of the FDG Workshop
on Procedural Content Generation, 2010.

[67] A. Martin, A. Lim, S. Colton, and C. Browne, “Evolving 3dbuildings
for the prototype video game subversion,” inProceedings of EvoAp-
plications, 2010.



15

[68] H. Takagi, “Interactive evolutionary computation: Fusion of the capac-
ities of EC optimization and human evaluation,”Proceedings of the
IEEE, vol. 89, no. 9, pp. 1275–1296, 2001.

[69] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool, “Proce-
dural modeling of buildings,”ACM Transactions on Graphics, vol. 25,
pp. 614–623, 2006.

[70] J. Golding, “Building blocks: Artist driven procedural buildings,”
Presentation at Game Developers’ Conference, 2010.

[71] M. Bokeloh, M. Wand, and H.-P. Seidel, “A connection between
partial symmetry and inverse procedural modeling,” inProceedings
of SIGGRAPH, 2010.

[72] P. Burelli and G. N. Yannakakis, “Combining Local and Global
Optimisation for Virtual Camera Control,” inProceedings of the
2010 IEEE Conference on Computational Intelligence and Games.
Copenhagen, Denmark: IEEE, August 2010, pp. 403–401.

[73] ——, “Global Search for Occlusion Minimization in Virtual Camera
Control,” in Proceedings of the 2010 IEEE World Congress on
Computational Intelligence. Barcelona, Spain: IEEE, July 2010, pp.
2718–2725.

[74] G. N. Yannakakis, H. P. Martı́nez, and A. Jhala, “Towards Affective
Camera Control in Games,”User Modeling and User-Adapted Inter-
action, vol. 20, no. 4, pp. 313–340, 2010.

[75] J. O. Talton, D. Gibson, L. Yang, P. Hanrahan, and V. Koltun,
“Exploratory modeling with collaborative design spaces,”ACM Trans-
actions on Graphics, vol. 28, 2009.

[76] K. Compton, “Remarks during a panel session at the FDG workshop
on PCG,” 2010.

[77] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi,
G. Smith, and R. Baumgarten, “The 2010 Mario AI championship:
Level generation track,” Submitted.

[78] G. Smith and J. Whitehead, “Analyzing the expressive range of a
level generator,” inProceedings of the FDG Workshop on Procedural
Content Generation, 2010.

Julian Togelius is an Assistant Professor at the
IT University of Copenhagen (ITU). He received
a BA in Philosophy from Lund University in 2002,
an MSc in Evolutionary and Adaptive Systems
from University of Sussex in 2003 and a PhD
in Computer Science from University of Essex in
2007. Before joining the ITU in 2009 he was a
postdoctoral researcher at IDSIA in Lugano.

His research interests include applications of
computational intelligence in games, procedural
content generation, automatic game design, evo-

lutionary computation and reinforcement learning; he has around 50 papers
in journals and conferences about these topics. He is an Associate Editor of
IEEE TCIAIG and the current chair of the IEEE CIS Technical Committee
on Games.

Georgios N. Yannakakis is an Associate Profes-
sor at the IT University of Copenhagen. He re-
ceived both the 5-year Diploma (1999) in Produc-
tion Engineering and Management and the M.Sc.
(2001) degree in Financial Engineering from the
Technical University of Crete and the Ph.D. degree
in Informatics from the University of Edinburgh
in 2005. Prior to joining the Center for Computer
Games Research, ITU, in 2007, he was a postdoc-
toral researcher at the Mærsk Mc-Kinney Møller
Institute, University of Southern Denmark.

His research interests include user modeling, neuro-evolution, compu-
tational intelligence in computer games, cognitive modeling and affective
computing, emergent cooperation and artificial life. He haspublished around
60 journal and international conference papers in the aforementioned fields.
He is an Associate Editor of the IEEE Transactions on Affective Computing
and the IEEE Transactions on Computational Intelligence and AI in Games,
and the chair of the IEEE CIS Task Force on Player Satisfaction Modeling.

Kenneth O. Stanley is an assistant professor
in the Department of Electrical Engineering and
Computer Science at the University of Central
Florida. He received a B.S.E. from the University
of Pennsylvania in 1997 and received a Ph.D. in
2004 from the University of Texas at Austin. He is
an inventor of the Neuroevolution of Augmenting
Topologies (NEAT) and HyperNEAT algorithms
for evolving complex artificial neural networks.
His main research contributions are in neuroevolu-
tion (i.e. evolving neural networks), generative and

developmental systems, coevolution, machine learning forvideo games, and
interactive evolution. He has won best paper awards for his work on NEAT,
NERO, NEAT Drummer, HyperNEAT, novelty search, and Galactic Arms
Race. He is an associate editor of IEEE Transactions on Computational
Intelligence and AI in Games on the editorial board of Evolutionary
Computation journal.

Cameron Browne received the Ph.D. degree in
computer science from the Faculty of Information
Technology, QUT, Brisbane, Australia, in 2008.
Currently, he is a Research Fellow in the Com-
putational Creativity Group at Imperial College
London. His research interests include the applica-
tion of MCTS methods to creative domains such
as game design, art and music. Dr. Browne was
Canon Research Australias Inventor of the Year
for 1998 and won the QUT Deans Award for
Outstanding Thesis of 2008.


