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Abstract. In this work we provide efficient distributed protocols for
generating shares of random noise, secure against malicious participants.
The purpose of the noise generation is to create a distributed implemen-
tation of the privacy-preserving statistical databases described in recent
papers [14, 4, 13]. In these databases, privacy is obtained by perturbing
the true answer to a database query by the addition of a small amount of
Gaussian or exponentially distributed random noise. The computational
power of even a simple form of these databases, when the query is just
of the form

P
i
f(di), that is, the sum over all rows i in the database of

a function f applied to the data in row i, has been demonstrated in [4].
A distributed implementation eliminates the need for a trusted database
administrator.
The results for noise generation are of independent interest. The
generation of Gaussian noise introduces a technique for distributing
shares of many unbiased coins with fewer executions of verifiable secret
sharing than would be needed using previous approaches (reduced by
a factor of n). The generation of exponentially distributed noise uses
two shallow circuits: one for generating many arbitrarily but identically
biased coins at an amortized cost of two unbiased random bits apiece,
independent of the bias, and the other to combine bits of appropriate
biases to obtain an exponential distribution.

1 Introduction

A number of recent papers in the cryptography and database communities
have addressed the problem of statistical disclosure control – revealing accurate
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statistics about a population while preserving the privacy of individuals [1, 2,
15, 11, 14, 5, 6, 4, 13]. Roughly speaking, there are two computational models; in
a non-interactive solution the data are somehow sanitized and a “safe” version
of the database is released (this may include histograms, summaries, and so
on), while in an interactive solution the user queries the database through a
privacy mechanism, which may alter the query or the response in order to ensure
privacy. With this nomenclature in mind the positive results in the literature fall
into three broad categories: non-interactive with trusted server, non-interactive
with untrusted server – specifically, via randomized response, in which a data
holder alters her data with some probability before sending it to the server –
and interactive with trusted server. The current paper provides a distributed

interactive solution, replacing the trusted server with the assumption that
strictly fewer than one third of the participants are faulty (we handle Byzantine
faults). Under many circumstances the results obtained are of provably better
quality (accuracy and conciseness, i.e., number of samples needed for correct
statistics to be computed) than is possible for randomized response or other
non-interactive solutions [13]. Our principal technical contribution is in the
cooperative generation of shares of noise sampled from in one case the Binomial
distribution (as an approximation for the Gaussian) and in the second case the
Poisson distribution (as an approximation for the exponential).

Consider a database that is a collection of rows; for example, a row might
be a hospital record for an individual. A query is a function f mapping rows
to the interval [0, 1]. The true answer to the query is the value obtained by
applying f to each row and summing the results. By responding with an
appropriately perturbed version of the true answer, privacy can be guaranteed.
The computational power of this provably private “noisy sums” primitive is
demonstrated in Blum et al. [4], where it was shown how to carry out accurate
and privacy-preserving variants of many standard data mining algorithms, such
as k-means clustering, principal component analysis, singular value decomposi-
tion, the perceptron algorithm, and anything learnable in the statistical queries
(STAT) learning model4.

Although the powerful techniques of secure function evaluation [25, 17] may
be used to emulate any privacy mechanism, generic computations can be
expensive. The current work is inspired by the combination of the simplicity
of securely computing sums and the power of the noisy sums. We provide
efficient methods allowing the parties holding their own data to act autonomously

and without a central trusted center, while simultaneously preventing malicious
parties from interfering with the utility of the data.

The approach to decentralization is really very simple. For ease of exposition
we describe the protocol assuming that every data holder participates in every
query and that the functions f are predicates. We discuss relaxations of these
assumptions in Section 5.

4 This was extended in [13] to handle functions f that operate on the database as a
whole, rather than on individual rows of the database.



Structure of ODO (Our Data, Ourselves) Protocol

1. Share Summands: On query f , the holder of di, the data in row i of the
database, computes f(di) and shares out this value using a non-malleable

verifiable secret sharing scheme (see Section 2), i = 1, . . . , n. The bits are
represented as 0/1 values in GF(q), for a large prime q. We denote this set
{0, 1}GF(q) to make the choice of field clear.

2. Verify Values: Cooperatively verify that the shared values are legitimate

(that is, in {0, 1}GF(q), when f is a predicate).
3. Generate Noise Shares: Cooperatively generate shares of appropriately

distributed random noise.
4. Sum All Shares: Each participant adds together all the shares that it

holds, obtaining a share of the noisy sum
∑

i f(di) + noise. All arithmetic
is in GF(q).

5. Reconstruct: Cooperatively reconstruct the noisy sum using the recon-
struction technique of the verifiable secret sharing scheme.

Our main technical work is in Step 3. We consider two types of noise, Gaussian

and scaled symmetric exponential. In the latter distribution the probability of
being at distance |x| from the mean is proportional to exp(−|x|/R), the scale R
determining how “flat” the distribution will be. In our case the mean will always
be 0. Naturally, we must approximate these distributions using finite-precision
arithmetic. The Gaussian and exponential distributions will be approximated,
respectively, by the Binomial and Poisson distributions.

The remainder of this paper is organized as follows. In Section 2 we review
those elements from the literature necessary for our work, including definitions
of randomness extractors and of privacy. In Sections 3 and 4 we discuss
implementations of Step 3 for Gaussian and Exponential noise, respectively.
Finally, various generalizations of our results are mentioned in Section 5.

2 Cryptographic and Other Tools

Model of Computation. We assume the standard synchronous model of
computation in which n processors communicate by sending messages via point-
to-point channels and up to t ≤ ⌊n−1

3 ⌋ may fail in an arbitrary, Byzantine,
adaptive fashion. If the channels are secure, then the adversary may be
computationally unbounded. However, if the secure channels are obtained by
encryption then we assume the adversary is restricted to probabilistic polynomial
time computations.

We will refer to several well-known primitive building blocks for constructing
distributed protocols: Byzantine Agreement [20], Distributed Coin Flipping [22],
Verifiable Secret Sharing (VSS) [8], Non-Malleable VSS, and Secure Function
Evaluation (SFE) [18].

A VSS scheme allows any processor distribute shares of a secret, which can
be verified for consistency. If the shares verify, the honest processors can always
reconstruct the secret regardless of the adversary’s behavior. Moreover, the faulty



processors by themselves cannot learn any information about the secret. A non-
malleable VSS scheme ensures that the values shared by a non-faulty processor
are completely independent of the values shared by the other processors; even
exact copying is prevented.

Throughout the paper we will use the following terminology. Values that have
been shared and verified, but not yet reconstructed, are said to be in shares.
Values that are publicly known are said to be public.

A randomness extractor [21] is a method of converting a non-uniform input
distribution into a near-uniform distribution on a smaller set. In general, an
extractor is a randomized algorithm, which additionally requires a perfect
source of randomness, called the seed. Provided that the input distribution has
sufficiently high min-entropy, a good extractor takes a short seed and outputs a
distribution that is statistically close to the uniform. Formally,

Definition 1. Letting the min-entropy of a distribution D on X be denoted

H∞(D) = − log maxx∈X D(x), a function F : X × Y 7→ {0, 1}n is a (δ, ǫ, n)-
extractor, if for any distribution D on X such that H∞(D) > δ,

|{F (x, y) : x ∈D X, y ∈U Y } − Un| < ǫ,

where | · | is the statistical distance between two distributions, Un is the uniform

distribution on {0, 1}n, and x ∈D X stands for choosing x ∈ X according to D.

Optimal extractors can extract n = δ− 2 log(1/ǫ)+O(1) nearly-random bits
with the seed length O(log |X|) (see [23] for many constructions matching the
bound).

While in general the presence of a truly random seed cannot be avoided,
there exist deterministic extractors (i.e. without Y ) for sources with a special
structure [7, 9, 24, 19, 16] where the randomness is concentrated on k bits and
the rest are fixed. Namely,

Definition 2. A distribution D over {0, 1}N is an (N, k) oblivious bit-fixing

source if there exists S = {i1, . . . , ik} ⊂ [N ], such that Xi1 , . . . ,Xik
are uniformly

distributed in {0, 1}k, and the bits outside S are constant.

For any (N, k) bit-fixing source and any constant 0 < γ < 1/2 Gabizon
et al. [16] give an explicit deterministic (k, ǫ)-extractor that extracts m = k −
N1/2+γ bits of entropy with ǫ = 2−Ω(nγ) provided that k ≫

√
N . In our case

N = 2n (n is the number of participants), and strictly more than 2/3 of the
input bits will be good. Thus, k > 2N/3, and so we extract more than N/2 = n
high quality bits by taking γ < 1/2.

A privacy mechanism is an interface between a user and data. It can be
interactive or non-interactive.

Assume the database consists of a number n of rows, d1, . . . , dn. In its simplest
form, a query is a predicate f : Rows → {0, 1}. In this case, the true answer
is simply

∑

i f(di). Slightly more generally, f may map [n] × Rows → [0, 1],
and the true answer is

∑

i f(i, di). Note that we are completely agnostic about



the domain Rows; rows can be Boolean, integers, reals, tuples thereof, or even
strings or pictures.

A mechanism gives ǫ-indistinguishability [13] if for any two data sets that
differ on only one row, the respective output random variables (query responses)
τ and τ ′ satisfy for all sets S of responses:

Pr[τ ∈ S] ≤ exp(ǫ) × Pr[τ ′ ∈ S] . (1)

This definition ensures that seeing τ instead of τ ′ can only increase the
probability of any event by at most a small factor. As a consequence, there
is little incentive for any one participant to conceal or misrepresent her value,
as so doing could not substantially change the probability of any event.

Similarly, we say a mechanism gives δ-approximate ǫ-indistinguishability if
for outputs τ and τ ′ based, respectively, on data sets differing in at most one
row,

Pr[τ ∈ S] ≤ exp(ǫ) × Pr[τ ′ ∈ S] + δ .

The presence of a non-zero δ permits us to relax the strict relative shift in the
case of events that are not especially likely. We note that it is inappropriate to
add non-zero δ to the statement of ǫ-indistinguishability in [13], where the sets
S are constrained to be singleton sets.

Historically, the first strong positive results for output perturbation added
noise drawn from a Gaussian distribution, with density function Pr[x] ∝
exp(−x2/2R). A slightly different definition of privacy was used in [14, 4].
In order to recast those results in terms of indistinguishability, we show
in Section 2.1 that the addition of Gaussian noise gives δ-approximate ǫ-
indistinguishability for the noisy sums primitive when ǫ > [log(1/δ)/R]1/2. In a
similar vein, Binomial noise, where n tosses of an unbiased ±1 coin are tallied
and divided by 2, also gives δ-approximate ǫ-indistinguishability so long as the
number of tosses n is at least 64 log(2/δ)/ǫ2.

Adding, instead, exponential noise results in a mechanism that can ensure
ǫ-indistinguishability (that is, δ = 0) [4, 13]. If the noise is distributed as
Pr[x] ∝ exp(−|x|/R), then the mechanism gives 1/R-indistinguishability (cf. ǫ >
[log(1/δ)/R]1/2 for Gaussian noise). Note that although the Gaussian noise is
more tightly concentrated around zero, giving somewhat better accuracy for
any given choice of ǫ, the exponential noise allows δ = 0, giving a more robust
solution.

2.1 Math for Gaussians and Binomials

We extend the results in [13] by determining the values of ǫ and δ for the
Gaussian and Binomial distributions for which the noisy sums primitive yields
δ-approximate ǫ-indistinguishability. Consider an output τ on a database D and
query f . Let τ =

∑

i f(i, di)+noise, so replacing D with D′ differing only in one
row changes the summation by at most 1. Bounding the ratio of probabilities that
τ occurs with inputs D and D′ amounts to bounding the ratio of probabilities



that noise = x and noise = x + 1, for the different possible ranges of values for
x. Thus, we first determine the largest value of x such that a relative bound of
exp(ǫ) holds, and then integrate the probability mass outside of this interval.

Recall the Gaussian density function: p(x) ∝ exp(−x2/2R). The ratio of
densities at two adjacent integral points is

exp(−x2/2R)

exp(−(x + 1)2)/2R
= exp(x/R + 1/2R).

This value remains at most exp(ǫ) until x = ǫR − 1/2. Provided that R ≥
2 log(2/δ)/ǫ2 and that ǫ ≤ 1, the integrated probability beyond this point will
be at most

Pr[x > ǫR − 1/2] ≤ exp(−(ǫR)2/2R)

(ǫR)
√

π
≤ δ .

As a consequence, we get δ-approximate ǫ-indistinguishability when R is at least
2 log(2/δ)/ǫ2.

For the Binomial noise with bias 1/2, whose density at n/2 + x is

Pr[n/2 + x] =

(

n

n/2 + x

)

1/2n ,

we see that the relative probabilities are

Pr[n/2 + x]

Pr[n/2 + x + 1]
=

n/2 + x + 1

n/2 − x
.

So long as x is no more than ǫn/8, this should be no more than (1+ ǫ) < exp(ǫ).
Of course, a Chernoff bound tells us that for such x the probability that a sample
exceeds it is

Pr[y > n/2 + ǫn/8] = Pr[y > (1 + ǫ/4)n/2]

≤ exp(−(ǫ2n/64)).

We get δ-approximate ǫ-indistinguishability so long as n is chosen to be at least
64 log(2/δ)/ǫ2. This exceeds the estimate of the Gaussian due to approximation
error, and general slop in the analysis, though it is clear that the form of the
bound is the same.

2.2 Adaptive Query Sequences

One concern might be that after multiple queries, the values of ǫ and δ degrade
in an inelegant manner. We now argue that this is not the case.

Theorem 1. A mechanism that permits T adaptive interactions with a δ-
approximate ǫ-indistinguishable mechanism ensures δT -approximate

ǫT -indistinguishability.



Proof. We start by examining the probability that the transcript, written as an
ordered T -tuple, lands in a set S.

Pr[x ∈ S] =
∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1].

As the noise is independent at each step, the conditioning on x1, . . . , xi−1 only
affects the predicate that is asked. As a consequence, we can substitute

∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1] ≤
∏

i≤T

(exp(ǫ) × Pr[x′
i ∈ Si|x1, . . . , xi−1] + δ) .

If we look at the additive contribution of each of the δ terms, of which there are
T , we notice that they are only ever multiplied by probabilities, which are at
most one. Therefore, each contributes at most an additive δ.

∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1] ≤
∏

i≤T

(exp(ǫ) × Pr[x′
i ∈ Si|x1, . . . , xi−1]) + δT

= exp(ǫT ) ×
∏

i≤T

(Pr[x′
i ∈ Si|x1, . . . , xi−1]) + δT

= exp(ǫT ) × Pr[x′ ∈ S] + δT .

The proof is complete. ⊓⊔

3 Generating Gaussian Noise

Were we not concerned with malicious failures, a simple approach would be to
have each participant i perturb f(di) by sampling from a Gaussian with mean
zero and variance 3

2var/n, where var is a lower bound on the variance needed
for preserving privacy (see Section 2). The perturbed values would be shared
out and the shares summed, yielding

∑

i f(di)+noise in shares. Since, as usual
in the Byzantine literature, we assume that at least 2/3 of the participants will
survive, the total variance for the noise would be sufficient (but not excessive).
However, a Byzantine processor might add an outrageous amount of noise to
its share, completely destroying the integrity of the results. We now sketch the
main ideas in our solution for the Byzantine case.

Recall that the goal is for the participants to obtain the noise in shares.
As mentioned earlier, we will approximate the Gaussian with the Binomial
distribution, so if the participants hold shares of sufficiently many unbiased
coins they can sum these to obtain a share of (approximately) correctly generated
noise. Coin flipping in shares (and otherwise) is well studied, and can be achieved
by having each participant non-malleably verifiably share out a value in GF(2),
and then locally summing (in GF(2)) the shares from all n secret sharings.

This suggests a conceptually straightforward solution: Generate many coins
in shares, convert the shares from GF(2) to shares of values in a large field GF(q)
(or to shares of integers), and then sum the shares. In addition to the conversion



costs, the coins themselves are expensive to generate, since they require Ω(n)
executions of verifiable secret sharing per coin, which translates into Ω(nc) secret
sharings for c coins5. To our knowledge, the most efficient scheme for generating
random bits is due to Damg̊ard et al. [10], which requires n sharings and two
multiplications per coin.

We next outline a related but less expensive solution which at no intermediate
or final point uses the full power of coin-flipping. The solution is cost effective
when c is sufficiently large, i.e., c ∈ Ω(n). As a result, we will require only Ω(c)
sharings of values in GF(2) when c ∈ Ω(n). Let n denote both the number of
players and the desired number of coins6.

1. Each player i shares a random bit by sharing out a value bi ∈ {0, 1}GF(q),
using a non-malleable verifiable secret sharing scheme, where q is sufficiently
large, and engages in a simple protocol to prove that the shared value is
indeed in the specified set. (The verification is accomplished by distributively
checking that x2 = x for each value x that was shared, in parallel. This is
a single secure function evaluation of a product, addition of two shares, and
a reconstruction, for each of the n bits bi.) This gives a sequence of low-
quality bits in shares, as some of the shared values may have been chosen
adversarially. (Of course, the faulty processors know the values of the bits
they themselves have produced.)

2. Now, suppose for a moment that we have a public source of unbiased
bits, c1, c2,. . . , cn. By XORing together the corresponding b’s and c’s,
we can transform the low quality bits bi (in shares) into high-quality bits
bi ⊕ ci, in shares. (Again, the faulty processors know the values of the (now
randomized) bits they themselves have produced.) The XORing is simple: if
ci = 0 then the shares of bi remain unchanged. If ci = 1 then each share of
bi is replaced by one minus the original share.

3. Replace each share s by 2s− 1, all arithmetic in GF(q). This maps shares of
0 to shares of −1, and shares of 1 to (different) shares of 1.

4. Finally, each participant sums her shares to get a share of the Binomial noise.

We now turn to the generation of the ci. Each participant randomly chooses
and non-malleably verifiably shares out two bits, for a total of 2n low-quality
bits in shares. Let the low-quality source be b′1, b

′
2, . . . , b

′
2n. The b′i are then

reconstructed, so that they become public. The sequence b′1b
′
2 . . . b′2n is a bit-

fixing source: some of the bits are biased, but they are independent of the other
bits (generated by the good participants) due to the non-malleability of the
secret sharing. The main advantage of such a source is that it is possible to
apply a deterministic extractor on those bits and have the output be very close

5 When a single player shares out many values (not the case for us), the techniques of
Bellare, Garay, and Rabin [3] can be used to reduce the cost of verifying the shared
out values. The techniques in [3] complement ours; see Section 5.

6 If the desired number of coins is o(n), we can generate Θ(n) coins and keep the
unused ones in reserve for future executions of the protocol. If m ≫ n coins are
needed, each processor can run the protocol m/n times.



to uniform. Since the bits b′1 . . . b′2n are public, this extraction operation can be
done by each party individually with no additional communication. In particular
we may use, say, the currently best known deterministic extractor of [16], which
produces a number m > n of nearly unbiased bits. The outputs of the extractor
are our public coins c1 . . . cm.

The principal costs are the multiplications for verifying membership in
{0, 1}GF(q) and the executions of verifiable secret sharing. Note that all the
verifications of membership are performed simultaneously, so the messages from
the different executions can be bundled together. The same is true for the
verifications in the VSS. The total cost of the scheme is Θ(n) multiplications
and additions in shares, which can be all done in a constant number of rounds.

4 Generating Exponential Noise

Recall that in the exponential distribution the probability of obtaining a value
at distance |x| from the mean is proportional to exp(−|x|/R), where R is
a scaling factor. For the present discussion we take R = 1/(ln 2), so that
exp(−|x|/R) = 2−|x|. We approximate the exponential distribution with the
Poisson distribution. An intuitively simple approach is to generate a large
number of unbiased7 random bits in shares, and then find (in shares) the position
ℓ of the first 1. The value returned by this noise generation procedure is ±ℓ (we
flip one additional bit to get the sign). If there is no 1, then the algorithm fails,
so the number of bits must be sufficiently large that this occurs with negligible
probability. All the computation must be done in shares, and we can’t “quit”
once a 1 has been found (this would be disclosive). This “unary” approach works
well when R = 1/(ln 2) and the coins are unbiased. For much larger values of
R, the case in high-privacy settings, the coins need to be heavily biased toward
0, flattening the curve. This would mean more expected flips before seeing a 1,
potentially requiring an excessive number of random bits.

Instead, we take advantage of the special structure of the exponential
distribution, and see that we can generate the binary representation of an
exponential variable using a number of coins that is independent of the bias.
Let us return to the question of the location ℓ of the first 1 in a sequence of
randomly generated bits. We can describe ℓ one bit at a time by answering the
following series of questions:

1. What is the parity of ℓ? That is, ℓ = 2i for some i ≥ 0? (We begin counting
the positions at 0, so that ℓ will be the number of 0’s preceding the first 1.)

2. Is ℓ in the left half or the right half of a block of 4 positions, i.e., is it the
case that 22i ≤ ℓ < 22i + 2 for some i ≥ 0?

3. Is ℓ in the left half or the right half of a block 8 positions, i.e., is it the case
that 23i ≤ ℓ < 23i + 22 for some i ≥ 0?

4. And so on.

7 For values of R 6= 1/(ln 2) we would need to use biased bits.



We generate the distribution of ℓ “in binary” by generating the answers to the
above questions. (For some fixed d we simply assume that ℓ < 2d, so only a finite
number of questions need be answered.)

To answer the questions, we need to be able to generate biased coins. The
probability that ℓ is even (recall that we begin counting positions with 0) is
(1/2)

∑∞
i=0(2

−2i). Similarly, the probability that ℓ is odd is (1/2)
∑∞

i=0(2
−(2i+1)).

Thus,
Pr[ℓ odd] = (1/2)Pr[ℓ even].

Since the two probabilities sum to 1, the probability that ℓ is even is 2/3. Similar
analyses yield the necessary biases for the remaining questions.

The heart of the technical argument is thus to compute coins of arbitrary
bias in shares in a manner that consumes on average a constant number of
unbiased, completely unknown, random bits held in shares. We will construct and
analyze a shallow circuit for this. In addition, we will present two incomparable
probabilistic constructions. In any distributed implementation these schemes
would need to be implemented by general secure function evaluation techniques.
The circuits, which only use Boolean and finite field arithmetic, allow efficient
SFE implementation.

4.1 Poisson Noise: The Details

In this section we describe several circuits for generating Poisson noise. The
circuits will take as input random bits (the exact number depends on the circuit
in question). In the distributed setting, the input would be the result of a protocol
that generates (many) unbiased bits in shares. The circuit computation would
be carried out in a distributed fashion using secure function evaluation, and
would result in many samples, in shares, of noise generated according to the
Poisson distribution. This fits into the high-level ODO protocol in the natural
way: shares of the noise are added to the shares of

∑

i f(i, di) and the resulting
noisy sum is reconstructed.

For the remainder of this section, we let n denote the number of coins to be
generated. It is unrelated to the number of participants in the protocol.

Recall the discussion in the Introduction of the exponential distribution,
where Pr[x] ∝ exp(−|x|/R). Recall that one interpretation is to flip a (possibly
biased) coin until the first 1 is seen, and then to output the number ℓ of 0’s seen
before the 1 occurs. Recall also that instead of generating ℓ in unary, we will
generate it in binary.

We argue that the bits in the binary representation of the random variable
ℓ are independent, and moreover we can determine their biases analytically. To
see the independence, consider the distribution of the ith bit of ℓ:

ℓi =

{

0 w.p. Pr[0 × 2i ≤ ℓ < 1 × 2i] + Pr[2 × 2i ≤ ℓ < 3 × 2i] + . . .
1 w.p. Pr[1 × 2i ≤ ℓ < 2 × 2i] + Pr[3 × 2i ≤ ℓ < 4 × 2i] + . . .

Notice that corresponding terms in the two summations, eg Pr[0×2i ≤ ℓ < 1×2i]
and Pr[1×2i ≤ ℓ < 2×2i], are directly comparable; the first is exactly exp(2i/R)



times the second. This holds for every corresponding pair in the sums, and as
such the two sums share the same ratio. As the two sum must total to one, we
have additionally that

1 − Pr[ℓi] = exp(2i/R) × Pr[ℓi] .

Solving, we find that

Pr[ℓi] = 1/(1 + exp(2i/R)) .

Recall as well that the observed ratio applied equally well to each pair of
intervals, indicating that the bias is independent of the more significant bits.
The problem of producing an exponentially distributed ℓ is therefore simply a
matter of flipping a biased coin for each bit of ℓ. The circuit we will construct
will generate many ℓ’s according to the desired distribution, at an expected low
amortized cost (number of input bits) per bit position in the binary expansion
of ℓ. The circuit is a collection of circuits, each for one bit position, with the
associated bias hard-wired in. It suffices therefore to describe the circuitry for
one of these smaller circuits (Section 4.3). We let p denote the hard-wired bias.

A well-known technique for flipping a single coin of arbitrary bias p is to
write p in binary, examine random bits until one differs from the corresponding
bit in p, and then emit the complement of the random bit. To achieve a high
fidelity to the original bias p, a large number d of random bits must be available.
However, independent of p, the expected number of random bits consumed is at
most 2. This fact will be central to our constructions.

In the sequel we distinguish between unbiased bits, which are inputs to
the algorithm, and the generated, biased, coins, which are the outputs of the
algorithm.

4.2 Implementation Details: Finite Resources

With finite randomness we will not be able to perfectly emulate the bias of the
coins. Moreover, the expectation of higher order bits in the binary representation
of ℓ diminishes at a doubly exponential rate (because the probability that ℓ ≥ 2i

is exponentially small in 2i), quickly giving probabilities that simply can not be
achieved with any fixed amount of randomness.

To address these concerns, we will focus on the statistical difference between
our produced distribution and the intended one. The method described above
for obtaining coins with arbitrary bias, truncated after d bits have been
consumed, can emulate any biased coin within statistical difference at most
2−d. Accordingly, we set all bits of sufficiently high order to zero, which will
simplify our circuit. The remaining output bits – let us imagine there are k
of them – will result in a distribution whose statistical difference is at most
k2−d from the target distribution. We note that by trimming the distribution to
values at most 2d in magnitude, we are introducing an additional error, but one
whose statistical difference is quite small. There is an exp(−2d/R) probability
mass outside the [−2d, 2d] interval that is removed and redistributed inside the



interval. This results in an additional 2 exp(−2d/R) statistical difference that
should be incorporated into δ. For clarity, we absorb this term into the value k.

Using our set of coins with statistical difference at most k2−d from the
target distribution, we arrive at a result akin to (1), though with an important
difference. For response variables τ and τ ′ as before (based on databases differing
it at most one row),

∀S ⊆ U : Pr[τ ∈ S] ≤ Pr[τ ′ ∈ S] × exp(1/R) + k2−d .

As before, the probability of any event increases by at most a factor of exp(1/R),
but now with an additional additive k2−d term. This term is controlled by the
parameter d, and can easily be made sufficiently small to allay most concerns.

We might like to remove the additive k2−d term, which changes the nature
of the privacy guarantee. While this seems complicated at first, notice that it
is possible to decrease the relative probability associated with each output coin
arbitrarily, by adding more bits (that is, increasing d). What additional bits can
not fix is our assignment of zero probability to noise values outside the permitted
range (i.e., involving bits that we do not have circuitry for).

One pleasant resolution to this problem, due to Adam Smith, is to constrain
the output range of the sum of noise plus signal. If the answer plus noise is
constrained to be a k-bit number, and conditioned on it lying in that range the
distribution looks exponential, the same privacy guarantees apply. Guaranteeing
that the output will have only k bits can be done by computing the sum of noise
and signal using k + 1 bits, and then if there is overflow, outputting the noise-
free answer. This increases the probability that noise = 0 by a relatively trivial
amount, and ensures that the output space is exactly that of k-bit numbers.

4.3 A Circuit for Flipping Many Biased Coins

We are now ready to construct a circuit for flipping a large number of
independent coins with common bias. By producing many (Ω(n)) coins at once,
we could hope to leverage the law of large numbers and consume, with near
certainty, a number of input bits that is little more than 2n and depends very
weakly on d. For example, we could produce the coins sequentially, consuming
what randomness we need and passing unused random bits on to the next coin.
The circuit we now describe emulates this process, but does so in a substantially
more parallel manner.

The circuit we construct takes 2i unbiased input bits and produces 2i output
coins, as well as a number indicating how many of the coins are actually the
result of the appropriate biased flips. That is, it is unlikely that we will be able
to produce fully 2i coins, and we should indicate how many of the coins are
in fact valid. The construction is hierarchical, in that the circuit that takes 2i

inputs will be based on two level i − 1 circuits, attached to the first and second
halves of its inputs.

To facilitate the hierarchical construction, we augment the outputs of each
circuit with the number of bits at the end of the 2i that were consumed by



the coin production process, but did not diverge from the binary representation
of p. Any process that wishes to pick up where this circuit has left off should
start under the assumption that the first coin is in fact this many bits into its
production. For example, if this number is r then the process should begin by
comparing the next random bit to the (r+1)st bit in the expansion of p. Bearing
this in mind, we “bundle” d copies of this circuit together, each with a different
assumption about the initial progress of the production of their first coin.

For each value 1 ≤ j ≤ d we need to produce a vector of 2i coins cj , a number
of coins nj , and dj , a measure of progress towards the last coin. We imagine that
we have access to two circuits of one level lower, responsible for the left and right
half of our 2i input bits, and whose corresponding outputs are superscripted by
L and R. Intuitively, for each value of j we ask the left circuit for dL

j , which

we use to select from the right circuit. Using index j for the left circuit and dL
j

for the right circuit, we combine the output coins using a shift of nL
j to align

them, and add the output counts nL
j and nR

dL
j

. We simply pass dR
dL

j

out as the

appropriate value for dj .

cj = cL
j | (cR

dL
j

>> nL
j )

nj = nL
j + nR

dL
j

dj = dR
dL

j

The operation of subscripting is carried out using a multiplexer, and shifts,
bitwise ors, and addition are similarly easily carried out in logarithmic depth.

The depth of each block is bounded by Θ(log(nd)), with the size bounded
by Θ(2id(log(n) + d), as each of d outputs must multiplex d possible inputs
(taking Θ(d) circuitry) and then operate on them (limited by Θ(log(n)2i) for
the barrel shifter). All told, the entire circuit has depth Θ(log(nd)2), with size
Θ(nd(log(n) + d) log(n)).

4.4 Probabilistic Constructions with Better Bounds

We describe two probabilistic constructions of circuits that take as input
unbiased bits and produce as output coins of arbitrary, not necessarily identical,
bias. Our first solution is optimal in terms of depth (Θ(log d)) but expensive in
the gate count. Our second solution dramatically decreases the number of gates,
paying a modest price in depth (O(log(n+d))) and a logarithmic increase in the
number of input bits.

A module common to both constructions is the comparator – a circuit that
takes two bit strings b1, . . . , bd and p(1) . . . p(d) and outputs 0 if and only if the
first string precedes the second string in the lexicographic order. Equivalently,
the comparator outputs b̄i, where i is the index of the earliest occurrence 1 in
the sequence b1 ⊕ p(1), . . . , bd ⊕ p(d), or 1 if the two strings are equal. Based on
this observation, a circuit of depth Θ(log d) and size Θ(d) can be designed easily.
Notice that the result of comparison is independent of the values of the strings
beyond the point of divergence.



Brute Force Approach. Assume that we have nd independent unbiased bits

b
(j)
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ d. To flip n independent coins, each with its own

bias pi, whose binary representation is 0.p
(1)
i . . . p

(d)
i , we run n comparators in

parallel on inputs (b
(1)
1 , . . . , b

(d)
1 , p

(1)
1 , . . . , p

(d)
1 ), . . . , (b

(1)
n , . . . , b

(d)
n , p

(1)
n , . . . , p

(d)
n ).

Our goal is to get by with many fewer than nd unbiased input bits of the
brute force approach, since each of these requires an unbiased bit in shares.
Intuitively, we may hope to get away with this because, as mentioned previously,
the average number of bits consumed per output coin is 2, independent of the

bias of the coin. Let ci for 1 ≤ i ≤ n be the smallest index where b
(ci)
i 6= p

(ci)
i ,

and d+1 if the two strings are equal. The number ci corresponds to the number
of bits “consumed” during computation of the ith coin. Let C =

∑n
i=1 ci. On

expectation E[C] = 2n, and except with a negligible probability C < 4n.

Rather than having the set {b(j)
i }i,j be given as input (too many bits),

we will compute the set {b(j)
i }i,j from a much smaller set of input bits. The

construction will ensure that the consumed bits are independent except with
negligible probability. Let the number of input bits be D, to be chosen later.

We will construct the circuit probabilistically. Specifically, we begin by

choosing nd binary vectors {r(j)
i }i,j , 1 ≤ i ≤ n and 1 ≤ j ≤ d, uniformly from

{0, 1}D to be hard-wired into the circuit. Let b ∈R {0, 1}D be the uniformly
chosen random input to the circuit.

The circuit computes the inner products of each of the hard-wired vectors

r
(j)
i with the input b. Let b

(j)
i = 〈r(j)

i , b〉 denote the resulting bits. These are the

{b(j)
i }i,j we will plug into the brute force approach described above. Note that

although much randomness was used in defining the circuit, the input to the
circuit requires only D random bits.

Although the nd vectors are not linearly independent, very few of them
– O(n) – are actually used in the computation of our coins, since with

overwhelming probability only this many of the b
(j)
i are actually consumed.

A straightforward counting argument therefore shows that the set of vectors
actually used in generating consumed bits will be linearly independent, and so
the coins will be mutually independent.

We claim that if D > 4C, then the consumed bits are going to be independent

with high probability. Conditional on the sequence c1, . . . , cn, the vectors r
(j)
i for

1 ≤ i ≤ n and 1 ≤ j ≤ ci are independent with probability at least 1−C2C−D <
1 − 2−2C , where the probability space is the choice of the r’s. For fixed C the
number of possible c1, . . . , cn is at most

(

C
n

)

< 2C . Hence the probability that
for some C < 4n and some c1, . . . , cn, such that c1 + · · · + cn = C the vectors

r
(j)
i are linearly independent is at least than 1−4n2−C . Finally, we observe that

if the vectors are linearly independent, the bits b
(j)
i are independent as random

variables. The depth of this circuit is Θ(log D), which is the time it takes to
compute the inner product of two D-bit vectors. Its gate count is Θ(ndD),
which is clearly suboptimal.



Using low weight independent vectors: Our second solution dramatically
decreases the number of gates by reducing the weight (the number of non-zero
elements) of the vectors r from the expected value D/2 to s2⌈log(n+1)⌉, where s
is a small constant. To this end we adopt the construction from [12] that converts
an expander-like graph into a set of linearly independent vectors.

The construction below requires a field with at least nd non-zero elements.
Let ν = ⌈log(nd + 1)⌉. We use GF(2ν), representing its elements as ν-bit strings.

Consider a bipartite graph G of constant degree s connecting sets L =
{u1, . . . , un}, where the u’s are distinct field elements, and R = {1, . . . ,∆}.
The degree s can be as small as 3. Define matrix M of size n× s∆ as follows: if
(ui, τ) ∈ G, the elements M [i][s(τ − 1), s(τ − 1) + 1, . . . , sτ − 1] = ui, u

2
i , . . . , u

s
i ,

and (0, . . . , 0) (s zeros) otherwise. Thus, each row of the matrix has exactly s2

non-zero elements.
For any set S ⊆ L, let Γ (S) ⊆ R be the set of neighbors of S in G. The

following claim is easily obtained from the proof of Lemma 5.1 in [12]. It says
that if for a set of vertices T ∈ L all of T ’s subsets are sufficiently expanding,
then the rows of M corresponding to vertices in T are linearly independent.

Theorem 2. Let T ⊆ L be any set for which ∀S ⊆ T , |Γ (S)| > (1 − 1
s+1 )|S|.

Then the set of vectors {M [u] : u ∈ T} is linearly independent.

Consider a random bipartite graph with nd/ν elements in one class and 2C

elements in the other. Associate the elements from the first class with bits b
(j)
i ’s,

grouped in ν-tuples. Define the bits as the results of the inner product of the
corresponding rows of the matrix M from above with the input vector of length
2s2C that consists of random elements from GF(2ν). Observe that the random
graph G satisfies the condition of Theorem 2 for all sets of size less than C with
high probability if C > (nd/ν)1/(s−1).

The depth of the resulting circuit is Θ(log(n + d)), the gate count is
Θ(nds2 log(n + d)), and the size of the input is 2n log(n + d).

5 Generalizations

In this section we briefly discuss several generalizations of the basic scheme.

5.1 Alternatives to Full Participation

The main idea is to use a set of facilitators, possibly a very small set, but
one for which we are sufficiently confident that fewer than one third of the
members are faulty. Let F denote the set of facilitators. To respond to a query
f , participant i shares f(i, di) among the facilitators, and takes no further part
in the computation.

To generate the noise, each member of F essentially takes on the work of
n/|F| participants. When |F| is small, the batch verification technique of [3]
may be employed to verify the secrets shared out by each of the players (that
is, one batch verification per member of F), although this technique requires



that the faulty players form a smaller fraction of the total than we have been
assuming up to this point.

5.2 When f is Not a Predicate

Suppose we are evaluating f to k bits of precision, that is, k bits beyond the
binary point. Let q be sufficiently large, say, at least q > n2k. We will work in
GF(q). Participant i will share out 2kf(i, di), one bit at a time. Each of these is
checked for membership in {0, 1}GF(q). Then the shares of the most significant

bit are multiplied by 2k−1, shares of the next most significant are multiplied by
2k−2 and so on, and the shares of the binary representation of f(i, di) are then
summed. The noise generation procedure is amplified as well. Details omitted
for lack of space.

5.3 Beyond Sums

We have avoided the case in which f is an arbitrary function mapping the entire
database to a (tuple of) value(s), although the theory for this case has been
developed in [13]. This is because without information about the structure of f
we can only rely on general techniques for secure function evaluation of f , which
may be prohibitively expensive.

One case in which we can do better is in the generation of privacy-preserving

histograms. A histogram is specified by a partition of the domain Rows; the true
response to the histogram query is the exact number of elements in the database
residing in each of the cells of the histogram. Histograms are low sensitivity

queries, in that changing a single row of the database changes the counts of
at most two cells in the histogram, and each of these two counts changes by
at most 1. Thus, as discussed in [13], ǫ-indistinguishable histograms may be
obtained by adding exponential noise with R = 1/2ǫ to each cell of the histogram.
A separate execution of ODO for each cell solves the problem. The executions
can be run concurrently. All participants in the histogram query must participate
in each of the concurrent executions.

5.4 Individualized Privacy Policies

Suppose Citizen C has decided she is comfortable with a lifetime privacy loss of,
say ǫ = 1. Privacy erosion is cumulative: any time C participates in the ODO
protocol she incurs a privacy loss determined by R, the parameter used in noise
generation. C has two options: if R is fixed, she can limit the number of queries
in which she participates, provided the decision whether or not to participate is

independent of her data. If R is not fixed in advance, but is chosen by consensus
(in the social sense), she can propose large values of R, or to use large values
of R for certain types of queries. Similarly, queries could be submitted with a
stated value of R, and dataholders could choose to participate only if this value
of R is acceptable to them for this type of query. However, the techniques will



all fail if the set of participants is more than one-third faulty; so the assumption
must be that this bound will always be satisfied. This implicitly restricts the
adversary.

6 Summary of Results

This work ties together two areas of research: the study of privacy-preserving
statistical databases and that of cryptographic protocols. It was inspired by the
combination of the computational power of the noisy sums primitive in the first
area and the simplicity of secure evaluation of sums in the second area. The effect
is to remove the assumption of a trusted collector of data, allowing individuals
control over the handling of their own information.

In the course of this work we have developed distributed algorithms for
generation of Binomial and Poisson noise in shares. The former makes novel
use of extractors for bit-fixing sources in order to reduce the number of secret
sharings needed in generating massive numbers of coins. The latter examined
for the first time distributed coin-flipping of coins with arbitrary bias.
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