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Abstract

In this paper we address the problem of tracking the motion of articulated objects
from their 2-D silhouettes gathered with several cameras. The vast majority of ex-
isting approaches relies on a single camera or on stereo. We describe a new method
which requires at least two cameras. The method relies on (i) building 3-D obser-
vations (points and normals) from image silhouettes and on (ii) fitting an articulated
object model to these observations by minimizing their discrepancies. The objective
function sums up these discrepancies while it takes into account both the scaled al-
gebraic distance from data points to the model surface and the offset in orientation
between observed normals and model normals. The combination of a feed-forward
reconstruction technique with a robust model-tracking method results in a reliable
and efficient method for articulated motion capture.

1 Introduction
In this paper we address the problem of estimating the motion parameters of articulated objects,
such as humans, from 3-D points and normals. These entities are inferred from 2-D silhou-
ettes gathered with several synchronized cameras, Figure 1. The problem of tracking articulated
shapes has been thoroughly studied in the recent past and a number of interesting methods and
software packages are available. The vast majority of existing approaches and solutions relies
on a single camera (a video sequence), on stereo (both binocular and trinocular), or on a large
number of cameras. The first class of methods (a single video) attempts to recover the motion
parameters directly from images and requires sophisticated probabilistic modelling. The second
class of methods relies on depth data which, in turn, require search methods in order to solve
for the stereo correspondence problem. The third class of methods relies on space-carving and
level-set methods which are still under development. The latter has proved their usefulness for
3-D shape modelling but not for recovering motion parameters.

Here we describe a method which needs 2 to 6 cameras evenly distributed around the scene,
i.e., they do not need to be arranged such that stereo correspondence is optimized. The method
consists in fitting the pose of an articulated object model to 3-D observations gathered at some
time instant, provided that the pose at the previous time instant has already been estimated. The
object model is described by an articulated implicit surface that embeds a kinematic structure
(such as a human body, a hand, an animal, etc.) and a set of volumetric primitives (ellipsoids).
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Figure 1: The cameras overlook a scene and a reconstruction method estimates 3-D points (connected to
form a mesh for the purpose of the display) as well as 3-D vectors (shown as a needle field) normal to a
smooth surface.

The implicit surface is defined as a distance function over these primitives and therefore this
surface is simply a level set over a blending of these ellipsoids.

The 3-D observations are computed from image silhouettes gathered with the cameras. These
3-D data consist in surface patches, i.e., a 3-D point and a 3-vector. In order to fit these observa-
tions to the model we define a surface-patch-to-implicit-surface distance. The objective function
to be minimized over the motion parameters is a sum of squares of the distances just mentioned.

Previous work. Since we adopt an “image understanding” point of view, we immediately rule
out systems based on magnetic or optical markers, special-purpose clothes, and so forth. For a
general review of human motion capture methods see [14]. Methods based on a single image
sequence require a probabilistic framework [1], [8], and many others. An intrinsic difficulty,
however, with methods based on 2-D data is the ambiguity of associating a multiple degree-of-
freedom 3-D model with image contours, texture, and optical flow [4], [7]. Other researchers
combine several cameras and make use of 2-D silhouettes whose image deformation is related,
among others, to 3-D motion parameters. In [9], 2-D image data apply forces to a projected
model and the parameters of the latter are adjusted such that the force field is minimized.

Methods using 3-D data are the most relevant with respect to our own approach. In general
3-D data are produced using stereo [5], [15], [6]. An articulated model based on cylindrical
parts and an ICP algorithm is used in [5]. Both [15] and [6] use implicit surfaces defined over
a set of spheroids, and these two methods are the most closely related to our own approach. In
[15] an algebraic distance is minimized in order to fit the implicit surface to the depth data, and
silhouette observations are used to constrain this surface to be tangent to rays originating at the
optical center of the camera and passing through silhouette points. In [6] the stereo data are fitted
to the model using an EM algorithm. Moreover, 3-D data that are consistent with the model
are incrementally added to the latter such that both point-to-point and point-to-surface distance



errors contribute to the fitting.

Original contributions. This paper has the following original contributions: First, 3-D obser-
vations (both points and normals) are computed from 2-D silhouettes based on multiple-camera
geometric constraints and on the hypothesis that the observed 3-D surfaces are locally smooth;
The method may well be viewed as an improvement over convex hull computation. There is
no need to arrange the cameras such that stereo matching performs in an optimal manner. Sec-
ond, the objective function, measuring the discrepancy between model and data, takes into ac-
count both point-to-surface and data-normal-to-model-normal discrepancies. We derive an an-
alytic expression for these discrepancies which allows the straightforward implementation of
non-linear minimization techniques. Third, the method avoids image projections of complex
models. Fourth, data-to-model fitting is achieved in a single 3-D metric space instead of multi-
ple, possibly inconsistent, 2-D projective spaces.

Organization. The remainder of this paper is organized as follows. Section 2 describes how
3-D data are obtained from image silhouettes. Section 3 describes the articulated model which
is based on zero-reference kinematic chains, on ellipsoids, and on an articulated implicit surface
defined over these chain and volumetric primitives. Section 4 describes the fitting between the
data and the model based on both points and surface normals. Section 5 describes results ob-
tained with both simulated and real data. Finally Section 6 draws some conclusions and suggests
directions for future work.

2 Surface patches from image silhouettes
In this section we describe how 3-D points and surface normals are inferred from multiple image
silhouettes. The 3-D shape data that we estimate consist in the positions of points and normals
associated with the 3-D surface that produced the silhouettes. Such shape information is closely
related to the visual hull of an object and it shares with the latter its robustness. Nevertheless, it
is richer than the visual hull alone since it includes not only the surface tangent planes but also
the surface positions which are not given by the visual hull. To estimate these positions, we use
the fact that our surface models, ellipsoids, are C2 surfaces. The method is valid, more generally,
for locally smooth surfaces of order 2.

Viewing edges. We assume that a set of silhouettes – that segment the input images into fore-
ground and background – are provided. These silhouettes may be combined to give rise to a
visual hull which is the maximal 3-D shape consistent with them. The visual hull does contain
the body surface and may intuitively be seen as the intersection of the viewing cones associated
with the silhouettes. Viewing edges, or bounding edges [10], are the intervals along the viewing
lines, as shown on Figure 2. They correspond to viewing-line contributions to the visual-hull sur-
face and therefore they are associated to image points lying onto the silhouette boundary curves.
Computing such a set of viewing edges is fast, simple, well-defined, and has already been used
in various reconstruction applications, [12] and [3].

A silhouette is described by a discrete set of 2-D points. Viewing edges along a viewing line
may be defined by combining silhouettes from two images and the associated epipolar constraint,
as depicted in Figure 2. This can be easily extended to an arbitrary number of images and
silhouettes. Whenever an additional silhouette from a new image is available, the viewing edges
are updated to be consistent with contributions from the additional silhouette points. As the
number of silhouettes increases, the length of the viewing edges narrows down.
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Figure 2: Left: two viewing edges along a viewing line computed solely from multiple-camera geometry.
Right: two spheres (dark) that may be two distinct body parts, and the reconstructed surfaces (thin lines)
with only two cameras. The visual hull is depicted by the shaded regions within the viewing lines originating
in C1 and C2.

3-D points and surface normals. We explain now how to estimate the position and orientation
of a surface patch that is supposed to lie onto the object’s surface such that the latter is tangent
to a viewing edge.

A viewing line associated with a silhouette from image j is tangent to the object’s surface. If
we assume that there is a unique viewing edge along a viewing line, then it means that this edge
contains a surface point Y . Its orientation, a vector N, is defined by the cross-product between
the viewing line and the tangent to the image silhouette. Notice that these computations can be
carried out from image information only, provided that the calibration parameters of the camera
are known.

The estimation of the position of point Y within a viewing edge requires some additional
insights. Let Y belong to the viewing edge passing through the center of projection C j of image
j. This viewing edge is bounded by viewing lines associated with images i and k as well as
their centers of projection Ci and Ck, as explained in the previous section. Since these viewing
lines are tangent to the surface, we are also given these additional tangent directions – viewing
lines originating in Ci and Ck – in the neighborhood of Y : The viewing lines from the silhouettes
associated with images i and k which intersect the viewing line of Y . Under the assumption that
the surface is locally of order 2, one can estimate the position of Y along a curve that lies onto
the surface and which is constrained by three tangents. For farther details see [2].

The above reasoning applies to the case of a unique viewing edge along a viewing line. This
is the case with most silhouette vertices if the cameras are evenly and sparsely distributed around
the scene. However, this will not always be true, as shown on Figure 2. Whenever several
viewing edges appear along the viewing line, the same approach is applied to each interval,
one after one, thus producing as many 3D points and normals as the number of viewing edges.
Note that not all the 3-D points thus determined actually belong to viewing edges tangent to the
object’s surface. Nevertheless, they all need to be computed in order to ensure that the local
second order approximation of the surface is consistent with the visual hull. Moreover, as shown
on Figure 2, the points thus obtained correspond to a better approximation of the object’s surface



than the visual hull itself. This is particularly important when the task is to fit a curved model to
the observations. Results obtained with this method are shown on Figure 3.

Figure 3: 3-D points (displayed as the vertices of a mesh) reconstructed with 2, 4, 5, and 6 cameras. The
reconstructed normals are shown with the rightmost figure.

3 Modelling articulated objects
In order to model articulated objects such as human bodies, we use ellipsoids as basic volumetric
shapes. These ellipsoids are joined and blended together to form an articulated implicit surface.
In detail, an ellipsoid is a quadric described by a 4×4 homogeneous symmetric matrix Q. This
matrix is diagonal when the axes of the coordinate frame are aligned with the axes of inertia of
the shape: Q = Diag(1/a2 1/b2 1/c2 −1). The implicit equation of its surface writes X�QX = 0
where X describes the homogeneous coordinates of a 3-D point lying on this surface. The signed
algebraic distance from a data point Y to this surface is q(Y ) = Y �QY . The value of q varies
from −1 at the origin, to 0 on its surface, and then to +∞ outside the ellipsoid as the point is
farther away from the surface. It is convenient to use the exponential of the algebraic distance
as a measurement error. The scalar parameter σ bounds the distance of influence of an ellipsoid,
i.e.:

r(Y ) = exp

(
−q2 (Y )

σ2

)
(1)

When an ellipsoid undergoes a rigid motion, its matrix becomes Q T = T−�QT−1 where T de-
notes a 4×4 homogeneous matrix associated with an Euclidean transformation. T describes a
free motion, a kinematic chain, or a combination of both. In our case the articulated object has
rotational joints with either one or three degrees of freedom. Such a mechanism may be de-
scribed by a kinematic chain of the form: T1 . . .Tk . . .Tn where each individual transformation
is a one-parameter Lie group that can be decomposed into a fixed transformation followed by a
rotation around an axis aligned with the mechanical axis (or with a virtual axis), and followed by
the inverse of the fixed transformation, Tk = LkJ(θk)L−1

k . Matrix Tk describes the position and
orientation of joint axis k with respect to a reference frame, and:

J(θk) =

⎡
⎢⎢⎣

cosθk −sinθk 0 0
sinθk cosθk 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (2)



The fixed part of this transformation, Lk, depends on the particular length of the k th joint and
on the position and orientation of this joint with respect to a fixed reference frame. Within this
paper we do not address the problem of estimating the exact size and shape of the object’s joints
and therefore this transformation will be provided.

We also consider the free motion of the object, a matrix D. In the case of a human body in
motion we attach the body frame to the torso and we make the simplification that the free motion
of the torso is a 3-D translation. Therefore, matrix D can be parameterized by three translations
along three orthogonal directions, D1D2D3. Hence, the motion has n rotational joints and 3 free
translations and is represented by Θ = (θ1 . . .θn d1 d2 d3); The motion transformation writes:

T(Θ−Θ0) = T1(θ1 −θ 0
1 ) . . .Tn(θn −θ 0

n )D1(d1 −d0
1)D2(d2 −d0

2)D3(d3 −d0
3) (3)

This is known as the zero-reference representation of a kinematic chain because it describes
the motion of each element of the object with respect to a fixed reference pose Θ 0 that can
arbitrarily be chosen [13]. In the case of tracking, we seek the pose of the object at a time instant
t provided that the pose at the previous time instant t − 1 has been already determined, and
therefore we can choose the pose of the object (and hence the pose of each one of its elements)
associated with the previous time instant as the zero-reference pose: T = T(Θ t −Θt−1). The
matrix of an ellipsoid at time t can now be expressed as a function of the motion parameters, i.e.,
Q(Θt) = T−�Q(Θt−1)T−1.

We consider a complete object model. In particular a human body model with 22 rotational
degrees of freedom is a relatively complete model that allows to capture the most general human
actions. Therefore, there is a total of 22 + 3 degrees of freedom, i.e., Θ is of dimension 25.
Moreover, body parts are described by ellipsoids denoted by Q 1, Q2, and so forth. Obviously,
there is a kinematic chain for each body part and the number of degrees of freedom are different
for each one of these chains. There is a quadratic form or a signed algebraic distance q i(X)
associated with an ellipsoid Qi as well as an exponential algebraic distance ri, i.e., eq. (1); For
an object in motion we have qi(X ,Θ) and ri(X ,Θ).

An articulated implicit surface can now be defined at each time instant as a level-set of a
blending of these ellipsoids [15]:

f (X ,Θ) =
22

∑
i=1

ri(X ,Θ) = 1 (4)

4 Fitting and tracking
It is now possible to formulate the problem of tracking an articulated shape as the problem of
fitting the model to the data [6]. At each time instant the following minimization problem has to
be solved:

min
Θ

F(Θ) =

(
m

∑
j=1

β j( f (Y j,Θ)−1)2

)
(5)

where the weight β j describes the probability of a data point Y j to be consistent with the model,
β j = exp(−( f (Y j,Θ)− 1)2/σ2). A large value for σ allows virtually all the data points to
contribute to the fit, including data points that are far away from the model. A smaller value for σ
allows to limit the influence of a datum to nearby quadrics. Within an Expectation-Maximization



formulation such as in [6] an iterative procedure decreases the value of σ as the fitting proceeds.
This allows, in principle, to escape from local minima when there is a large discrepancy between
the data and the model pose. It also allows to disregard outliers at the final iterative steps of the
algorithm. Surface orientation information is not taken explicitly into account. Ellipsoids whose
local surface normals are very different will equally contribute when associated with a datum. We
will modify the error function of eq. (5) in order to explicitly take into account surface normals.

The scaled algebraic distance. One important merit of any visual tracking method is its speed.
Eventually tracking should be implemented in real time, i.e., compatible with the frame rates
delivered by the cameras. Therefore, there is a compromise to be made between complexity and
efficiency. The computation of the distance between an observation and the model resides in the
inner loop of the tracker, and therefore it must be efficiently computed. The algebraic distance
is fast to compute but has drawbacks. The Euclidean and pseudo-Euclidean distances are more
expensive [6].

Let Q be an ellipsoid with parameters a, b, and c. Notice that matrices Q and λQ, with λ �= 0
describe the same quadric. However the algebraic distances to these ellipsoids are different. Let
r2 = a2 + b2 + c2. The scaled algebraic distance from a point Y to the ellipsoid is defined by
qr(Y ) = r2Y�QY . When the ellipsoid is close to a sphere and when the observation is close
to its surface, the scaled algebraic distance is a good approximation of the Euclidean distance.
However, with substantially elongated ellipsoids, the scaled algebraic distance does not introduce
any improvements. Such an effect is known as high curvature bias. The practical solution that
may be easily adopted consists in replacing elongated ellipsoids by an equivalent number of
spheres.

Using surface orientation constraints. So far we used data points and we did not take into
consideration the normals available with the 3-D observations. Let N = (n 1 n2 n3 0)� be the
vector normal to the surface patch and let [N]3 denote the 3-vector formed with n1, n2, n3. We
also have N�N = 1.

It is well known that the 4-vector P = QX defines the equation of a plane P tangent to the
quadric at point X lying on its surface [11]. Therefore the 3-vector [P] 3 designates the normal
vector to that plane. When a surface patch is consistent with the model, vectors [P] 3 and [N]3 are
aligned, therefore their cross-product is null and their dot-product is equal to either +1 or −1.
A measurement of the discrepancy between a surface patch orientation and the nearby model
orientation must use the followings:

d(Y ,N,Q) = [N]3 × [QY ]3 , α(Y ,N) = 1
2

(
1− N�QY

‖QY ‖2

)

The first one of these measurements, d, is equal to zero for a perfect match but is defined up
to a 1800 ambiguity. The second measurement, α varies between 0 (for vectors with opposite
orientation) and 1; Therefore it may act as a normalized measure of a plausibility.

As in the case of point data, we define the exponential distance from an observation (a 3-D
point Y and a normal N) to the 22 ellipsoids forming the model:

g(N,Y ,Θ) =
22

∑
i=1

(
αi exp

(−d(Y ,N,Qi(Θ))
µ

))
(6)



Hence, one obtains an optimal solution by fitting all the 3-D observations to the model:

min
Θ

G(Θ) =

(
m

∑
j=1

(g(N j,Y j,Θ)−1)2

)
(7)

Tracking articulated objects. In order to track articulated objects we minimize a linear com-
bination of the error functions F(Θ) and G(Θ); The first one of these functions, eq. (5), fits the
locations of the observations with the model while the second one, eq. (7) fits the normals of the
observations with the same model:

min
Θ

(ω1F(Θ)+ ω2G(Θ)) (8)

The tracking does not need segmentation of the data. Observations at time t are handled
totally independently of observations at time t −1. The solution previously found, Θ t−1 is used
in conjunction with a Kalman filter, and with a constant angular velocity hypothesis, in order to
initialize the tracker at time t. Joint limits were set and added as penalty terms to the objective
function in order to prevent unnatural human postures.

Another issue is the choice of ω1 and ω2 in eq. (8). These weights balance the contribution
of position and orientation. There are methods allowing to initialize these weights and to modify
them during the minimization process. However, as explained in the next section, we found that
there are many advantages in using both position and orientation constraints. Therefore we chose
ω1 = ω2 = 1.

5 Experiments
We validated the method with both simulated and real data. The former was obtained using a hu-
man animation software package. The latter was obtained with 6 calibrated cameras. Sequences
of image silhouettes were generated with the animation software. Then the method described
above was applied to these data. The simulated data allowed us to (i) assess the quality of the
tracker with respect to a ground truth, (ii) analyse the behavior in the presence of Gaussian noise
added to the data, (iii) quantify the merit of using surface normals, and (iv) determine the optimal
number of observations needed to reliably estimate an object pose. Figure 4 illustrates some of
the results out of a large number of experiments. From performing all these experiments one
may conclude that tracking is notoriously improved when surface patches are used rather than
just points. The surface-patch based objective function, i.e., eq. (8) converges faster, allows for
less 3-D observations, and is more tolerant to errors in position. Figure 5 shows the results of
applying the method to a 4 second sequence (120 frames) and with six cameras.

6 Discussion and conclusions
In this paper we described a method for tracking the motion of articulated objects. At each
time instant, the images are segmented into foreground and background thus providing a set
of 2-D silhouettes. These silhouettes are combined together with multiple-camera geometric
constraints and with a simple assumption about the surface of the object in order to estimate
3-D surface patches: points and normals. The model itself is an articulated implicit surface
combining a zero-reference kinematic chain with a set of ellipsoids. The model is fitted to the 3-
D observation by minimization of an objective function that takes into account both the location
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Figure 4: Left: comparison between the true angles and the estimated joint angles: left knee (top) and
right elbow (bottom). Right: sensitivity to noise for points only (top) and for points and normals (bottom).
The method always performs better when normals are taken into account. The two curves show the average
angular error as a function of noise.

of these observations and their 3-D orientations. The resulting tracker is very efficient, it can deal
with noisy data and with outliers, and it does not require data-to-object-part assignments.

Interesting enough, augmenting the number of cameras increases the robustness of the method
without affecting its efficiency, since an increased number of cameras provides more precisely
located surface patches. In practice we think that the optimal number of cameras is between 4
and 6.

Certainly, there are methods able to recover articulated motion with a single camera. These
methods need sophisticated probabilistic methods to work well. They require a learning phase.
We believe that our method is a potential candidate for providing data needed by learning meth-
ods.

In the future we plan to build a complete bio-mechanical model of humans with 80 degrees
of freedom. We also plan to relax some of the constraints currently limiting our method, such
as the requirement to have relatively accurate closed 2-D silhouettes. Finally, based on our
fitting method, we plan to implement the bootstrapping of the tracker using a coarse-to-fine
representation of the joint space and a hierarchical description of an articulated object.
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