Music and Mathematics

Thomas M. Fiore

fioretQumich.edu






Contents

Introduction

Lecture 1 Transposition and Inversion
1. Introduction

Mathematical Preliminaries

The Integer Model of Pitch

Fugue by Bach

Tristan Prelude from Wagner

Ol o

Lecture 1 Homework Problems

1. Introduction
Mathematical Preliminaries
The Integer Model of Pitch
Fugue by Bach
Tristan Prelude from Wagner

Gl L

Addendum to Lecture 1
1. Introduction
2. Fugue by Hindemith

Addendum to Lecture 1 Homework Problems
1. Introduction
2. Fugue by Hindemith

Lecture 2 The PLR Group

1. Introduction
Mathematical Preliminaries
The PLR Group
Elvis and the Beatles
Topology and the Torus
Beethoven’s Ninth Symphony
Conclusion

NSOt

Lecture 2 Homework Problems

1. Introduction
Mathematical Preliminaries
The PLR Group
Elvis and the Beatles
Topology and the Torus
Beethoven’s Ninth Symphony
Conclusion

oGt W

ot

ENIEN|

11

14

15
15
15
15
16
16

17
17
17

22
22
22

24
24
24
27
28
28
29
32

34
34
34
34
34
34
34
35



Bibliography

CONTENTS

36



Introduction

Music and Mathematics are intricately related. Strings vibrate at certain fre-
quencies. Sound waves can be described by mathematical equations. The cello has
a particular shape in order to resonate with the strings in a mathematical fashion.
The technology necessary to make a digital recording on a CD relies on mathe-
matics. After all, mathematics is the language that physicists utilize to describe
the natural world and all of these things occur in the natural world. Not only do
physicists, chemists, and engineers use math to describe the physical world, but
also to predict the outcome of physical processes.

Can one similarly find an “equation” to describe a piece of music? Or better
yet, can one find an “equation” to predict the outcome of a piece of music? We can
model sound by equations, so can we also model works of music with equations?
Music is after all just many individual sounds, right? Should we invest time and
money to find these equations so that all of humankind can enjoy predictable, easily
described music?

The answer to all of these questions is predictable and easily described: a
series of emphatic “NQO’s”! There is not an equation that will model all works of
music and we should not spend time looking for it. Nevertheless, there are certain
mathematical structures inherent in all works of music, and these mathematical
structures are not given by equations. The language of mathematics is a convenient
tool for comprehending and communicating this underlying structure.

In fact, one of the central concerns of music theory is to find a good way to hear
a piece of music and to communicate that way of hearing.! Anyone who has ever
heard Stockhausen’s Klavierstiick III (1952) knows that this is not always so easy to
do! On a higher level, the eighteenth century Scottish philosopher David Hume said
that the mind receives impressions and once these impressions become tangible and
vivacious, they become ideas. Music theory supplies us with conceptual categories
to organize and understand music. Our aural impressions become vivacious ideas
by way of these conceptual categories. To find a good way of hearing a musical
piece means to comprehend the music in such a way as to make it tangible.

Music theorists often draw on the formidable powers of mathematics in their
creation of conceptual categories. The discrete whole numbers ..., —2,—1,0,1,2...
are particularly well suited for labelling the pitches, or the keys of the piano. The
area of mathematics called combinatorics enables one to count the many ways of
combining pitches, i.e. numbers. This provides taxonomies and classifications of the
various sets that arise. Group theory, another area of pure mathematics, describes
the ways that sets and pitches relate and how they can be transformed from one to

1John Rahn. Basic Atonal Theory. New York: Schirmer Books, 1980. See page 1.
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INTRODUCTION 6

the other. It is in this sense that pure mathematics provides a convenient framework
for the music theorist to communicate good ways of hearing a work of music.

Music theory is not just for the listener. Music theory is also useful to the
composer. Bach, Mozart, and Beethoven were well versed in the music theory of
their respective epochs and applied it daily. This abstract discussion has relevance
for the performing artist as well. A classical pianist may play thousands upon
thousands of notes in one concert, all from memory. How does a classical pianist
do that? Is it necessary for the classical pianist to memorize each individual note?
Of course not. Music theory provides the performing artist with an apparatus for
pattern recognition, and this strengthens the musical memory. A piece of music
does not consist of many individual isolated sounds, but rather several ideas woven
together. One can find the thread of the musical fabric with music theory. On the
other hand, this same musical memory allows the listener to conceive of a piece of
music as a whole, rather than isolated individual events. Music theory is not limited
to classical music. Jazz musicians also use music theory in their improvisations and
compositions. Non-western music also lends itself to analysis within the framework
of music theory.

In this module we investigate some of the group theoretical tools that music
theorists have developed in the past 30 years to find good ways of hearing particular
works of music. Group theory does not provide us with equations to describe a piece
of music or predict its outcome. Instead, it is just one conceptual category that
listeners, composers, and performers can use to make sense of a work of art and to
communicate ways of hearing to others. The aural impression of a piece of music
becomes an idea in the sense of Hume with this apparatus.

In the next two lectures we will study the T//I and PLR groups and use them
to analyze works of music from Johann Sebastian Bach, Ludwig van Beethoven,
Richard Wagner, and Paul Hindemith. This group theoretical point of view will
elevate our aural impressions to the status of ideas. We will conceive of the music
not as individual sounds, but at as a whole. The mathematical framework will
provide us with a way of hearing the pieces and a means of communicating this
hearing.

These notes were prepared for a series of three guest lectures in the undergrad-
uate course Math 107 at the University of Michigan under the direction of Karen
Rhea in Fall 2003. These lectures were part of my Fourth Year VIGRE Project
aimed at introducing undergraduates to my interdisciplinary research on generalized
contextual groups with Ramon Satyendra. I extend my thanks to Ramon Satyen-
dra of the University of Michigan Music Department for helpful conversations in
preparation of this module.



Lecture 1 Transposition and Inversion

1. Introduction

Some of the first mathematical tools that music students learn about are trans-
position and inversion. In this introductory lecture we learn about the mathemat-
ical concepts necessary to formalize these musical tools. These concepts include
set, function, and modular arithmetic. Musicians are usually come into contact
with transposition and inversion in the context of pitch. To bridge the gap between
sound and number we will conceive of the integer model of pitch as musicians nor-
mally do. After the mathematical discussion we turn to examples from Bach and
Wagner.

2. Mathematical Preliminaries

The mathematical concepts of set, function, domain, range, and modular arith-
metic will be needed for our discussion.

2.1. Sets and Functions.

DEFINITION 2.1. A set is a collection of objects. The collection of objects is
written between curly parentheses {}. The objects of the set are called elements.
Two sets are said to be equal if they have the same elements.

For example, the set {4,5,10} is the set consisting of the numbers 4,5,10 and
nothing else. The set {Ab, Bb} is the set whose elements are the two pitch classes
Ab and Bb. The symbols }6,100,11,5} do not denote the set whose elements are
the numbers 6,100,11,5 because one of the parentheses is the wrong way. The
order of the elements of a set does not matter. For example,

{4,5,10} = {5,4,10} = {10,4,5}.

The sets {56, 70} and {56} are not equal because they do not have the same elements
(the second set is missing 70).
A function gives us a rule for getting from one set to another.

DEFINITION 2.2. A function f from a set S to a set S’ is a rule which assigns
to each element of S a unique element of S’. This is usually denoted by f: S — S’.
This symbolism is read: “f goes from S to S’.” In this situation, the set S is called
the domain of the function f and S’ is called the range of the function f. The
inputs are the elements of the domain. The outputs are the elements of range.

For example, consider the function f : {1,2,3} — {4,5} defined by
f1) =4
f2)=5

7



2. MATHEMATICAL PRELIMINARIES 8

f3) =4
Here the domain is the set S = {1,2,3} and the range is the set S’ = {4,5}. These
three equations tell us the rule that assigns an output to each input. Note that
each element 1, 2, 3 of the domain gets a unique output, i.e. f(1) does not have two
different values. In precalculus we like to say that the function passes the vertical
line test. The definition

does not define a function g : {1,2,3} — {4, 5} because two different values 4 and
5 are assigned to 1. The definition

h(l) =4
h(2) =4
h(3) =4

does define a function h : {1,2,3} — {4,5} because a unique output is assigned to
each input. Note that the same output is assigned to each input and 5 is not even
used.

Functions can be composed, provided the domain of one is the range of the
other. For example, if j : {4,5} — {7,8,9} is given by the rule

j4)=9
j(5) =38
and f is as above, then we get a new function jo f: {1,2,3} — {7,8,9} called the
composition of j with f defined by jo f(x) = j(f(«)). In this example we have
jof(1)=4(f(1)) =4(4)=9
jof(2)=4(f(2))=4(5)=38
Jof(3)=j(f(3))=j(4)=9.
Sometimes functions are given by formulas rather than tables. In the next

section we will see some functions that are given by formulas.

2.2. Modular Arithmetic.

Consider the face of a clock with the numbers 0 through 11 where 0 is in the
12 o’clock position. The day starts at midnight, so we have replaced 12 by 0 on
the usual face of a clock. Using the clock, we can determine what time it is 2 hours
after 1. We just go clockwise 2 notches after 1 and we get 3. Similarly 5 hours after
6 is 11. But what about 1 hour after 11?7 Well, that is 0 because we are back at
the beginning. Similarly, 2 hours after 11 is 1. This is called arithmetic modulo 12.
Summarizing, we can write

1+2=3mod 12

6+5=11 mod 12
114+ 1 =0 mod 12
11 +2 =1 mod 12.
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Whenever it is clear that one is working mod 12, we just leave off the suffix mod
12. So we have just done addition mod 12, let’s consider subtraction. If we bring
some of the numbers over to the right like usual arithmetic, we get

1=3-2
6=11-5
11=0-1
11=1-2

where we leave off mod 12 because it is clear by now that we are talking about
arithmetic modulo 12 in this paragraph and not arithmetic modulo 7. The first
two equations appear to make sense to us from usual arithmetic. But to make
sense of the last two equations, we need to consider the face of the clock. If we are
at 0 o’clock and go back 1 hour, then we are at 11 o’clock. Similarly, if we are at 1
o’clock and go back to hours, we just go counterclockwise two notches on the face
of the clock and arrive at 11 o’clock. That is why 11 =0—1and 11 =1 — 2.

Given any number, we can find out what it is mod 12 by adding or subtracting
12 enough times to get a whole number between 0 and 11. For example,

-12=0=12=24
—-13=-1=11=23
—7=5=17=29.
As a result, mathematicians and musicians use the notation
Z12 ={0,1,2,3,4,5,6,7,8,9,10,11}

and call this set the set of integers mod 12.

Maybe you can guess that we are interested in integers mod 12 because there
are twelve keys on the piano from middle C to the next C not counting the last
C. All of this has an aural foundation. Our ears naturally hear pitches that are an
octave apart, i.e. pitches with 12 jumps (or intervals) between them on the piano.
Such pitches appear to be very similar for our ears. So in a sense, our human ears
are hardwired for arithmetic mod 12!

We are also interested in arithmetic modulo 7 because there are seven pitches
in the major scale, i.e. seven white keys on the piano from middle C to the next
C. For arithmetic modulo 7 we imagine there are seven hours in a day and that
the face of the clock goes from 0 to 6 instead of 0 to 11. Arguing as in the mod 12
case, we have

1+2=3mod 7
64+5=4mod 7
64+1=0mod 7
6+2=1mod 7.

We already see a difference between mod 12 and mod 7. Notice that
6 +5 =11 mod 12 but 6+5=4 mod 7. Let’s consider some examples of subtraction.
If we bring some of the numbers to the right like in usual arithmetic, we get
1=3—-2mod 7
6=4—5mod 7
6=0—1mod 7
6=1—-2mod 7.
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Subtraction can be understood by moving counterclockwise on the face of a clock
with seven hours labelled 0,1, ...,6.

Given any number, we can find out what it is mod 7 by adding or subtracting
7 enough times to get a number between 0 and 6. For example,

—7=0mod 7
—9=-2=5mod 7
15=8=1mod 7
17=10=3 mod 7.
As a result, mathematicians and musicians use the notation
Zr =1{0,1,2,3,4,5,6}

and call this set the set of integers mod 7.

Next we can talk about functions f : Zis — Zi5. These are functions whose
inputs are integers modulo 12 and whose outputs are also integers modulo 12. Let’s
consider the function T3 : Z13 — Z12 defined by the formula To(x) = = + 2. Recall
that we considered functions given by tables in Subsection 2.2 above. We can make
a table for this function as follows.

T5(0) = 0+ 2 = 2 mod 12

(1)=1+2=3mod 12

Ty(1)

T5(2) =2+ 2 =4 mod 12
T5(3) =3+2=5mod 12
T5(4) =4+ 2 =6 mod 12
T5(5) =5+2="7mod 12
T5(6) = 6+ 2 = 8 mod 12
T5(7) =7+ 2 =9 mod 12
T5(8) =8+ 2 =10 mod 12
Ty(9) =9+ 2 =11 mod 12
T3(10) = 10 + 2 = 0 mod 12

T5(11) =114+ 2 =1 mod 12.

Another function Iy : Z13 — Z12 is given by the formula Iy(x) = —x. For example
10(1) =11 and 10(6) = 6.

This concludes the introduction of sets, functions, and modular arithmetic
necessary for an understanding of transposition and inversion. Finally we can turn
to some music.
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3. The Integer Model of Pitch

To make use of the mathematical ideas developed in the last section, we need to
translate pitch classes into numbers and introduce transpositions and inversions.?
If you can’t read music, don’t panic, just use the integers modulo 12. If you can
read music, then the following well established dictionary shows us how to get from
pitches to integers modulo 12.

C=0
Ct=Dh=1
D =

Df = FEb =
E=4
F=5
Fi=Gr=6
G =
Gi=Ab=8
A=09

Af = By =10
B=11

In this integer model of pitch, the C' major chord {C, E,G} is {0,4,7}. This
C major chord is part of the main theme for Haydn’s Surprise Symphony. The
first part of the main theme is (C,C,E,E,G,G,E,F,F,D,D, B, B,G), which can
be written (0,0,4,4,7,7,4,5,5,2,2,11,11,7). These angular brackets () are often
used by music theorists to emphasize that the notes occur in this order. Recall that
the ordering does not matter for sets, because a set is just a collection of elements.
Unordered sets, e.g. {0,4,7}, are sometimes called pesets (pitch class sets) while
ordered sets such as (0,0,4,4,7,7,4,5,5,2,2,11,11,7) are called pcsegs (pitch class
segments).

Transpositions and inversions are functions Zi5 — Zio that are useful to every
musician. There are also analogues for Z;. Transposition and inversion are often
applied to melodies, although they can also be applied to chords. When we hear a
melody consisting of several pitches, we hear the intervals between the individual
notes. The relationship between these intervals is what makes a melody appealing
to us. Transposition mathematically captures what musicians do all the time: the
restatement of a melody at higher and lower pitch levels in a way that preserves
intervals. Inversion is another way to create musical variation while preserving the
intervallic sound of a melody, although it does not preserve the exact intervals.

DEFINITION 3.1. Let n be an integer mod 12. Then the function 7}, : Z19 — Z12
defined by the formula T, (x) = x +n mod 12 is called transposition by n.

2In music theory, particularly in atonal theory, it is common to study pitch classes rather than
pitches. One can see the difference between pitch classes and pitches in the following example.
Middle C' is a particular pitch, although the pitch class C refers to the aggregate of all keys on
the piano with letter name C.
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We already came into contact with T : Zio — Z15 in the previous section.
Some examples for Ty : Z15 — Z1o are
T5(3) =3+5=8
T5(6)=6+5=11
T5()=7+5=0
T5(10) =10+5=15=3

where we have not written mod 12 because it is clear from the context.

DEFINITION 3.2. Let n be an integer mod 12. Then the function I, : Z12 — Z12
defined by the formula TI,,(x) = —x + n is called inversion about n.

We already came into contact with Iy : Z12 — Zjo in the previous section.
Some examples for I7 : Z1o — Z1o are

I;(3)=-3+7=4
I;(7)=-7T47=0
I;(9)=-9+7=-2=10.
The function I,, is called inversion about n because it looks like a reflection about
n whenever one draws the number line.
Music theorists and composers like to transpose and invert entire pcsets or

pcsegs by applying the function to each element. For example, we can transpose a
C major pcset by 7 steps as in

T7{0,4,7} = {T7(0), T5(4), To(7)} = {0+ 7,4+ 7,7+ 7} = {7,11,2}

by applying 77 to each of 0,4, and 7. A musician would notice that this takes the
C major chord to the G major chord. Similarly, we could invert the pcseg for the
theme of Haydn’s Surprise Symphony about 0, although Haydn did not do this!

15(0,0,4,4,7,7,4,5,5,2,2,11,11,7) = (0,0,8,8,5,5,8,7,7,10,10,1, 1, 5)

In this section we have introduced the integer model of pitch, which assigns to
each of the 12 pitch classes an integer mod 12. The transpositions and inversions
are functions which have inputs and outputs that are pitches. These are conceptual
categories that music theorists use to find good ways of hearing pieces. Next we
use them to find good ways of hearing a fugue and a prelude.

4. Fugue by Bach

Johann Sebastian Bach (1685-1750) took the art of fugue to new heights. He
composed the Well-Tempered Clavier Book I and the Well-Tempered Clavier Book
11, each of which contains 24 preludes and fugues. A fugue usually begins with a
statement of the main theme called the subject. This subject returns over and over
again in various voices and usually they are thread together in complex way. Every
fugue has occurrences of transposition and inversion. A truly fascinating website

http : //jan.ucc.nau.edu/ ~ tas3d/bachindex.html

on Bach describes in detail what a fugue is. Click on the link for movies on the
Well-Tempered Clavier. There is an animation and recording for Fugue 6 in d
minor of the Well-Tempered Clavier Book I, which we now analyze. Our analysis
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will be restricted to finding some transpositions and inversions, since we are only
studying some of the mathematical structure. We’ll leave detailed analysis to the
music theorists.

The subject of the fugue is the pcseg

(D,E,F,G,E,F,D,C{,D,Bb,G, A) = (2,4,5,7,4,5,2,1,2,10,7,9)

which begins in measure 1 and lasts until the beginning of measure 3. Let’s call
this pcseg P. See the score that you got in class. Interestingly enough, this subject
consists of twelve notes! In measure 3, another voice sings the melody

(A,B,C,D,B,C,A,G4,A, F,D,E) = (9,11,0,2,11,0,9,8,9,5,2, 4).

Do you see a relationship between this pcseg and P? Notice that this pcseg is
T; P! Just try adding 7 to each element of P and you will see it. In measure 6, the
subject returns in the exact same form as the introduction, just one octave lower.
At measure 8, a form

(E,F,G,A,F,Bb,G, Ft,G,Eb,Ct, D) = (4,5,7,9,5,10,7,6,7, 3,1, 2)

of the subject enters. This one doesn’t entirely match though. The first five pitches
are almost Ty of the first five pitches of P, but the next 5 pitches are Ty of the
respective pitches of P. The last pitch of the pcseg is also T of the respective pcseg
of P, but the eleventh pitch doesn’t match. At measure 13 we have

(A,B,Ct,D,B,Ct,A, G4, A, F,D,E) = (9,11,1,2,11,1,9,8,9,5, 2, 4).

This is similar to 77 P as in measure 3, except for the highlighted 1’s. Measures
17,18, and 21 are respectively

(A,B,C,D,B,Ct,A,Gi, A, F,D,E) = (9,11,0,2,11,1,9,8,9,5,2,4)
(A,B,C4,D,B,C,A,G4,A,F,D,E) =(9,11,1,2,11,0,9,8,9,5,2,4)
(A,B,C4,D,B,Ct,A,Gi, A, F,D,E) = (9,11,1,2,11,1,9, 8,9, 5, 2,4).
These are also T7 P except for the highlighted 1’s. The interval 7 is very important
in western music and is called the perfect fifth. Here we see that transposition by
a perfect fifth occurs four times before the piece is even half over. In fact, many
fugues have this property. So far we have seen that transposition plays a role in

this piece. But what about inversion?
Let’s consider measures 14 and 22. They are respectively

<E’ D7 Cﬁ? B? D? Cﬁ? E7 F? E7 A? C’ Bb> = <4’ 27 17 ]‘]‘7 27 ]‘7 4’ 57 47 97 0’ 10>

(E,D,CH%,B,D,Ct,E,F,E,G,Bb, A) = (4,2,1,11,2,1,4,5,4,7,10,9).
They are nearly identical, except for the last three digits. Notice also that the first
two elements E, D are the same first two elements of P, just the order is switched.

The last three notes of 22 are even the last three notes of P, just the order is
switched. Calculating Ig P gives

(4,2,1,11,2,1,4,5,4,8,11,9)

which is a near perfect fit with measures 14 and 22! Just the last three notes are
changed to make it sound better. So we see that inversion does indeed play a role
in the piece. The rest of the piece contains further transpositions and inversions of
the subject.

Next time we listen to the piece, we can listen for these transposed and inverted
forms of the subject. These conceptual categories make the piece more enjoyable for
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listeners because we come closer to understanding it. We have a good way of hearing
the piece. This knowledge also makes the piece easier for performers because they
recognized patterns and relationships between different parts of the piece. However,
a music theorist would not be satisfied with this analysis because we have barely
scratched the surface. There is much more to this fugue than a few transpositions
and inversions. Nevertheless, this illustrates some of the mathematical features of
the piece.

5. Tristan Prelude from Wagner

Richard Wagner (1813-1883), who was born 63 years after the death of Bach, is
best known for his gigantic operas. Wagner’s compositions are drastically different
from Bach’s. We take the prelude to the famous opera Tristan and Isolde as an
example for transposition and inversion. This particular passage is notorious for
its resistance to traditional analysis.®> More modern methods of atonal analysis,
which use transposition and inversion, are more fruitful. In this analysis we con-
sider unordered sets, i.e. pcsets, although we worked with pcsegs in the previous
example.?

Consider the piano transcription of the first few measures of the prelude. The
piano transcription entitled “Wagner: Tristan Prelude” is in the packet of music I
handed out in class. Let P; denote the set of pitch classes that are heard during
the circle ¢ on the piano transcription. For example, P, = {F, B, D, A}. Then we
notice the following pattern after looking very carefully.

Pl P2 Pg P4
Ps Ps Py Py
Py Prp Pr3

{0,2,5,8} {0,2,6,8} {0,2,6,8} {0,2,5,8}

This table means that all of the pcsets in the first column can be transposed
or inverted to {0,2, 5,8}, all of the pcsets in the second column can be transposed
or inverted to {0, 2,6, 8}, etc. Notice that the first and last column are essentially
the same, while the middle two columns are essentially the same! Here, essentially
means they can be transposed or inverted to the same thing.

Notice also that everything is done according to the groups of circled notes in
the music, and we almost have three groups of four, which would give us 12 again!
The first and last pitches of each four note group, namely G§ — B, B — D, and
D — Fi, also form a set that can be transposed or inverted to {0,2,5,8}!

In other words, we mathematically see and musically hear a self similarity on
different levels. When we listen to the piece again, we can listen for these features.
The conceptual categories of transposition and inversion provide us with a good
way of hearing these introductory measures to Wagner’s opera Tristan and Isolde.
Mathematics is the tool that we use to communicate this way of hearing to others.

3This analysis is obtained from John Rahn page 78, who in turn quotes Benjamin Boretz.

4What works for one piece of music may not work for another. In the Bach fugue it was
better to use pcsegs because the pcsets would tell us very little in that case. However, pcsets are
more appropriate for the Tristan prelude than pcsegs.



Lecture 1 Homework Problems

1. Introduction

1. Reread the introduction to this music module. Is music part of the physical
world? Write a short paragraph on this topic.

2. Mathematical Preliminaries

2.1. Sets and Functions.
2. Give three examples of sets that are not listed in the text.

3. Give two functions whose domain is {5,4, 7} and whose range is {1,2}. You
will probably want to use tables.

4. Ts there a function with f(4) =5 and f(4) =77

2.2. Modular Arithmetic.

5. Do the following calculations mod 12. Your answers should be numbers
between 0 and 11. The numbers 0 and 11 may also be answers!

7+5
1+4
8+8
6+ 6
9—-7
7—9
2-8.

3. The Integer Model of Pitch

6. Use the integer model of pitch to rewrite the following melody in “Heavenly
Aida” in Act I of Verdi’s opera Aida: (G, A, B,C,D,G,G).

7. Use the integer model of pitch to rewrite the following melody in the “Tore-
ador Song” in Act IT of Bizet’s opera Carmen: (C,D,C, A, A, A,G, A, Bv, A, Bb,G,C).

8. Calculate Ty(3),T1(2), T5(7), 14(6), 14(8).

15
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9. Transpose the melody above from “Heavenly Aida” a perfect fifth by apply-
ing T to each element.

10. Invert the melody above in the “Toreador Song” about 6 by applying I to
each element.

11. Calculate T5 o I3(4) and I5 0 T5(4). Are they the same?

4. Fugue by Bach
12. Look at the website on Bach listed in the text.

5. Tristan Prelude from Wagner

Challenge: The unordered pcsets Py and P;3 on the piano transcription of the
Tristan Prelude are
Py ={C,F,G4,D}
Pi3 ={B,Di, A, Ft}.
Translate these pcsets to integers mod 12. Find an integer n such that I,,(Py) = Pi3.
You may have to change the ordering of the elements of the set.



Addendum to Lecture 1

1. Introduction

We consider a further application of transposition and inversion in music theory.
Thus far we have considered only composers who have lived before the 20th century,
so it is high time we consider someone who is closer to our time.

2. Fugue by Hindemith

Paul Hindemith (1895-1963) was known as a champion of contemporary music
and a promoter of early music. In 1941, just 5 years before becoming a U.S.
citizen, he composed Ludus Tonalis. This is a collection of 12 fugues with eleven
interludes, framed by a prelude and a postlude. Such a collection of fugues reminds
one immediately of Bach’s Well-Tempered Clavier, although Hindemith also had
more modern ideas of symmetry and symmetry breaking in mind. The title Ludus
Tonalis means Tonal Game in Latin, and this can be seen in the symmetry and
asymmetry of individual pieces as well as in the collection as a whole. One of the
most striking features of the collection is that the postlude is exactly the same as
the prelude except upside down and backwards!

Paul Hindemith also had an interesting life. An excellent website

hitp : / Jwww.hindemith.org/

on Hindemith describes his trips to Egypt, Turkey, and Mexico, his flight from the
Nazis, and his emigration to the United States. The website also has historical
photos and references to literature.

Hindemith’s Fugue in G provides us with further examples of transposition
and inversion, although we will encounter difficulties. This example will illustrate
some of the difficulties that music theorists encounter and how they get around
some of these difficulties. Hindemith’s fugue will also be a warm-up for the next
lecture on the PLR group. Professor Ramon Satyendra and I have recently created
a theoretical apparatus to treat musical difficulties such as the one we are about to
study.®

The Fugue in G begins with a statement of the subject as in Bach’s Fugue in
d-minor. The subject is

<G7 G7 G7 G’ G’ G7 G’O’ D’ G7 C? F> = <7’ 77 77 77 7’ 77 7707 27 7’ O’5>

and consists of eleven notes and five pitches in two measures which have five beats
each (all prime numbers!). The subject is very prominent because the repeated G
at the beginning tells us the voice is entering. When we listen to the piece, we

5Thomas M. Fiore and Ramon Satyendra. “Generalized Contextual Groups.” To appear in
Music Theory Online.
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can listen for that repeated staccato note and we will easily find occurrences of
the subject. For example, one quickly hears that measures 3, 8, and 15 contain
repeated notes which begin occurrences of the subject.

Instead of comparing occurrences of the subject as in Bach, we will look at a
smaller unit. The two three-note groups at the end of the subject are also very
prominent to our ears. In this analysis we will consider the relationships between
these three-note groups in the various occurrences of the subject. These relation-
ships are given by the conceptual categories transposition, inversion, and contezrtual
inversion, which will enable us to find a good way of hearing the piece.

Let’s consider the set S of all transposed and inverted forms of the pcseg

(G,C,D) =(7,0,2)

which is the first occurrence of the three note pattern we want to study. Some
examples of elements of S are

T6(7,0,2) = (7,0,2)

T1(7,0,2) = (8,1, 3)

T5(7,0,2) = (9,2,4)
etc.

1y(7,0,2) = (5,0, 10)

I,(7,0,2) = (6,1,11)

15(7,0,2) = (7,2,0)
etc.

Notice that the elements of the set S are ordered sets, namely pcsegs. Two pcsegs
are different if they have different orders. Thus, the pcsegs (7,0, 2) and (7,2, 0) are
different elements of S.% The elements of S that are transpositions of (7,0,2) are
called prime forms and the elements of S that are inversions of (7,0,2) are called
inverted forms. So for example, (8,1, 3) is a prime form and (6, 1,11) is an inverted
form.

There are several functions S — S that are important for our analysis. The
transpositions T, : Zis — Zi2 and inversions I,, : Zio — Zj1o induce functions
S — S which we again denote by T,, and I,,. These “induced” transpositions and
inversions are obtained by just applying 7}, and I,, to each entry as we did above, so
these are nothing new. Now we introduce a new function J : S — S as follows. We
define J(x) to be that form of the opposite type as 2 which has the same first two
pitch classes as z but in the opposite order.” So for example J(7,0,2) = (0,7,5)
because (7,0,2) and (0,7,5) are opposite types of forms and they have the first two
pitch classes in common but in switched order. Similarly, J(0,7,5) = (7,0,2). The
function J : S — S is an example of a contextual inversion. It is called contextual

6This is another difficulty that arises. The pcset {7,0,2} is inversionally symmetric, so
it is impossible to define the contextual inversion J on the unordered sets. One must define
the contextual inversion J on the ordered pcsegs as we are about to do. Don’t worry if you
don’t understand this, because you shouldn’t. We thought about this problem for a while before
understanding it.

"One might wonder why this is a well defined function, but that can be proved mathematically.
You will just have to believe me that in this setup there is exactly one form of the opposite type
as x that has the same first two pitch classes in common with z but in the opposite order.
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because it inverts depending on the context of the first two pitch classes in the
pcseg.

Let’s see what the musical meaning of this J is. At first it seems to be defined
in an unnecessarily complicated way, but actually it is a very musical function.
The output is that opposite form that is closest (but not equal) to the input in the
sense that they overlap in the first two pitch classes. This is quite audible. In the
subject of the fugue for example, we have two three-note groups. Guess how they
are related! Well, the three note groups are

(G,C,D) =(7,0,2)

(C,G,F)=1(0,7,5)

and they overlap by two notes. We see also that they are of opposite types, namely
(7,0,2) is a prime form and (0, 7, 5) is an inverted form. So J(7,0,2) = (0,7,5) and
J{0,7,5) = (7,0,2). But there is just one catch. When we look at the actual music,
we see that the second three-note group is (G, C, F') and not (C, G, F'). The order
isn’t exactly right. This is one of the difficulties that the music theorist encounters.
Nevertheless, the unordered pesets {G, C, F} and {C, G, F'} are the same. In other
words, J is a good enough approximation for us to use and we can control the error
by just looking at the unordered sets when we compare with the actual piece.
Now for the surprising part. Consider the following diagram.

Let’s fill in the top left circle with (7,0, 2) and see what happens.
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Next we apply J and T5 to the top left entry and find the results for the next two

entries.
‘ J ‘
—>

T5 TS

O,

There is just one circle left. We can get at it from above or from the left. From
above we get T5(0,7,5) = (5,0,10). From the left we get J(0,5,7) = (5,0,10). So

we fill it in.
‘ ‘

T5 T5

—

We see that the pathway doesn’t matter! But does the pathway matter if we filled
in the first circle of diagram (1) with a different element of S? No! Even if we fill
in the circle with another element of S the pathway still does not matter. That can
be proved mathematically. Since the pathway doesn’t matter, we say that diagram
(1) commutes.

But what in the world does this commutative diagram have to do with Hin-
demith’s fugue? Let’s look at the first two instances of the subject, one starts in
measure 1 and the next one starts in measure 3. Applying T5 to the first one gives
us the second one. But in this fugue it is better to look at smaller units than the
subject. These smaller units are what we are focusing on. So let’s look at the four
three-note groups in measures 2 and 4. Those are precisely the ones we filled in
the diagram!! Even the temporal aspect matches! As time ticks, we move from the
upper left circle to the lower right circle in the direction of the arrows. In fact, this
diagram occurs in at least four different places of the piece! Compare your score
from class. The measures are

2 and 4

9 and 16
37 and 39
55 and 57.

In all cases except one the measures are just two apart. Does Hindemith break the
symmetry that one time to be playful in his tonal game? We can only wonder.
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In summary, we have found a good way of hearing Hindemith’s Fugue in G
using the conceptual categories of transposition, inversion, contextual inversion,
and commutative diagrams. This analysis was different than the analysis from
Bach because we looked at units smaller than the entire subject. We investigated
relationships between three-note groups in the subject and its many occurrences.
The contextual inversion was important for these three-note groups because all
adjacent ones overlap in a very audible way. The mathematical structure we found
was not given by equations, but by relationships between three-note groups given in
terms of commutative diagrams. In the next lecture we will study more three-note
groups, namely major and minor chords. Transposition, inversion, and contextual
inversion will make another appearance. The Beatles and Beethoven are expecting
us!



Addendum to Lecture 1 Homework Problems

1. Introduction

1. How many years passed between Bach’s birth and Hindemith’s death?

2. Fugue by Hindemith

2. In which city in Pennsylvania did Hindemith conduct a symphony in 19597
Hint: use the link on the Hindemith website for Life.

3. Calculate
J(3,8,10)
J(5,10,0)
J{9,2,4)
J(8,3,1)
J(10,5, 3)
J(2,9,7).

Compare the answers to the first three with the answers for the second three. Do
you see a pattern? Use this pattern to figure out J o J(z).

4. Put the pcseg (2,7,9) from measure 9 of Hindemith’s fugue into the upper
left circle of diagram (1) and calculate what goes in the other circles. Do both
paths give you the same answer?

5. Put the peseg (10, 3, 5) from measure 37 of Hindemith’s fugue into the upper
left circle of diagram (1) and calculate what goes in the other circles. Do both paths
give you the same answer?

6. Put the pcseg (0,5,7) from measure 55 of Hindemith’s fugue into the upper
left circle of diagram (1) and calculate what goes in the other circles. Do both
paths give you the same answer?

Challenge: We talked about commutative diagrams in Hindemith’s tonal game.
Let’s consider a commutative diagram in our mathematical game. Look at the title
of this page and compare it to the first three section headings in the table of con-
tents: “Lecturel Transposition and Inversion,” “Lecture 1 Homework Problems,”
and “Addendum to Lecture 1.” Which of the following is the meaning of the title
of this page?

(Addendum to) (Lecture 1 Homework Problems)

22
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(Addendum to Lecture 1) (Homework Problems)
In other words, does the playful diagram

Lecture 1 Lecture 1 Homework Problems

| |

Addendum to Lecture 1 —— Addendum to Lecture 1 Homework Problems

commute? Recall that a diagram commutes when both paths give you the same
result. You may interpret the horizontal arrows as assigning (Homework Problems)
and the vertical arrows as adding (Addendum to).



Lecture 2 The PLR Group

1. Introduction

A group is a mathematical object of central importance to music theorists.
A group is yet another conceptual category that music theorists draw upon in
order to make music more tangible. We have been working towards the concept
of a group with our numerous examples of transposition and inversion. So far,
we have looked at various instances of transposition and inversion in works by
Bach, Wagner, and Hindemith. Now we look one level deeper and consider how
the functions transposition and inversion interact with each other. This is a big
step from considering just individual instances of transposition and inversion. We
will see that the collection of transpositions and inversions form a group in the
mathematical sense of the word. This group is called the T/I group.

Another group of musical relevance is the PLR group. This is a set of functions
whose inputs are major and minor chords and whose outputs are major and minor
chords. These musical functions go back to the music theorist Hugo Riemann (1849-
1919). As a result, the PLR group is sometimes called the neo-Riemannian group.
The PLR group and the T'/I group are related in many theoretically interesting
ways. Nevertheless, we will focus on musical examples. If you know how to play
guitar, you might know the Elvis Progression I-VI-IV-V-I from 50’s rock. Any song
with this progression provides us with a musical example as we’ll see below. We’ll
also look at a song from the Beatles on the Abbey Road album. A more striking
example however is the second movement of Beethoven’s Ninth Symphony. We will
see that a harmonic progression in the Ninth Symphony traces out a path on a
torus!

2. Mathematical Preliminaries

In this section we introduce the mathematical concept of a group and give some
examples. A group is basically a set with a way to combine elements similar to the
way that one multiplies real numbers. It will be a bit formal at first, but don’t let
that stop you from reading! Even if you don’t fully understand it, keep going! It’s
not meant to be easy.

DEFINITION 2.1. A group G is a set G equipped with a function x : G x G — G
which satisfies the following axioms.

(1) For any three elements a, b, ¢ of G we have (a*b) xc = ax (b*c), i.e. the
operation * is associative.

(2) There is an element e of G such that a xe = a = e x a for every element a
of G, i.e. the element e is the unit of the group.

(3) For every element a of G, there is an element a~! such that axa~

a~! *xa, i.e. every element a has an inverse a~ .

1:6:

24
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That is the abstract definition of a group. Now let’s consider some examples
of groups to see what the definition really means.

ExXaMPLE 1. Let G be the set of real numbers greater than zero. Some el-
ements are .5, 100, 7, 7% and .000000008 for example. Next let * be the usual
multiplication of numbers. From school we know that the multiplication of real
numbers is associative. Let e = 1. From school we also know that any nonzero
number times 1 is just that number again, no matter if we multiply on the left or
right. For example, 1 x # = 7 = 7 x 1. So G has a unit. If a is a real number
greater than 0, then we can define a=! = 1/a in order to satisfy the last axiom.
For example,

s lxg=1l=nx7n"'.

We have just verified the axioms (1), (2), and (3) in the definition above. Hence
the set of real numbers greater than 0 equipped with * = X is a group.

EXAMPLE 2. Let G be the set of whole numbers, i.e. G={...,-2,-1,0,1,2,...}.
Let % be the usual addition of whole numbers. Then e = 0 defines a unit because
0+ a = a = a-+ 0 for any whole number a. If we take a~' to be —a, then one can
check that G equipped with * = + satisfies the axioms (1),(2),(3) above and is thus
a group.

EXAMPLE 3. Suppose S = {1,2,3}. Then let G denote the set of invertible
functions S — S. Don’t worry about the exact meaning of invertible. Let % be
the function composition described in Lecture 1. Then two functions f : S — S
and g : S — S can be composed to give go f = g * f. From school we know that
function composition is associative, i.e. (hog)o f="ho(go f). An example of an
element of GG is the unit e : S — S defined by

e(l)=1
e(2) =2
e(3) =3.
Another example of an element h of G is h : S — S defined by
h(1)=3
h(2) =2
h(3) =1.

Its inverse h~1 : § — S is h. You can check that ho h(x) = z. One can check that
G satisfies the axioms (1),(2),(3) above and is thus a group.

Even if you didn’t understand every step of these examples, the main point is
that a group is a mathematical object that consists of set G and an operation
which gives us a way to combine elements. This combination of elements is similar
to the usual multiplication of numbers in the sense that it is associative, has a
unit, and has inverses. The three examples above give three different examples of
groups. In each example we specified a set G and an operation x on that set, and
then checked that it satisfied the axioms of a group.® The last example was a warm
up for the T'/I group.

8Note that G, %, and e have different meanings in each example.
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EXAMPLE 4. Let S be the set of transposed and inverted forms of the C' major
chord (0,4, 7). The elements of S can be listed as prime forms and inverted forms.
For future reference we also record the letter names of the prime and inverted forms.

Prime Forms Inverted Forms

C=(0,4,7) (0,8,5) = f
Ct=Db={(1,58) (1,9,6)=ft=gb
D=(2,6,9) (2,10,7) =g
Df = Eb = (3,7,10) (3,11,8) = g = ab
E=(4,811) (4,0,9) =a
F=(590 (51,10)=af=bb
Ff=Gb=(6,10,1) (6,2,11) =b
G=(7,11,2) (7,3,0) =c
Gi=Ab=(8,0,3) (8,4,1)=ct=db
A=(9,1,4) (9,5,2)=d
Af = Bb = (10,2,5) (10,6,3) = df = eb
B=(11,3,6) (11,7,4)=¢

A musician might notice from this labelling that S is the set of 24 major and minor
chords.” We use capital letters to denote the letter names of major chords and lower
case letters to denote the letter names of minor chords like musicians normally do.
Transposition and inversion “induce” functions 7,, : S — S and I, : S — S by
applying the function to each entry of the input pcseg. Then let G consist of the
24 functions T;, : S — S and I, : S — S where n =0,1,2,...,11. We also let x be
function composition as in the previous example. It can be mathematically verified
that the transposition and inversion compose according to the following rules.

ToTh =Tntn

Tmol, = m+n
I,oT, =1Ip

Iyol, =Ty »

Here the indices are read mod 12. We see that the result of composing transpositions
and inversions is also a transposition or inversion, so that * really is an operation
on (G. Similarly, one can verify the axioms of a group and show that G forms a
group. This group is called the T'/I group.

We have taken a big step now to consider how the transpositions and inver-
sions interact with each other. They interact with each other to form a group.
This is deeper than just considering individual transpositions and inversions by
themselves. This abstract structure of a mathematical group is of tremendous im-
portance because it allows us to see things in music that we otherwise would not
see.

9Here chord just means a collection of pitch classes that are played simultaneously. The
major and minor chords are special chords that are very prominent in Western music. Don’t
worry about where they come from or why they have these letter names, you can just take this
list of prime forms and inverted forms for granted.
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3. The PLR Group

We now introduce the PLR group as a group of functions S — S like the
T/I group in Example 4. From now on we let S denote the set of prime forms
and inverted forms of the C' major chord (0,4,7) as in Example 4. First we define
functions P, L, and R with domain and range S. These three functions will be
contextually defined just like J in the Addendum. Let P(x) be that form of opposite
type as x with the first and third notes switched. For example

P(0,4,7) = (7,3,0)
P(3,11,8) = (8,0, 3).
Let L(x) be that form of opposite type as x with the second and third notes
switched. For example
L{0,4,7) = (11,7,4)
L(3,11,8) = (4,8,11).
Let R(z) be that form of opposite type as « with the first and second notes switched.
For example
R(0,4,7) = (4,0,9)
R(3,11,8) = (11, 3,6).
We also say that these functions are contextually defined because they are not
defined on the individual constituents of the pcseg like T, and I,, are.

These functions are highly musical. A musician would notice that P is the
function that takes a chord and maps it to its parallel minor or major, e.g. P
applied to C major gives us ¢ minor and P applied to ¢ minor gives us C' major.
The function L is a leading tone exchange for more theoretical reasons. It takes C
major to e minor for example. The function R takes a chord to its relative minor
or major, for example R applied to C' major is ¢ minor and R applied to ¢ minor
is C' major. These three functions are also musical in the sense that they take a
chord to another one that overlaps with the original one in two notes.

DEFINITION 3.1. The PLR group is the group whose set consists of all possible
compositions of P,L, and R. The operation is function composition.

For example, some elements of the PLR group are, P, L, R, Lo R, Ro L,
PoLoP,LolL,and Ro Lo P. At first you might think that there are infinitely
many ways to combine P, L, and R. But that is not true! In fact there are only 24
elements of the PLR group. For example, the elements L o L and R o R and the
unit are the same, namely L o L(z) = z = R o R(z) for all elements z of S. It can
be mathematically proven that there are only 24 elements.!’ But this is all very
abstract, so we need to get down to some actual musical examples.

10Many mathematical things can be proven about this group and the T'/I group. For example,
they are both isomorphic to the dihedral group of order 24. Of course I haven’t told you what
isomorphic or dihedral means, but philosophically it means that the T'/I group and the PLR
group are abstractly the same as the dihedral group! Now that is a surprise, since they first
appear to be very different in their definitions. Another mathematical surprise is the following.
Consider the group of all invertible functions S — S. Then the T'/I group is the centralizer of
the PLR group in this larger group and vice-a-versa! This means philosophically that the two
are “dual” in a musical sense described by David Lewin in his seminal work Generalized Musical
Intervals and Transformations. This is very deep, and takes a long time to understand. So don’t
be discouraged at first!
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4. Elvis and the Beatles

The Elvis Progression I-VI-IV-V-I from 50’s rock can be found in many popular
songs. It provides us with an example because it is basically the following diagram.

If we put the C major chord (0,4, 7) into the left most circle and apply the functions,
we get the progression C' major, a minor, F' major, G major, C' major. This
progression can be found for example in the 80’s hit “Stand by Me.”

The influential Beatles made their U.S. debut in 1964 on the Ed Sullivan show,
just one year after the death of Paul Hindemith. From a temporal point of view,
it is good to do an example from the Beatles too. The main progression of “Oh!
Darling” from the album Abbey Road is E major, A major, E major, ff minor, D
major, b minor, E major, b minor, £ major, and A major.!! Have a look at the
handout for Lecture 2. Let’s just focus on the inner four chords ff minor, D major,
b minor, and E major. This is the progression we get when we insert (1,9,6) = f4
minor into the first circle of the following diagram as in your homework!

O—O0~=0=C

This shows that mathematical analysis can also be used for popular songs,
not just “classical” music. Next we work our way towards the culmination of this
module: Beethoven’s Ninth Symphony and the path it traces out on a torus.

5. Topology and the Torus

Topology is a major branch of mathematics which studies qualitative ques-
tions about geometry rather than quantitative questions about geometry. Some
qualitative questions that a topologist would ask about a geometric object are the
following. Is the geometric object connected? Does it have holes? Does it have a
boundary? For example, a circle and square are qualitatively the same because one
can be stretched to the other.!? Neither has a boundary and both have a hole in
the center. Both are connected. A line segment with endpoints on the other hand,
is qualitatively different from the circle. We cannot obtain a line segment from a
circle by quantitative changes such as stretching, twisting, or shrinking. But we
can obtain a line segment from a circle by the qualitative change known as cutting.
A line segment with endpoints is qualitatively different from a circle because it has
a boundary (two endpoints) and it has no holes. The circle and the line segment
are each connected. Topology is not concerned with quantitative properties such
as area, angles, and lengths, so topologists consider two objects the same if they
only differ in quantitative ways. The square and the circle differ quantitatively, but
are the same qualitatively. For this reason, topologists consider the square and the

11Actua,lly there are some seventh chords in here and the first £ major chord has an added
C pitch class, but we’ll just ignore that for the sake of simplicity. These seventh chords do help
us make our point about overlapping chords though.

12Here we are considering the circle and the square without their insides. They are not
shaded in. For example, the square we are talking about only consists of the four marks that
make up the sides of the square.
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FiGURE 1. The Square Sheet.

circle to be the same. Topology is basically rubber-sheet geometry: we imagine two
objects are made of rubber and consider them the same if one can be stretched,
shrunk, or twisted into the shape of the other.'3

The website

hitp : / Jwww.lehigh.edu/dmdl/public/www — data/essays.html

has several links to essays about the subject matter of topology. Some of the essays
are more technical than others. Another great website

hitp : /Jwww.math.ohio — state.edu/ ~ fiedorow/math655/yale/

is entitled “Math That Makes You Go Wow.” This interactive website talks about
philosophical, literary, musical, and artistic implications of topology.

The torus is an example of a mathematical object of interest to topologists.
To make a torus we start off with the square sheet in Figure 1. Although it is not
shaded in, we mean the whole rectangular region in Figure 1 belongs to the square
sheet. The arrowheads indicate how we will glue. First we glue the horizontal lines
according to the single arrowheads and obtain the cylinder in Figure 2. Next we
glue the two circles at the end of the cylinder according to the double arrowheads
and make the torus in Figure 3. The torus looks just like an inner tube filled with
air.

The website “Math That Makes You Go Wow” mentioned above has an interac-
tive torus. Go to the website and click on the link in Chapter 2 entitled “Orientable
Surfaces: Sphere, Torus.” Scroll down to the torus and move it around with your
mouse to visualize it better. But what in the world does the torus have to do with
the PLR group and Beethoven’s Ninth Symphony?

6. Beethoven’s Ninth Symphony

Ludwig van Beethoven (1770-1827) composed his Ninth Symphony during the
years 1822-1824, roughly 80 years before Henri Poincaré initiated the study of

13Topology is different from topography, which is the study of the nature and the shape of
terrain.
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FiGure 2. The Cylinder.

FIGURE 3. The Torus.

topology. In measures 143-176 of the second movement of the Ninth Symphony one
can find the extraordinary sequence of 19 chords.

C,a,F,d,Bb,g,Eb,c, Ab, f, Db,bb, Gb,eb, B, g, E, cf, A

Here again capital letters refer to major chords and lower case letters refer to minor
chords.'* The letter names of the chords can be converted back to numbers using
the table of prime forms and inverted forms in Example 4. Note that the entire
sequence can be obtained by applying to C' the functions R, then L, then R, then
L, and so on. In other words, we have the diagram below where the arrows are
alternately labelled by R and L. Beethoven did not include the last five chords
below in his composition, but we’ll see why I wrote them below in a minute. Notice
that all 24 major and minor chords appear below and none are repeated. This
patten in itself is surprising.

Mhis sequence was first observed by Cohn in a series of articles dating back to 1991,1992,
and 1997.
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Let’s consider the graph on the handout.'® A graph is just a collection of
dots called wvertices and line segments called edges which connect some vertices.
In this graph the vertices are labelled by the major chords and minor chords, .e.
elements of S. The edges are labelled by the functions R, P, and L. The edges
labelled by R, P, and L are represented by dashed lines, solid lines, and dotted
lines respectively. Two chords (vertices) are connected by a dashed line (i.e. by an
edge labelled by R) if we can get from one to the other with the R function. The
same goes for P and L. This graph is highly musical because the neighbors of a
chord are exactly those three other chords that are maximally close to it, i.e. those

15T his graph and the torus below it are a reproduction of the graph and torus in Jack
Douthett and Peter Steinbach. “Parsimonious Graphs: A Study in Parsimony, Contextual Trans-
formations, and Modes of Limited Transposition.” Journal of Music Theory 42/2 (1998): 241-263.
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three chords which overlap with the original one in two pitch classes. For example,
the neighbors of D are b, f,d. In numbers, the neighbors of (2,6,9) are

(6,2,11)

(1,9,6)

(9,5,2),
all of which agree with (2,6,9) in two pitch classes. That’s not really a surprise
because P, L, and R were designed to do precisely this.

What is surprising about this graph is that it makes a torus and the chord
progression from Beethoven is a path on it! Let’s see this. Notice that we can
glue the top and the bottom because the top two rows of vertices match up with
the bottom two rows. See the figures in the section on topology. Next we glue
the circles on the resulting cylinder after twisting them a third of the way around.
Here we are gluing those chords from the left side to those chords on the right side
that are the same. For example, the ab on the left side is glued to the ab on the
right side. The E on the left side is glued to the E on the right side and so on.
We have to twist to get them to match up. So now we have our torus. To see
that Beethoven’s Ninth Symphony traces out a path on it, we just connect the dots
which are labelled by the chord progression. Notice the pattern. If Beethoven had
continued the pattern, it would trace out all of the 24 major and minor chords.
Well, 19 out of 24 is pretty close though!

This example is perhaps the most striking of all our musical examples because
it relates group theory, topology, and Beethoven all in one! These conceptual
categories provide us with tools and a language to find an entirely new way of
hearing this piece. Without mathematics we would never have heard a torus in
Beethoven’s Ninth Symphony. You might be interested to know that there are
other examples of music on topological objects. Bach’s Musical Offering contains a
passage which is music on a Md&bius strip. Schoenberg and Slonimsky also provide
us with examples. See the website “Math That Makes You Go Wow” for further
details.

7. Conclusion

In this module we have investigated some of the group theoretical tools that
music theorists have developed to find good ways of hearing particular works of
music. These tools provide us with conceptual categories to make our fleeting im-
pressions of music into vivacious ideas. Our first conceptual categories were supplied
by the transpositions and inversions. Bach’s Fugue in d minor from the first book
of the Well-Tempered Clavier had several examples of transposition and inversion.
The subject made an appearance in various forms and these forms were describe
by transposition and inversion. The Tristan Prelude in Wagner’s opera Tristan
and Isolde gave examples of transposed and inverted chords in the century after
Bach’s death. Hindemith’s Fugue in G from the twentieth century had examples
of contextual inversion within the subject. In that analysis it was fruitful to look
at a unit smaller than the subject and to look for overlapping three note groups.
Commutative diagrams also appeared in this context.

Our next example of a conceptual category was the concept of a group. The
concept of a group is deeper than individual instances of transposition and inver-
sion because it allows us to see a structure on the collection of transpositions and
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inversions. At that point, we fixed the notation S to mean the set of 24 major
and minor triads and considered various invertible functions S — S. Transposition
and inversion induce such functions for example. The functions P, L, and R are
also important functions S — S. All possible compositions of these three functions
give us the 24 elements of the PLR group. The PLR group makes an appearance
in the Elvis Progression and in the Beatles song “Oh! Darling” from the Abbey
Road album. The most striking of our musical examples however was in the second
movement of Beethoven’s Ninth Symphony. Repeated application of R and L to the
C major chord generates a chord progression in measures 143-176 and this chord
progression traces out a path on a torus.

I hope that the conceptual category of this module has made your impressions
of mathematics, music, and music theory into vivacious ideas!



Lecture 2 Homework Problems

1. Introduction
2. Mathematical Preliminaries

1. Let G = Z15. Let e = 0 and * = +. Let’s consider if this defines a group
by answering the following questions about the axioms: Is it true that adding two
integers mod 12 gives us another integer mod 127 Is it true that 0+ =2 =240
for any integer z mod 127 Is it true that z —x = 0 = —x + z for any integer x mod
127 Try out « = 1,2, 3 for example. We already know that addition is associative.
Is G = Z15 a group with the above definitions?

3. The PLR Group
2. Calculate P(1,5,8), L(10,6,3), and R(9,1,4).

4. Elvis and the Beatles

3. Insert (1,9,6) into the left circle of the diagram displayed in the paragraph
about “Oh! Darling” from the Beatles. Calculate the other three circles by applying
the functions. Convert the pcseg numbers back to letters using the table of prime
forms and inverted forms from Example 4. Does it match with the inner four chords
of the chord progression for “Oh! Darling”?

5. Topology and the Torus

4. Are the triangle and the circle qualitatively the same? In other words, can
we obtain one from the other by shrinking, stretching, or twisting?

5. Give one way in which a triangle and a line segment are qualitatively differ-
ent. Hint: How many holes does each have?

6. Beethoven’s Ninth Symphony

6. Calculate each of the following.
R{0,4,7)
Lo R(0,4,7)
Ro Lo R{(0,4,7)
LoRoLoR(0,4,7)
Next translate the results into chord names using the letters in the table in Exam-

ple 4. How does this relate to the chord progression in the second movement of
Beethoven’s Ninth Symphony?

34
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7. Conclusion

7. Which of our musical examples was your favorite and why? Write at least
four sentences.
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