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Abstract

We explore the problem of classifying images by the ob-
ject categories they contain in the case of a large number
of object categories. To this end we combine three ingredi-
ents: (i) shape and appearance representations that support
spatial pyramid matching over a region of interest. This
generalizes the representation of Lazebnik et al [16] from
an image to a region of interest (ROI), and from appear-
ance (visual words) alone to appearance and local shape
(edge distributions). (ii) automatic selection of the regions
of interest in training. This provides a method of inhibiting
background clutter and adding invariance to the object in-
stance’s position, and (iii) the use of random forests (and
random ferns) as a multi-way classifier. The advantage of
such classifiers (over multi-way SVM for example) is the
ease of training and testing.

Results are reported for classification of the Caltech-101
and Caltech-256 data sets. We compare the performance of
the random forest/ferns classifier with a benchmark multi-
way SVM classifier. It is shown that selecting the ROI adds
about5% to the performance and, together with the other
improvements, the result is about a10% improvement over
the state of the art for Caltech-256.

1. Introduction

The objective of this work is image classification – clas-
sifying an image by the object category that it contains.
This problem has been the subject of many recent pa-
pers [14, 15, 16, 26, 27] using the Pascal Visual Object
Classes datasets or the Caltech-101 dataset. The release of
challenging data sets with ever increasing numbers of object
categories, such as Caltech-256 [13], is forcing the develop-
ment of image representations that can cope with multiple
classes and of algorithms that are efficient in training and
testing.

To date the two approaches that have achieved the best
performance on the smaller Caltech-101 dataset have in-
volved an improved scene representation – the spatial pyra-

mid matching of Lazebniket al.[16], and an improved clas-
sifier – the SVM-KNN algorithm of Zhanget al. [26]. In
this paper we build on both of these ideas.

First the image representation: [16] argued that Caltech-
101 was essentially a scene matching problem so an im-
age based representation was suitable. Their representation
added the idea of flexible scenecorrespondenceto the bag-
of-visual-word representations that have recently been used
for image classification [8, 22, 27]. We improve on their
representation in two ways. First, for training sets that are
not as constrained in pose as Caltech-101 or that have sig-
nificant background clutter, treating image classification as
scene matching is not sufficient. Instead it is necessary to
“home in” on the object instance in order to learn its visual
description. To this end we automatically learn a Region Of
Interest (ROI) in each of the training images in the manner
of [7]. The idea is that between a subset of the training im-
ages for a particular class there will be regions with high
visual similarity (the object instances). These regions can
be identified from the clutter by measuring similarity using
the spatial pyramid representation of [16], but here defined
over a ROI rather than over the entire image. The result is
that “clean” visual exemplars [3] are obtained from the pose
varying and cluttered training images.

The second extension over [16] is to represent both the
appearance (using dense vector quantized SIFT descriptors,
as they did) but also local shape (using a distribution over
edges [5, 7]). These representations are common over all
classes. As in Boschet al. [5] the novelty is that the clas-
sifier has the ability to choose the weight given to shape,
appearance and the levels of the pyramids. This facilitates
representations and classification suited to the class. For ex-
ample, a car can be better distinguished by its shape and a
lion by its appearance, and not all objects require the same
pyramid level, e.g. objects with higher intra-class spatial
variation are best represented by lower pyramid levels.

Turning to the classifier, we employ here a random forest
classifier. These classifiers were first introduced in [1] and
developed further in [6]. Their recent popularity is largely
due to the tracking application of [17]. They have been ap-



(a)

(b)

(c)

(d)

+ + =

+ + =

P
H

O
W

P
H

O
G

Figure 1. Appearance and shape spatial representation. (a,c) Grids
for levelsl = 0 to l = 2 for appearance and shape representation;
(b,d) appearance and shape histogram representations correspond-
ing to each level.

plied to object recognition in [20, 24] but only for a rela-
tively small number of classes. Here we increase the num-
ber of object categories by an order of magnitude (from 10
to 256). The research question is how to choose the node
tests so that they are suited to spatial pyramid representa-
tions and matching. The advantage of randomized trees, as
has been noted by previous authors [25], is that they are
much faster in training and testing than traditional classi-
fiers (such as an SVM). They also enable different cues
(such as appearance and shape) to be “effortlessly com-
bined” [24].

We briefly give an overview of the descriptors and how
the images are represented in§ 2. Then in§ 3 we describe
how the ROIs are automatically learnt, and how they are
used together with random forests (and ferns) to train a clas-
sifier. A description of datasets and the experimental evalu-
ation procedure is given in§ 4. Implementation details are
given in§ 5. § 6 reports the performance on Caltech-101 and
Caltech-256, as well as a comparison with the state of the
art. The paper concludes with a discussion and conclusions
in § 7.

2. Image Representation and Matching

An image is represented using the spatial pyramid
scheme proposed by Lazebniket al. [16], which is based
on spatial pyramid matching [12], but here applied to both
appearance and shape. The representation is illustrated in
Fig. 1. For clarity, we will describe here the representation
of the spatial layout of an entire image, and then in section 3
this representation is applied to a ROI.
Appearance. We follow the approach of Boschet al. [4].

SIFT descriptors [19] are computed at points on a regular
grid with spacingM pixels. At each grid point the descrip-
tors are computed over four circular support patches with
different radii, consequently each point is represented by
four SIFT descriptors. Multiple descriptors are computed
to allow for scale variation between images. The dense fea-
tures are vector quantized intoV visual words[23] using
K-means clustering. Implementation details are given in
section 5
Shape. Local shape is represented by a histogram of edge
orientations gradients (HOG [9]) within an image subregion
quantized intoK bins. Each bin in the histogram represents
the number of edges that have orientations within a certain
angular range. This representation can be compared to the
traditional “bag of (visual) words”, where here each visual
word is a quantization on edge orientations. Again, imple-
mentation details are given in section 5.
Spatial pyramid representation. Using the above appear-
ance and shape descriptors together with the image spatial
layout we obtain two representations: (i) a Pyramid His-
togram Of visual Words (PHOW) descriptor for appearance
and (ii) a Pyramid HOG (PHOG) descriptor for shape [5, 7].
In forming the pyramid the grid at levell has2l cells along
each dimension. Consequently, level0 is represented by
a N -vector corresponding to theN bins of the histogram
(whereN = V for appearance andN = K for shape), level
1 by a4N -vector etc, and the Pyramid descriptor of the en-
tire image (PHOW, PHOG) is a vector with dimensionality
N

∑L
l=0 4l. For example, for shape information, levels up

to L = 1 andK = 20 bins it will be a100-vector. In the
implementation we limit the number of levels toL = 3 to
prevent over fitting.
Image matching. The similarity between a pair of images
I andJ is computed using a kernel function between their
PHOG (or PHOW) histogram descriptorsDI andDJ , with
appropriate weightings for each level of the pyramid:

K(DI , DJ) = exp{ 1
β

∑

lεL

αldl(DI , DJ)} (1)

where β is the average of
∑L

l=0 αldl(DI , DJ) over the
training data,αl is the weight at levell and dl the dis-
tance betweenDI andDJ at pyramid levell computed us-
ing χ2 [27] on the normalized histograms at that level.

3. Learning the model

This section describes the two components of the model:
the selection of the ROI in the training images, and the ran-
dom forest/fern classifier trained on the ROI descriptors. It
is not feasible to optimize the classification performance
over both the classifiers and the selection of the ROI, so
instead a sub-optimal strategy is adopted where the PHOG
and PHOW descriptors are first used to determine the ROIs



of the training images, and then the classifier is trained on
these fixed regions.

3.1. Selecting the regions of interest (ROI)

Caltech-256 (and several other datasets used for object
recognition, such as PASCAL) has a significant variation
in the position of the object instances within images of the
same category, and also different background clutter be-
tween images (see Fig. 2). Instead of using the entire image
to learn the model, an alternative is to focus on the object
instance in order to learn its visual description. To this end
we describe here a method of automatically learning a rect-
angular ROI in each of the training images. The intuition
is that between a subset of the training images for a partic-
ular class there will be regions with high visual similarity
(the object instances). It is a subset due to the variability in
the training images – one instance may only be similar to a
few others, not to all the other training images. These “cor-
responding” regions can be identified from the clutter by
measuring their similarity using the image representation
described in section 2 but here defined over a ROI rather
than over the entire image.

Suppose we know the ROIri in imagei and the subset of
s other imagesj that have “corresponding” object instances
amongst the set of training images for that class. Then we
could determine the corresponding ROIsrj of imagesj by
optimizing the following cost function:

Li = max
{rj}

s∑

j=1

K(D(ri), D(rj)) (2)

whereD(ri) andD(rj) the descriptors for the ROIsri and
rj respectively, and their similarity is measured using the
kernel defined by (1). Here we use a descriptor formed by
concatenating the PHOG and PHOW vectors. As we do not
knowri or the subset of other images we also need to search
over these, i.e. over all rectanglesri and all subsets of size
s (not containingi). This is too expensive to optimize ex-
haustively, so we find a sub-optimal solution by alternation:
for each imagei, fix rj for all other images and search over
all subsets of sizes and in imagei search over all regions
ri. Then cycle through each imagei in turn. The value for
the parameters depends on the intra-class variation and we
explore its affect on performance in section 6.

In practice this sub-optimal scheme produces useful
ROIs and leads to an improvement in classification perfor-
mance when the model is learnt from the ROI in each train-
ing image. Fig. 2 shows examples of the learnt ROIs for a
number of classes.

3.2. Random forests classifier

A random forest multi-way classifier consists of a num-
ber of trees, with each tree grown using some form of ran-

Figure 2. Automatic ROI detection. Examples from Caltech-256
for s = 3 for cactus, bathtub, watermelon, camel and windmill.

domization. The leaf nodes of each tree are labeled by es-
timates of the posterior distribution over the image classes.
Each internal node contains a test that best splits the space
of data to be classified. An image is classified by sending
it down every tree and aggregating the reached leaf distri-
butions. Randomness can be injected at two points during
training: in subsampling the training data so that each tree
is grown using a different subset; and in selecting the node
tests.
Growing the trees. The trees here are binary and are con-
structed in a top-down manner. The binary test at each node
can be chosen in one of two ways: (i) randomly, i.e. data
independent; or (ii) by a greedy algorithm which picks the
test that best separates the given training examples. “Best”
here is measured by the information gain

∆E = −Σi
| Qi |
| Q | E(Qi) (3)

caused by partitioning the setQ of examples into two sub-
setsQi according the given test. HereE(q) is the entropy
−∑N

j=1 pj log2(pj) with pj the proportion of examples in
q belonging to classj, and | . | the size of the set. The
process of selecting a test is repeated for each nonterminal
node, using only the training examples falling in that node.
The recursion is stopped when the node receives too few
examples, or when it reaches a given depth.
Learning posteriors. Suppose thatT is the set of all trees,
C is the set of all classes andL is the set of all leaves for a
given tree. During the training stage the posterior probabili-
ties (Pt,l(Y (I) = c)) for each classc ∈ C at each leaf node
l ∈ L, are found for each treet ∈ T . These probabilities are
calculated as the ratio of the number of imagesI of classc
that reachl to the total number of images that reachl. Y(I)
is the class-labelc for image I.
Classification. The test image is passed down each random



tree until it reaches a leaf node. All the posterior proba-
bilities are then averaged and thearg max is taken as the
classification of the input image.

3.3. Node tests for PHOG and PHOW

Recent implementations of random forests [17, 24] have
used quite simple pixel level tests at the nodes (for reasons
of speed). Here we want to design a test that is suitable
for the representations of shape, appearance and pyramid
spatial correspondence, that we have at our disposal. We
also use a relatively simple test – a linear classifier on the
feature vector – but also include feature selection at the test
level. The tests are represented as:

T =
{

if nTx + b ≤ 0 go to the right child
otherwise go to the left child

wheren is a vector with the same dimension as the data vec-
torx. A node test is obtained by choosing a random number
of featuresnf , choosing a randomnf indexes, and filling
those components ofn with random numbers in the range
[−1, 1] (the remaining components are zero). The value ofb
is obtained as a random number as well. Although this is a
simple linear classifier we will demonstrate in section 6 that
it achieves very similar performances when compared with
a multi-way SVM (M-SVM) and it considerably improves
the speed.
Descriptor selection. We wish to enable the classifier to be
selective for shape or appearance or pyramid level – since
some classes may be better represented by each of these.
For example, airplanes by their shape, tiger by its appear-
ance, classes with high intra-class variation by lower pyra-
mid levels, etc.

To combine the features, a test randomly selects the de-
scriptor (shape or appearance). This is the same as giving
weight 1 to one descriptor and weight0 to the others. In
both cases only one descriptor is used. In a similar man-
ner pyramid levels are selected. A test randomly selects a
level l, and only the indexes corresponding to this level are
non-zero inn.

An alternative way to merge the descriptors is to build a
forest for each descriptor (eg.50 trees using only shape in-
formation and50 trees using only appearance information)
and merge them (using the100 trees) for the classification.

3.4. Random ferns classifier

To increase the speed of the random forest Ozuysalet
al. [21] proposed randomfernsclassifiers. Ferns are non-
hierarchical structures where each one consists of a set of
binary tests (which in our case is0 if nTx + b > 0 or 1
if nTx + b ≤ 0). During training there are an ordered set
of tests S applied to the whole training data set. This is in

contrast to random forests where only the data that falls in
a child is taken into account in the test.

As in random forests “leaves” store the posterior proba-
bilities. During testing the probability that an image belongs
to any one of the classes that have been learned during train-
ing is returned. The result of each test and the ordering on
the set defines a binary code for accessing the “leaf” node.

As in random forests, the test image is passed down all
the randomized ferns. Each node in the fern provides a re-
sult for the binary test which is used to access the leaf which
contains the posterior probability. The posteriors are com-
bined over the ferns in the same way as for random forests
over trees.

3.5. Image Classification

For the test images a “sliding window” over a range of
translations and scales is applied. A new sub-imageWI

classified by considering the average of the probabilities
Pt,l(Y (I) = c):

Ŷ (I) = arg max
c

1
T

ΣT
t=1Pt,l(Y (I) = c) (4)

wherel is the leaf reached by image I in treet. We classify
an imageI as the classCk provided by the ROI which gives
highest probability.

4. Datasets and Experimental Protocol

Caltech-101. This dataset (collected by Fei-Feiet al. [10])
consists of images from101 object categories, and con-
tains from31 to 800 images per category. Most images are
medium resolution, about300 × 300 pixels. The signifi-
cance of this database is its large inter-class variability.
Caltech-256. This data set (collected by Griffinet al. [13])
consists of images from256 object categories and is an ex-
tension of Caltech-101. It contains from80 to 827 images
per category. The total number of images is30608. The sig-
nificance of this database is its large inter-class variability,
as well as a larger intra-class variability than in Caltech-
101. Moreover there is no alignment amongst the object
categories. Fig. 3 shows some images from this dataset.
Experiments. Following standard procedures, the Caltech-
101 data is split into30 training images (chosen randomly)
per category and50 for testing – disjoint from the training
images. For Caltech-256, 30 images are used for training
and25 for testing. For a comparison with [13] for Caltech-
256, we report experiments without the last6 categories
and without clutter, this is250 categories. The final per-
formance score is computed as the mean recognition rate
per class. The classification process is repeated10 times,
(changing the training and test sets), and the average per-
formance score and its standard deviation are reported.
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Figure 3. Some images from the Caltech-256 dataset.

no optimization. s = 1 s = 2 s = 3 s = 4
38.7 42.5 42.9 43.5 42.8
±1.3 ±1.0 ±1.0 ±1.1 ±1.0

Table 1. Caltech-256 performance when using100 randomized
trees with D=20, entropy optimization and all descriptors. The
first column is without ROI optimization and the rest are for ROI
optimization froms = 1 to 4 images. The standard deviation is
given below each row.

5. Implementation

Appearance. For the appearance representation both grey
level and colour cues are used (termedAppGray and
AppColour respectively). SIFT descriptors are computed
at points on a regular grid with spacingM pixels, here
M = 10. At each grid point the descriptors are computed
over circular support patches with radiir = 4, 8, 12 and16
pixels. The patches with radii4 do not overlap and the other
radii do. ForAppColour the SIFT descriptors are computed
for each HSV component. This gives a128 × 3 D-SIFT
descriptor for each point. In the case ofAppGray, SIFT
descriptors are computed over the gray image (with inten-
sity I = 0.3R + 0.59G + 0.11B) and the resulting SIFT
descriptor is a128 vector. Note that the descriptors are ro-
tation invariant. The K-means clustering is performed over
5 training images per category selected at random. A vo-
cabulary ofV = 300 words is used here.
Shape. Edge contours are extracted using the Canny edge
detector. The orientation gradients are then computed us-
ing a3× 3 Sobel mask without Gaussian smoothing. It has
been shown previously [9] that smoothing the image signif-
icantly decreases classification performance. In the experi-
ments two shape descriptors are used: one with orientations
in the range[0, 180] (where the contrast sign of the gradient
is ignored) and the other with range[0, 360] using all ori-
entation as in the original SIFT descriptor [19]. We refer
to these asShape180 andShape360 respectively. The his-

togram descriptor is discretized intoK = 20 andK = 40
bins for forShape180 andShape360 respectively.
ROI detection. The optimization process is done by test-
ing the similarity between a number of imagess ranging
from 1 to 4. The search is over the four parameters spec-
ifying the coordinates of the rectangle:xmin, xmax, ymin

andymax. The search is carried out over a translation grid
with 10 pixel steps. The optimization is initialized with the
ROI corresponding to the entire image, and then scaling the
four parameters in steps of0.1. The new ROI obtained af-
ter the scaling process is translated over the whole image
and then scaled again. At each iteration we optimize the
cost function (2) for each training image. The optimization
terminates when there are no more changes in the ROIs or
when the number of iteration reaches10. For the descriptor
we use the PHOG and PHOW vectors concatenated.
Randomized trees and ferns. At a given node,nf features
are randomly selected (the number used is discussed in sec-
tion 6). The vectorn is initialized with zeros and thenf

variables chosen are coefficients that are uniform random
numbers on[−1, 1]. b is randomly chosen between0 and
the distance of the further pointx from the origin. We then
recursively build the trees by tryingr different tests at each
node and keeping the best one according to the entropy cri-
terion of (3). As in [17], for the root node we choser = 10,
a very small number, to reduce the correlation between the
resulting trees. For all other nodes, we usedr = 100D,
whereD is the depth of the node. When choosing a binary
test randomness is injected into the training set per tree: one
third of the training images per category are randomly se-
lected and used to determine the node tests by the entropy
criterion, and the remaining training images are used to es-
timate the posterior probabilities in the terminal nodes. This
heuristic involves randomizing over both tests and training
data. When using the simpler approach (i.e. without using
the criterion (3)), trees are grown by randomly selectingn
andb without measuring the gain of each test, and all the
training images are used to estimate the posterior probabil-
ities. For the two methods, trees are grown until a maximal
depth is reached or until less than10 instances fall in the
node. We test trees for D =10, 15 and20. To grow the ferns
r = 10 is used for each binary test.

6. Image Classification Results

We first study the influence of different parameters using
Caltech-256 as our test set. Then, in section 6.1 we com-
pare the random forests with a multi-way SVM classifier
for Caltech-101 and in section 6.2 we provide a comparison
with the state-of-art. For the experiments the following pa-
rameters are used unless stated otherwise:100 randomized
trees with D=20, entropy optimization, and all the descrip-
tors. Parameter optimization is carried out on a validation
set (a sub-set of the training set, disjoint from the test set).



Randomized Forests
Shp180 Shp360 AppC AppG All

RT 38.5 39.3 35.2 39.3 41.9
±0.8 ±0.9 ±0.9 ±1.0 ±1.2

EO 39.2 40.5 36.5 40.7 43.5
±0.8 ±0.9 ±0.8 ±0.9 ±1.1

Randomized Ferns
RT 37.7 38.1 34.7 38.9 41.0

±0.8 ±0.8 ±0.9 ±0.9 ±0.9
EO 38.9 39.7 36.5 39.2 42.6

±0.8 ±0.9 ±0.9 ±0.8 ±1.0
Table 2. Caltech-256 performance using appearance, shape and
all the feature descriptors with randomized trees and ferns.100
trees/ferns with D/S=20 and ROI withs = 3 are used. RT =
Random Test, EO = Entropy Optimization. The standard deviation
is given below each row.

ROI . Table 1 shows the performances when changing the
numbers of images to optimize in the cost function. With-
out the optimization process the performance is38.7%, and
with the optimization this increases by5%. There is not
much difference between using1 to 4 images to compute
the similarity.
Node tests. The first two rows in Table 2 compare the per-
formances achieved using a random forests classifier with
random node test (first row) and with entropy optimization
(second row) when usingShape180, Shape360, AppColour,
AppGray and when merging them. Slightly better results
are obtained for the entropy optimization (around1.5%).
When merging all the descriptors with entropy optimiza-
tion performance for random forests is43.5%. Taking the
tests at random usually results in a small loss of reliability
but considerably reduces the learning time. The time re-
quired to grow the trees drops from20 hours for entropy
optimization to7 hours for random tests on a 1.7 GHz ma-
chine and Matlab implementation. Fig. 4a shows how the
classification performance grows with the number of trees
when using all the descriptors.
Forests vs ferns. The last two rows in Table 2 are perfor-
mances when using random ferns. Performances are less
than1% worse than those of random forests (42.6% when
using all the descriptors to grow the ferns). When using
the random forest the standard deviation is small (around
1%) independent of the number of trees used. This is in
contrast to random ferns where if few ferns are used the
variance is very large, however as the number of ferns is in-
creased the random selection method does not cause large
variations on the classifier performance [21]. The standard
deviation when fixing the training and test sets and training
the trees/ferns10 times is0.3%. The main advantage of us-
ing ferns is that the training time increases linearly with the
number of tests S, while for random forests it increases ex-
ponentially with the depth D. Training the ferns takes1.5h
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Figure 4. (a) Comparing the classification rates obtained using
trees (D=20) grown by selecting tests that maximize the informa-
tion gain (green dashed line) and by randomly chosen tests (blue
solid line), as a function of the number of trees. Note that the per-
formance saturates when more than90 trees are used. (b) Compar-
ing the classification rates obtained using trees with entropy opti-
mization for D=10, 15 and20 again as a function of the number
of trees. All the descriptors are used in both graphs.

with random splits and4h with entropy optimization when
using100 fernsS = 20 and25 training images per category.
For both, random forests and ferns the test time increases
linearly with the number of trees/ferns.
Number of trees/ferns and their depth. Fig. 4b shows per-
formances, as the number of trees increases, when varying
the depth of trees from10 to 20. Performance is32.4% for
D=10, 36.6% for D=15 and43.5% for D=20. When using
ferns performances are30.3%, 35.5% and42.6% for S=10,
15 and20 respectively. Increasing the depth increases per-
formance however it also increase the memory required to
store trees and ferns, as mentioned above.

When building the forests we experimented with assign-
ing lower pyramid levels to higher nodes in the tree and
higher pyramid levels to the bottom nodes. For example for
a tree with D=20, pyramid levell = 0 is used until depth
d = 5, l = 1 from d = 6 to d = 10, l = 2 from d = 11
to d = 15, and l = 3 for the rest. In this case perfor-
mance decreases0.2%. When merging forests by growing
25 trees for each descriptor (100 trees in total) and merg-
ing the probability distributions when classifying the per-
formance increases0.1%.
Number of features. All results above are when using a
random number of features to fill the vectorn in the linear
classifier. Here we investigate how important the number
of non-zero elements is. Fig. 5a shows a graph, for both
random and entropy tests, when increasing the number of
features used to split at each node. The number of features
is increased from1 to m wherem is the dimension of the
vector descriptorx andn for a level. It can be seen that the
procedure is not overly sensitive to the number of features
used, as was also demonstrated in [6]. Very similar results
are obtained using a single randomly chosen input variable
to split on at each node, or using all the variables. The stan-
dard deviation is decreased as we increase the number of
features used and it is higher when using a random split.



Training data . The blue dashed line in Fig. 5b shows how
the performance changes when increasing the number of
training images from5 to 30. Performance increases (by
20%) when using more training data meaning that with less
data, the training set is not large enough to estimate the full
posterior [2]. Since we have a limited number of training
images per category and, as noted in the graph, performance
increases if we increase the training data, we populate the
training set of positive samples by synthetically generating
additional training examples [15]. Given the ROI, for each
training image we generate similar ROIs by perturbing the
position ([−20, 20] pixels in bothx andy directions), the
size of original ROIs (scale ranging between[−0.2, 0.2])
and the rotation ([−5, 5] degrees). We treat the generated
ROIs as new annotations and populate the training set of
positive samples. We generate10 new images for each orig-
inal training example obtaining300 additional images per
category (resulting in a total of330 per category). When us-
ing 5 training images plus the extra data the performance in-
creases from19.7% to 29.1%, and it increases form43.5%
to 45.3% when using30 training images. The green line
in Fig. 5b shows the performance when using extra training
data.

6.1. Random Forests vs Multi-way SVM

In this section we compare the random forest classifier to
the multiple kernel SVM classifier of [5] on Caltech-101 for
the case of30 training and50 testing images. For training
we first learn the ROIs usings = 3 and generate10 new
images for each original training image, as above.

In this case PHOW and PHOG (see Section 2) are the
feature vectors for an M-SVM classifier, using the spatial
pyramid kernel (1). For merging features the following ker-
nel is used:

K(x, y) = αKA(xApp, yApp) + βKS(xShp, yShp) (5)

KA andKS is the kernel defined in (1). The weightsα and
β in (5) as well as the the pyramid level weightsαl in (1) are
learnt for each class separately by optimizing classification
performance for that class on a validation set using one vs
the rest classification [5].

Performance for the random forests is80.0% and with
the M-SVM is81.3%. However, using random forests/ferns
instead of a M-SVM, is far less computationally expensive
– the classification time is reduced by a factor of40.

For Caltech-101 adding the ROI optimization does not
increase performance as much as in the case of Caltech-256.
This is because Caltech-101 has less pose variation within
the training images for a class.

P
er

fo
rm

an
ce

(%
)

0 m/2m/4 m/3 m

P
er

fo
rm

an
ce

(%
)

5 30        
20

50

30

50

# Training

Increase # features Increase # train

# features

(a) (b)

Figure 5. (a) performance when increasing thenf to use at each
node. The error bars show± one standard deviation; (b) perfor-
mance when increasing the number of training images with and
without extra training data.100 trees, D=20 and all the descrip-
tors are used in both graphs. Entropy optimization is used in (b).

Dataset C-101 C-256
NTrain 15 30 15 30
M-SVM − 81.3 − −

− ±0.8 − −
R. Forests 70.4 80.0 38.6 45.3

±0.7 ±0.6 ±0.6 ±0.8
R. Ferns 70.0 79.2 37.5 44.0

±0.7 ±0.6 ±0.8 ±0.7
[5] 67.4 77.8 − −
[13] 59.0 67.6 29.0 34.1
[26] 59.0 66.2 − −
[11] 60.3 66.0 − −
[16] 56.4 64.6 − −
[18] 59.9 − − −

Table 3. Caltech-101 and Caltech-256 performances when15 and
30 training images are used.

6.2. Comparison with the state of the art

Following the standard procedures for Caltech datasets
we randomly selectNtrain = 5, 10, 15, 20, 25, 30, 40,
Ntest = 50 for Caltech-101 andNtest = 25 for Caltech-
256. Results are obtained using100 trees/ferns with D/S=20
and entropy optimization to split each node, ROI optimiza-
tion, and increased training data by generating300 extra
images per category.

Table 3 summarizes our results and the state of the art
for Caltech-101 and Caltech-256 when15 and30 training
images are used. Fig. 6 shows our results and the results
obtained by others as the number of training images is var-
ied.
Caltech-256. Griffin et al [13] achieve a performance of
34.1% using the PHOW descriptors with a pyramid kernel
(1) and M-SVM. Our performance when merging different
descriptors with random forests is45.3%, outperforming
the state-of-art by11%. All the above results are for250
categories. For the whole Caltech-256 (not clutter) perfor-
mance is44.0%.
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Figure 6. Performance as a function of the number of training im-
ages for Caltech-101 and Caltech-256. We compare our imple-
mentation with Random Forests/Ferns with the published results.

7. Conclusions

We have demonstrated that using random forests/ferns
with an appropriate node test reduces training and testing
costs significantly over a multi-way SVM, and has compa-
rable performance.

We have improved on the state of the art for Caltech-
101 and Caltech-256 and, as a summary, quantify approx-
imately the contributions arising from each of the princi-
pal improvements over [5]: (i) Using the ROI detection and
sliding window is a significant benefit. It increases perfor-
mance from3% to 5% depending on the degree of object
pose variation within the datasets. (ii) generating extra data
during training increases performance by2%.

Future work will include more robust edge features and
ROI detection using a more flexible region than a rectangle.
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