
1

Register Organization for Media Processing

Scott Rixner†*, William J. Dally†, Brucek Khailany†, Peter Mattson†, Ujval J. Kapasi†, and John D. Owens†

†Computer Systems Laboratory *Dept. of Electrical Engineering and Computer Science
Stanford University Massachusetts Institute of Technology
Stanford, CA 94305 Cambridge, MA 02139

{rixner, billd, khailany, pmattson, ujk, jowens}@cva.stanford.edu

Abstract
Processor architectures with tens to hundreds of arithmetic
units are emerging to handle media processing applica-
tions. These applications, such as image coding, image
synthesis, and image understanding, require arithmetic

rates of up to 1011 operations per second. As the number of
arithmetic units in a processor increases to meet these
demands, register storage and communication between the
arithmetic units dominate the area, delay, and power of the
arithmetic units. In this paper we show that partitioning
the register file along three axes reduces the cost of regis-
ter storage and communication without significantly
impacting performance. We develop a taxonomy of register
architectures by partitioning across the data-parallel,
instruction-level parallel, and memory hierarchy axes, and
by optimizing the hierarchical register organization to
operate on streams of data. Compared to a centralized glo-
bal register file, the most compact of these organizations
reduces the register file area, delay, and power dissipation
of a media processor by factors of 195, 20, and 430,
respectively. This reduction in cost is achieved with a per-
formance degradation of only 8% on a representative set of
media processing benchmarks.

1. Introduction
Media processing applications, such as video compression
and decompression, image synthesis, and image under-
standing, demand very high arithmetic rates. To operate in
real-time on large images, these applications currently

demand 1010 to 1011 operations per second [2]. As applica-
tions become more sophisticated, even higher rates are
expected. To achieve these high operation rates, processor
architectures with tens to hundreds of arithmetic units are

required. A 32-bit integer ALU takes less than 0.05mm2 in
a 0.18µm CMOS process, so we can economically fabri-

cate several hundred arithmetic units on a relatively small

1cm2 integrated-circuit chip. In the near future, we will be
able to integrate thousands of arithmetic units on a chip.

As the number of arithmetic units in a media processor
increases to these levels, register storage and communica-
tion between arithmetic units become critical factors domi-
nating the area, cycle time, and power dissipation of the
processor. The single central register file that has tradition-
ally been used to interconnect ALUs and provide short-
term storage does not scale well with large numbers of
arithmetic units. For N arithmetic units, the area of the reg-

ister file grows as N3, the delay as N3/2, and the power dis-

sipation as N3. The area of the register file dominates the
area of the ALUs for more than 7 ALUs, the delay of the
register file dominates the latency of a floating-point multi-
ply for more than 58 ALUs, and the power dissipation of
the register file dominates the power dissipation of a float-

ing-point multiply for more than 8 ALUs.1

A central register file that interconnects every arith-
metic unit is costly because it provides both storage for and
communication among arithmetic units in a very general
manner: any ALU can read from or write to any storage
location. The area, delay, and power of the registers can be
significantly reduced by restricting the communication
between ALUs and registers, so that each arithmetic unit
can only read and write a limited subset of registers. By
restricting the communication in a manner that matches the
parallelism and access patterns of the applications, a more
efficient storage structure can be realized without a signifi-
cant performance penalty. The most partitioned organiza-
tion that we consider reduces the area, delay, and power
dissipation of 48 ALUs by factors of 195, 20, and 430,
respectively, while only degrading performance by 8% on
a representative set of media processing kernels.

The research described in this paper was supported by the Defense Ad-
vanced Research Projects Agency under ARPA order E254 and moni-
tored by the Army Intelligence Center under contract DABT63-96-C-
0037.

1. This assumes that the register file is backed by a cache with a hit time
of one cycle. If the register file must cover memory (or cache) latency
of more than a few cycles, then the register file always dominates the
area of the ALUs, dominates latency for more than 22 ALUs, and
dominates power dissipation for more than 2 ALUs.

Appears in HPCA6 (2000)

2

Figure 1. Register File Architecture Classifications.

Scalar SIMD

C
en

tr
al

D
R

F
C

en
tr

al
D

R
F

F
la

t
H

ie
ra

rc
h

ic
al

C
en

tr
al

D
R

F

S
tr

ea
m

N Arithmetic Units N/C
Arithmetic

Units

C SIMD Clusters

N/C
Arithmetic

Units

C SIMD Clusters

(A) (B)

(C) (D)

N Arithmetic Units
N/C Arithmetic

Units
N/C Arithmetic

Units

(E) (F)

(G) (H)

N/C
Arith. Units

C SIMD Clusters

N/C
Arith. Units

N Arithmetic Units

C SIMD Clusters

N/C Arithmetic
Units

N/C Arithmetic
Units

N Arithmetic Units

(I) (J)

(L)(K)

N Arithmetic Units N/C
Arith. Units

N/C
Arith. Units

C SIMD Clusters

C SIMD Clusters

N/C Arith. UnitsN Arithmetic Units N/C Arith. Units

3

In this paper, we investigate register organizations for
media and signal processors with tens to hundreds of arith-
metic units. We introduce a taxonomy of these register file
organizations by partitioning the traditional central register
file along three axes. Partitioning the register file along the
data-parallel axis yields a SIMD (or vector) organization.
Partitioning the register file along the instruction-level par-
allel axis yields a distributed register file (DRF) organiza-
tion. Partitioning the register file along the memory
hierarchy axis yields a hierarchical register organization.

Finally, we optimize the hierarchical organization to handle
long streams of continuous data resulting in a stream orga-
nization.

The remainder of this paper discusses register organi-
zation for media processors in more detail. Section 2
explains our analytical models of a register file’s area,
delay and power. Section 3 introduces twelve register orga-
nizations generated by applying the four partitions
described above and compares their area, delay, and power.
Section 4 examines the impact of these partitioned register
organizations on media processing performance. The
Appendix explains the models in more detail, and includes
the complete set of formulae for the register organizations.

2. Register File Models
Figure 1 illustrates a taxonomy of 12 register organizations
that starts with a central register file in the upper left corner
and progresses through four transformations to a stream
architecture in the lower right corner. The four transforma-
tions are: SIMD, dividing the register file across the data
stream; DRF, dividing the register file across the functional
units; Hierarchical, separating the portion of the register
file that stages data for the ALUs from the portion that
stages data for the memory; and Stream, organizing the
memory portion of the register file to operate on long
streams of continuous data.

In order to compare these 12 organizations, we intro-
duce models for the area, delay, and power dissipation of a
register file for large numbers of arithmetic units. Our
complete models of area, delay, and power dissipation are
presented in more detail in the Appendix. For reference,
Table 1 provides a summary of the parameters used
throughout the paper. The first section of values are for
architectures targeted at a CMOS process with a minimum
drawn gate length of 0.18µm. The second section of values
were empirically determined using a variety of media pro-
cessing kernels. The final section of values are parameters
that are varied throughout the paper.

2.1. Area

The area of a register file is the product of the number of
registers, R, the number of bits per register, b, and the size
of a register cell. The schematic and layout of a register
cell, given in Figure 2, show that each cell is w+p wire
tracks wide and h+p wire tracks high, or (w+p)(h+p) grids:
p word lines in one dimension, p bit lines in the other, and
w[h grids for the storage cell, power, and ground. Each
port requires at least one wire track for a word line to
address it and one wire track for a bit line to access the
data. Configurations with a larger number of grids could be
used for delay or power reasons, but would consume more
area.

Table 1. Summary of Parameters.

Parameter
Empirical

Value
Description

α 0.25 Activity factor (probability that a node
changes from 0 to 1 on a given cycle)

AFU 7200b Average area of a functional unit in grids

Cbit 0.22 Ratio of a register cell’s bit line transistor
capacitance to the capacitance of a minimum
size inverter

Cw 0.05 Ratio of capacitance of one track of wire to
the capacitance of a minimum size inverter

Cword 0.33 Ratio of a register cell’s word select transistor
capacitance to the capacitance of a minimum
size inverter

E0 12 Energy required to charge a minimum size
inverter (in fJ)

fcyc 1/20 Clock frequency (in 1/fan-out-of-four inverter
delays): ~500MHz in a 0.18µm CMOS pro-
cess

h 4 Register cell height (wire tracks) without ports

PFU 25 Average power dissipated in an ALU when
performing an arithmetic operation every
cycle (in mW)

T 40 Memory latency in cycles

v0 1350 Wire propagation velocity in tracks per fan-
out-of-four inverter (FO4) delays [1]

w 3 Register cell width (wire tracks) without ports

b 32 Data width of the architecture

C 8 Number of SIMD clusters

G 1/4 Number of ports between the hierarchical reg-
ister files per ALU

M 1/16 Number of memory ports per ALU

ra 10 Number of registers per ALU

ri 1.6 Load imbalance factor of a DRF architecture

rm 4 Number of registers needed by each ALU for
each cycle of memory latency

rr 1.9 Replication factor of a DRF architecture

rs 2 Number of registers needed in a stream buffer
to hide the access latency of the memory stag-
ing register file

d --- Length of a wire (distance)

N --- Number of arithmetic units in a configuration

p --- Total number of ports into a register file

pe G or M Number of external ports connected to mem-
ory, a cache, or a memory staging register file
per ALU

r --- Number of registers per arithmetic unit

R --- Total number of registers in a register file

4

Several optimizations can reduce the area of a register
file. For example, register cells can be replicated to distrib-
ute the read ports among several copies of each cell. How-
ever, all write ports must still access each copy in order to
keep the data identical. For large numbers of read ports,
duplicating the register file will reduce the total area, as in
the Alpha 21264 [6]. Other area optimizations could also
be applied to this basic register cell, such as time-multi-
plexing the ports, but these optimizations, like replication,
merely decrease the register file size by a constant factor.
Therefore, a register file with a large number of ports has

area that grows with Rp2.
A central register file organization (Figure 1a), with a

single register file and N arithmetic units, requires r regis-
ters per ALU and pe+ 3 ports per ALU (two read ports for
the operands, one write port for the result, and pe external

ports2). Thus, R = rN and p = (pe+3)N, so the area of the

central register file will grow with N3.
To reduce the number of ports into the central register

file, it can be partitioned into interconnected clusters of
arithmetic units, each with their own smaller centralized
register file [3] [17]. The extreme case of this clustering is
a distributed register file (DRF) organization where each

arithmetic unit has a dedicated local register file connected
directly to each input, as depicted in Figure 1c. In a DRF
organization, each local register file has a single read port,
a single write port, and contains r/2 registers. To connect
the outputs of the N functional units, the peN external ports,
and the 2N distributed register files, a switch is needed. For
more than a few ALUs, it is most efficient to organize the
ALUs in two dimensions and utilize a two-level switch, as

shown in Figure 3. Each row of ALUs requires N1/2 b-bit
buses to transfer their results to the columns and each col-

umn of ALUs requires 2N1/2 b-bit buses to transfer at most
one data value to each of the distributed register files in
that column. There must be an additional row and column
of peN buses to transfer data to and from the external

ports.3 The area of this switch dominates the area of the

distributed register files, and grows with N2. The switch in
a DRF architecture need not provide a complete connection
from every ALU to every register file, but the impact of an
incomplete switch is beyond the scope of this paper.

2.2. Delay

The delay of a register file access is composed of wire
propagation delay and fan-in/fan-out delay. The wire prop-
agation delay is the minimum time of flight across a wire,
which grows linearly with distance, assuming optimally
spaced repeaters [1]. The fan-in/fan-out delay is the mini-
mum drive delay of a lumped capacitive load using a buffer
chain, which grows logarithmically with capacitance.

Wire propagation delay dominates the delay for long
wires with little fan-out, as found in the word and bit lines
of a register file with a large number of ports. To access a
register cell, as shown in Figure 4, a signal must traverse a

word line of length (w+p)(bR)1/2 and then a bit line of

length (h+p)(bR)1/2, resulting in a delay that is propor-

Figure 2. Schematic and layout of a register cell.

2. The external ports interface the register file with memory, a cache, or
a larger hierarchical register file.

Bit Lines

W
or

d
Li

ne
s

Vdd

G
nd

Vdd

p w

p

h

Bit Lines

W
or

d
Li

ne
s

...

1 wire
grid

...

p

p w

h

Figure 3. Configuration of the DRF organization.

3. The bidirectional external ports could be divided into read and write
ports, splitting the peN buses between the two dimensions.

ALU

RF

RF

ALU

RF

RF

‘
N

Npe

Npe N2

() brh 2+

() brw 2+

5

tional to pR1/2. For register files with a small number of
ports, the access time is dominated by the fan-out of the
word lines and the fan-in of the bit lines, which is a func-
tion of the number of registers in the file, R. Bypassing the
register file can reduce the delay of a register file access;
however, the bypass structures are large and cannot elimi-
nate the wire propagation delay between the arithmetic
units.

The delay of the centralized register file is dominated
by wire propagation delay when it must support more than
10 arithmetic units. A central register file organization has
R = rN registers and p = (pe+3)N ports, so beyond 10

arithmetic units, the delay grows with N3/2. In a distributed
register file organization, the two-port register files have a
fixed size, r/2, so their delay is constant. The delay of tra-
versing the DRF switch, however, includes the wire propa-
gation delay of traversing both a horizontal and vertical
wire in the switch, as can be seen in Figure 3. The delay of
the switch is therefore linear in N and dominates the regis-
ter file access time for more than 35 ALUs.

2.3. Power

The energy dissipated in a register file is proportional to
the capacitance that must be switched for each access.
Since every bit line and only a single word line must
switch for each register file access, the power dissipation is
dominated by the bit lines’ capacitance. For a register file
with a large number of ports, this capacitance is mostly
wire capacitance. As shown in Figure 4, each port has

(bR)1/2 bit lines that connect (bR)1/2 register cells, resulting
in a wire capacitance proportional to bR(h+p)Cw. For a

register file with a small number of ports, the bit line
capacitance is mostly transistor capacitance, which is pro-
portional to bRCbit. Optimizations to reduce power dissipa-
tion, such as the use of hierarchical bit lines or differential
bit lines with reduced-swing reads and full-swing writes,
merely reduce it by a constant factor.

The number of ports in a central register file increases
with the number of ALUs, N, by the relation p = (pe+3)N.

As can be seen in Figure 2, increasing the number of ports
in a register file will increase the length of the wires in
each port, while the number of transistors on those wires
remains the same. Therefore, for register files with a large
number of ports, the power dissipation of the p ports is

dominated by wire capacitance and grows as p2R. Since
there are R = rN registers in a central register file, the total
power dissipation of the central register organization there-

fore grows as N3. In a distributed register file organization,
each two-port register file dissipates constant power,
regardless of N. However, the power dissipation of the

wires in the switch, which grows as N2, dominates the
power dissipation of the register files for more than 20
arithmetic units. Therefore, the power dissipation of the
DRF organization grows quadratically with N.

3. Register Organizations
In this section we describe, quantify, and compare the 12
register organizations of Figure 1. Our analysis is further
substantiated by the detailed models presented in the
Appendix. Throughout this section, graphs are used to
illustrate the important intuitions and trends of the area,
delay and power dissipation of these register organizations.

3.1. Central Register Organization

The central register file architecture, shown in Figure 1a,
serves as a baseline for our comparison. The basic model
of a central register file organization was presented in Sec-
tion 2. The number of registers in this organization grows
linearly with the number of ALUs, N, by the relation R =
(ra+rmT)N: each ALU requires ra registers to stage its
input and output operands and rmT registers to cover the

latency of memory, T. In order to provide sufficient data
bandwidth to each ALU and enough additional bandwidth
to transfer data back and forth to memory, the register file
must have p = (M+3)N ports: M ports to memory and 3
ports to source and sink data for each ALU. The area of a

central register file is A ≈ Rp2 ≈ (ra+rmT)N((M+3)N)2, so

the ratio of register area to ALU area grows as N2. The
delay of a central register file is dominated by wire propa-

gation delay, leading to t ≈ pR1/2 ≈ (M+3)N((ra+rmT)N)1/2.
Therefore, the delay of the central register file grows as

N3/2. The power dissipation of the central register file is
dominated by the wire capacitance of the bit lines, leading

to P ≈ p2R ≈ ((M+3)N)2(ra+rmT)N, so the power overhead,

(NPFU+P)/NPFU (the total power dissipated in the register
files, switches, and functional units divided by the power

dissipated in the functional units), increases as N2. Note

Figure 4. Register file access.

word
line

bit line

cellsbR

cellsbR

() bRph +(tracks)

() bRpw +(tracks)

6

that increased power overhead corresponds to decreased
power efficiency.

Figure 5 plots the area per ALU, register file delay,
and power overhead of the central register organization for
a memory system with latency T = 1 and for a memory
system with latency T = 40. The low-latency case corre-
sponds to a processor with a very effective on-chip cache
memory, while the high-latency case reflects a processor
without a cache or with a high miss ratio. Many media
applications do not cache well, so the high-latency case is
more indicative of the media processing application
domain. The high-latency case increases the number of
registers needed per ALU to hold the results of T outstand-
ing memory operations per port. In both the high and low
latency case, for more than about four ALUs, the area per

ALU grows as N2, the delay of the register file grows as

N3/2, and the power efficiency of the register file dimin-

ishes as N2.

3.2. SIMD Register Organization

The cost of the register file can be substantially
reduced for data-parallel media applications by partitioning
the registers across groups of arithmetic units, as illustrated
in Figure 1b. When a data-parallel loop is unrolled C times
there is little or no communication between the iterations.
Thus we can partition the register file into C identical clus-
ters by removing the expensive, but little-used, communi-

cation paths between clusters.4 This type of register
organization is widely used in SIMD and vector proces-

sors [7] [9] [10] [16]. In a C-way SIMD register organiza-
tion, there are C clusters, each with N/C ALUs, leading to

an area per ALU ratio that grows as N2/C2.
Figure 6 compares the area per ALU for an eight-wide

SIMD organization to that of our baseline organization.
The figure shows that the SIMD organization starts out at
eight ALUs with a register area that is only 8% of the cen-
tral register organization. As the number of ALUs
increases, the SIMD organization approaches an asymptote

of 1.56% (1/C2 = 1/64) of the area of the baseline organi-
zation. Delay and power dissipation are similarly improved

asymptotically by constant factors to 4.44% ((1/C)3/2 =

(1/8)3/2) and 1.56%, respectively.

3.3. Distributed Register Organization

The register file can also be partitioned across the ALU
inputs so that each ALU input has its own dedicated regis-
ter file, as illustrated in Figure 1c. Each distributed register
file only needs a single read port for its associated ALU
input and a single write port to store results, decreasing the

overall register area by a factor of N2 from the central orga-
nization. However, an N x 2N crossbar switch must be
introduced outside of the register files to connect each
ALU to all of the two-port register files. This switch grows

as N2, so the register files and the switch combined grow
linearly relative to ALU area. This type of organization can
be found in the polycyclic architecture [13] and the Cydra
[12].

The restricted communication of the DRF organization
increases the number of registers required per arithmetic
unit. Some data values must be replicated in multiple regis-
ter files and all register files must provide enough storage
to hold the peak number of live data values needed in any
one register file. The increased register demand caused by
replication and load imbalance can be approximated by the

Figure 5. Area per ALU, delay, and power overhead of the central register file organization.

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

T=1T=40

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

T=1

T=40

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

T=1T=40

Figure 6. Area per ALU of the SIMD and Central
organizations.

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

SIM DCentral

4. A limited-bandwidth communication path separate from the register
file is usually provided to allow for some communication between
loop iterations. Such a communication unit greatly extends the range
of applications that a SIMD architecture can handle without substan-
tially increasing its area.

7

constant factors rr = 1.9 and ri = 1.6, giving a combined

increase in register demand of 3.04.5 However, because the
switch is much larger than the register files in a DRF orga-
nization, the additional registers only increase the total area
of a DRF organization with eight ALUs by 2.5%.

The SIMD organization of Figure 1b exploits register
locality associated with data parallelism, and the DRF
organization of Figure 1c exploits register locality associ-
ated with instruction-level parallelism. Combining these
two orthogonal partitions gives the SIMD/DRF organiza-
tion of Figure 1d. Figure 7 compares the area of the DRF
and SIMD/DRF configurations to that of our baseline
architecture. The figure illustrates that the area per ALU of
the DRF organization grows linearly with the number of
ALUs, because the switch area dominates the register files.
The delay of the small two-port local register files is a
small constant and the delay of the switch grows as N,
whereas the delay of the large, many-ported central register

file grows as N3/2. The power overhead per ALU of the dis-
tributed register files increases linearly with N, compared

to N2 for the central register file organization. In the SIMD/
DRF organization, the size of the DRF switch is decreased,
thereby improving the area, delay, and power dissipation of
the switch over the DRF organization by an amount that
asymptotically approaches 1/C.

3.4. Hierarchical Register Organization

Registers provide short term storage to hold the results of
both arithmetic operations and memory operations. As
memory latency, T, expressed in CPU cycles, increases, the
demand for register capacity, R, is primarily driven by the
requirement to stage the results of large numbers of load
operations. The number of registers per ALU required to
handle memory loads increases linearly with T, by the rela-
tion rmT, while the number needed to handle arithmetic
operations remains constant at ra.

A cache is used to cover the memory latency in con-
ventional architectures, but many media applications do
not have the temporal locality to successfully take advan-
tage of a cache. Media applications exhibit little or no data
reuse and have extremely large data sets, so a cache could
potentially degrade performance rather than improve it [8].
Even though media processing data types do not cache
well, using the cache as a staging area for prefetched data
can improve performance [11]. However, this is an ineffi-
cient way to provide storage to stage memory results
because address translation is required on every reference,
accesses are made with long addresses, tag overhead is
incurred in the cache, and conflicts may evict previously
fetched data. It is more efficient to provide sufficient regis-
ters to cover the memory latency by prefetching data
directly into registers rather than into the cache.

The hierarchical register organization, Figure 1e, parti-
tions the central register file into a large register file with
just a few ports to stage memory operations and a smaller
register file with many ports to interconnect the arithmetic
units. The port ratio is related to the ratio of arithmetic to
memory instructions. This type of register organization can

Figure 7. Area per ALU and delay of the Central, DRF,
and SIMD/DRF organizations.

5. These factors were empirically determined by measuring the differ-
ence in register demand between a central and DRF architecture. We
expect that we could largely eliminate register imbalance by adding a
heuristic to our compiler to balance register usage. However, we have
not yet tested this conjecture.

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

SIM D/DRF

Ce ntral

SIM D/DRF

DRF

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

Ce ntral

SIM D/DRF

DRF

Figure 8. Area per ALU of the hierarchical
organizations.

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

T=40
SIM D

T=1
SIM D

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

T=1

T=40
Ce ntral

Central

Ce ntral

8

be found in the S and T registers of Cray vector machines
[15]. This organization reduces the number of registers in
the register file connected to the arithmetic units by rmT

per arithmetic unit, because the central register file, with

area A ≈ Rp2 ≈ (ra+rmT)N((M+3)N)2, is split into two

smaller files, with total area A ≈ raN(3N)2+rmTN(MN)2.

GN extra ports must be introduced into both files to allow
data to pass between them, giving a final area of A ≈
raN((G+3)N)2 + rmTN((G+M)N)2. Even with the extra
ports, the combined area of these two register files is sub-
stantially less than that of the centralized register file with
both a large number of ports and a large number of regis-
ters, as shown by the high latency (T = 40) curves in Figure
8.

The hierarchical register organization can also be com-
bined with the SIMD organization (Figure 1f), the DRF
organization (Figure 1g), or both (Figure 1h). Figure 8
shows how a hierarchical register organization reduces reg-
ister area compared to the central and SIMD architectures
with a memory latency of T=40. The area, delay, and
power dissipation of hierarchical central and hierarchical
SIMD organizations with memory latency of 40 cycles
approaches the area, delay, and power dissipation of the
original organizations with memory latency of 1 cycle. In
effect, partitioning out the memory registers masks the
effect of memory latency on register area, delay, and power
dissipation. As the DRF and SIMD/DRF organizations
have all of their registers contained in small two-port regis-
ter files, moving to a hierarchical organization actually
increases the overall area of these configurations by intro-
ducing a large, many-ported register file that dominates the
area. However, by taking advantage of the sequential
stream accesses inherent in media applications and moving
to a stream register organization, the area of these two con-
figurations improves as well.

3.5. Stream Register Organizations

Most media processing applications operate on a small
number of sequential streams of data records (e.g. pixels in
a video stream). Our final transformation replaces each
port into the memory staging register file that we intro-
duced in the hierarchical organization with a stream buffer.
A stream buffer automatically prefetches sequential data
for its associated stream out of this register file, similar to
stream buffers used to prefetch streams from memory [4].
All stream buffers share a single port into the memory stag-
ing register file, allowing that single physical port to act as
many logical ports. Each stream buffer must have rsW reg-

isters, where rs is the amount of buffering required to hide
the latency of the single port and W is the access width of
that port. Since the single port of the memory staging regis-

ter file must provide the same bandwidth as all of the ports
in the hierarchical organization, W = (G+M)N. Therefore,
the (G+M)N stream buffers that replace the ports into the
memory staging register file, each with rs(G+M)N regis-

ters, have a total area that grows with N2.
By replacing the (G+M)N ports into the memory stag-

ing register file with a single port, the stream organization

reduces the area of that register file by a factor of N2, since

the area of that register file grows as Rp2. For very large N,
the stream register file area is dominated by the stream
buffers, which grow quadratically in N. In contrast, the
hierarchical register file area grows cubically in N, because
the number of ports into that register file grows with N. For
the central (Figure 1i) and SIMD (Figure 1j) register orga-
nizations, the many ported register files that feed the arith-
metic units dominate the area of the hierarchical
organization, so the stream organization only improves
their area slightly. For the DRF (Figure 1k) and SIMD/
DRF (Figure 1l) register organizations, the memory stag-
ing register file dominates the area of the hierarchical orga-
nization, so the stream organization offers a significant
savings in area, as shown in Figure 9. The Imagine stream
processor [14], with a stream register file and SIMD/DRF
arithmetic clusters, is an example of an architecture that
combines all of these concepts.

The small stream buffers also hide the access time of
the memory staging register file, as seen in Figure 9. The
stream transformation decreases the memory staging regis-

ter file access delay by a factor of N1/2, but does not
decrease the delay of the local register files connected to
the ALUs.

Figure 9. Area per ALU and global delay for hierarchical
and stream SIMD/DRF organizations.

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

Stre am/SIM D/DRF

Hie rarchical/SIM D/DRF

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

Stre am/SIM D/DRF

Hie rarchical/SIM D/DRF

9

4. Evaluation
To evaluate the various register architectures, we simulated
the set of media processing kernels enumerated in Table 2
on a progression of architectures from the conventional
central register file architecture to a stream architecture
with SIMD clusters and distributed register files (Stream/
SIMD/DRF). For the experiments, 48 arithmetic units were
used in all of the configurations, and the rest of the param-
eter values were the empirically determined values from
Table 1. All arithmetic units can perform 32-bit and dual
16-bit parallel-subword operations. The kernels were com-
piled for each organization using software pipelining and
communication scheduling.

Figure 10 shows the area per ALU, delay, and power
dissipation of the five simulated organizations. There is a
local maximum in performance per unit area at 48 ALUs,
which is why that configuration was chosen. At 48 ALUs
not all of the asymptotic effects have taken place, but the
more partitioned organizations already provide significant
area and power savings.

Figure 11 plots the performance of the media process-
ing kernels on the five architectures. Figure 11a shows the

raw performance of the kernels (normalized to their perfor-
mance on the central organization given in Table 2) assum-
ing that all of the organizations have the same register file
latency. The kernels perform well across the architectures
and show a performance degradation of only 16% on the
stream architecture. The compiler can exploit enough data
parallelism in most of the kernels that there is very little
performance degradation. However, FIR and FFT require
interactions between adjacent elements of the data stream,
and therefore exhibit the largest performance degradation,
most noticeably at the transition from a centralized to a
SIMD organization.

Figure 11b shows the performance of the kernels when
the additional latencies of the large register files are taken
into account by increasing the pipeline depth of each arith-
metic operation while holding the clock frequency con-
stant. Performance is normalized to performance on the
central organization without the additional latency. These
media kernels have enough data parallelism that they are
largely insensitive to operation latency, so modulo schedul-
ing is able to hide the extra 8 cycles of latency of the large
central register file. Registers are allocated when a result is
produced, rather than when an operation is issued, so the
increased operation latency does not increase register
demand. Accounting for register file latency, the perfor-
mance of the kernels on the stream organization is only 8%
less than on the central organization.

Figure 11c shows the performance per unit area of the
kernels on the four partitioned organizations normalized to
their performance per unit area on the central organization.
The performance per unit area of the stream organization is
180 times better than the centralized register file organiza-
tion and 5 times better than the SIMD organization. At 48
ALUs, the stream organization is 430 times more power
efficient than the central organization and 10 times more
power efficient than the SIMD organization. Our metric of
power efficiency is independent of kernel performance
because it does not account for the additional power over-
head of structures outside of the register file, arithmetic
units, and switch.

Figure 10. Area per ALU, delay, and power overhead of architectures spanning the space from a flat, scalar, central
register file architecture to a stream, SIMD, distributed register file architecture.

0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

SIMDCentral

Stream/SIMD/DRF

Hier/SIMD/DRF

SIMD/DRF

48
0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

SIM D

Ce ntral

 Hie r/SIM D/DRF &
Stre am/SIM D/DRF

SIM D/DRF

48
0.1

1

10

100

1000

1 10 100 1000
Number of Arithmetic Units

SIMDCentral

Stream/SIMD/DRF

Hier/SIMD/DRF

SIMD/DRF

48

Table 2. Media Processing Kernels. Performance is given
for a 48 arithmetic unit central architecture at 500MHz without

accounting for additional register file latency.

Benchmark Kernel Description
Performance

(GOPS)

Convolution Performs a 7x7 floating-point
convolution over an image.

15.5

DCT (Discrete
Cosine Transform)

Transforms an 8x8 matrix of
16-bit fixed-point numbers.

28.4

Triangle Transform Performs a 3-D perspective
transformation on a stream of
triangles.

14.7

Pixel Shading Shades a stream of pixels for a
polygon rendering application.

15.8

FIR (Finite Impulse
Response Filter)

Computes the response of a
13-tap 16-bit fixed-point FIR
filter producing 1024 outputs.

22.4

FFT (Fast Fourier
Transform)

Performs a 1024-point float-
ing-point FFT.

10.0

10

5. Conclusions
Partitioned register organizations dramatically reduce area,
delay, and power dissipation in comparison to the tradi-
tional central register file organization, allowing them to
scale efficiently to sustain the high arithmetic rates
demanded by media processing applications. We present a
taxonomy of partitioned register file architectures across
three axes. Register files can be split along the data-parallel
axis resulting in a SIMD organization, or along the instruc-
tion-level parallel axis resulting in a DRF organization.
Register files can also be split between registers that stage
memory operations and registers that provide short term
storage for arithmetic units, resulting in a Hierarchical
organization. Finally, restricting the access pattern of the
hierarchical organization to streams of data results in a
Stream organization.

We have developed models of the area, delay, and
power dissipation of a register file organization to analyze
the various partitioned register organizations. These mod-
els shows that the central register file organization has area

and power dissipation that grow as N3 and delay that grows

as N3/2. By separating data-parallel computations, the
C-way SIMD organization reduces area, delay, and power

dissipation by 1/C2, 1/C3/2, and 1/C2, respectively. By sep-
arating inter-ALU communication from data storage, the
DRF organization has area and power dissipation that grow

with N2 and delay that grows with N. The Hierarchical
organization masks the effect of memory latency on regis-
ter area, delay, and power dissipation.

We introduce the Stream organization which improves
the Hierarchical organization by reducing the number of
ports into the memory staging register file. Experiments on
organizations with 48 arithmetic units show that the Stream
organization offers an area, delay, and power savings of
195, 20, and 430 over the central register file organization
that can be realized with a performance degradation of only
8%.

As wires come to dominate the area and performance
of processors, efficient execution demands that the move-

ment of data and instructions on a chip be explicitly con-
trolled and optimized. The partitioned register file
architectures described in this paper are a first step toward
such explicit communication architectures. Future work
must address issues of distributed control and compilation
to exploit locality on such explicit communication archi-
tectures.

References
[1] DALLY, WILLIAM J. AND POULTON, JOHN W. Digital Systems

Engineering, Cambridge University Press: New York, NY,
1998.

[2] DIEFENDORFF, K., Sony’s Emotionally Charged Chip: Killer
floating-point “Emotion Engine” to power PlayStation 2000.
Microprocessor Report (April 19, 1999), pp. 1, 6-11.

[3] FARKAS, KEITH I., ET. AL., The Multicluster Architecture:
Reducing Cycle Time Through Partitioning. In Proceedings
of the International Symposium on Microarchitecture
(November 1997), pp. 149-159.

[4] JOUPPI, NORMAN P., Improving Direct-Mapped Cache Perfor-
mance by the Addition of a Small Fully-Associative Cache
and Prefetch Buffers. In Proceedings of the International
Symposium on Computer Architecture (May 1990),pp. 364-
373.

[5] KECKLER, STEPHEN W., ET. AL., The MIT Multi-ALU Proces-
sor. Hot Chips IX, (August 1997) Stanford, CA, pp 1-8.

[6] KESSLER, R. E., The Alpha 21264 Microprocessor. IEEE
Micro (March-April 1999), pp. 24-36.

[7] LEE, RUBY B., Subword Parallelism with MAX-2. IEEE
Micro (August 1996), pp. 51-59.

[8] LEE, RUBY B. AND SMITH, MICHAEL D., Media Processing: A
new design target. IEEE Micro (August 1996), pp. 6-9.

[9] OED, WILFRIED, Cray Y-MP C90: System features and early
benchmark results. Parallel Computing (August 1992), pp.
947-954.

[10] PELEG, ALEX AND WEISER, URI, MMX Technology Extension
to the Intel Architecture. IEEE Micro (August 1996), pp. 42-
50.

[11] RANGANATHAN, PARTHASARATHY, ET. AL., Performance of
Image and Video Processing with General-Purpose Proces-
sors and Media ISA Extensions. In Proceedings of the Inter-
national Symposium on Computer Architecture (May 1999),
pp. 124-135.

Figure 11. Performance of media processing kernels across five register organizations.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Central SIMD SIMD/DRF HIERARCHICAL STREAM

(A) Raw Performance

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Central SIMD SIMD/DRF HIERARCHICAL STREAM

(B) Performance with Latency

Convolve DCT Transform FFTShader FIR

0

50

100

150

200

250

SIMD SIMD/DRF HIERARCHICAL STREAM

(C) Performance/Area

11

[12] RAU, B. RAMAKRISHNA, ET. AL., The Cydra 5 Departmental
Supercomputer: Design philosophies, decisions, and trade-
offs. In Computer (January 1989), pp. 12-35.

[13] RAU, B. RAMAKRISHNA, GLAESER, CHRISTOPHER D., AND
PICARD, RAYMOND L., Efficient Code Generation for Horizon-
tal Architectures: Compiler techniques and architectural sup-
port. In Proceedings of the International Symposium on
Computer Architecture (April 1982), pp. 131-139.

[14] RIXNER, SCOTT, ET. AL., A Bandwidth-Efficient Architecture
for Media Processing. In Proceedings of the International
Symposium on Microarchitecture (December 1998), pp. 3-
13.

[15] RUSSELL, RICHARD M., The Cray-1 Computer System. In
Communications of the ACM (January 1978), pp. 63-72.

[16] TREMBLAY, MARC, ET. AL., VIS Speeds New Media Process-
ing. IEEE Micro (August 1996), pp. 10-20.

[17] TURLEY, JIM AND HAKKARAINEN, HARRI, TI’s New ‘C6x DSP
Screams at 1,600 MIPS. Microprocessor Report (February
17, 1997), pp. 14-17.

Appendix
Table 3 gives the equations for the area, delay, and power
dissipation of a register file used to derive the formulae for
the 12 register file organizations introduced in this paper.
These equations give a lower bound approached by actual
register files. Table 4 presents the area, delay, and power
models for the 12 register file organizations included in
this study, based upon the equations in Table 3.

The area equations for the register files and switches
given in Table 3 are explained in Section 2.1. The DRF
switch area can be derived directly from Figure 3. In addi-
tion to the register cells themselves, the register file must
have a decoder to drive the word lines, and, for large
enough files, sense amplifiers to recover the bit line signals
after they have traversed the cells in the register file. In
practice, these structures comprise roughly 20% of the reg-
ister file area. For example, in a multithreaded micropro-
cessor [5], the storage cells comprise 81% of the area of a
7-ported, 64-bit, 75 entry register file and the storage cells
comprise 78% of the area of a one port, 128 Kb RAM.

The total delay of a register file can be broken down
into two components: wire propagation delay and fan-in/
fan-out delay, as explained in Section 2.2. The wire propa-
gation delay component of total delay is given by tw(d) =

d/v0, where d is distance and v0 is velocity. The fan-in/fan-
out delay is the sum of the word-line and bit-line delays.
For the word-line delay, the register file address bits must
fan out to every cell in the register file, bR, where each cell
has transistor gate capacitance, Cword, and wire capaci-
tance, (w+p)Cw. In addition, the worst case wire delay for a

word line is (w+p)(bR)1/2. For the bit-line delay, bits must
fan in from all register cells, R, where each cell has transis-
tor capacitance, Cbit, and wire capacitance, (h+p)Cw. The

wire delay is a function of the length of one bit line,

(h+p)(bR)1/2. These equations give a lower bound for a
register file’s access time. All delays in Table 3 are given in
units of fan-out-of-four inverter (FO4) delays. An FO4
delay is less than 100ps for a modern 0.18µm process. A
cycle time of 20 FO4 delays is assumed, which corre-
sponds to a clock frequency, fcyc, of greater than 500MHz.

Power dissipation at a node is given by
P=CnodeV∆Vαfcyc. The activity factor, α, is the probability
that a node changes from 0 to 1 on a given cycle, and is 1/4
for random data. E0 is the energy required to charge a min-
imum sized inverter, CminV∆V. Therefore, power dissipa-

tion at a node can be computed as P=CxE0 αfcyc, where
Cx=Cnode/Cmin. The power dissipation of driving a wire,
Pw(d), is directly proportional to the length of the wire, d.
During a register-file access, the power dissipation per port
in the word lines, Pword (R, p), is due to switching the

capacitance of (bR)1/2 cells on one word line. The power
dissipation per port in the bit lines, Pbit (R, p), is due to

switching the capacitance of (bR)1/2 cells on (bR)1/2 bit

Table 3. Base Area, Delay, and Power Equations.

Element Equation

Register Area

Central Archi-
tecture Area

DRF Switch
Area

DRF Architec-
ture Area

Wire Delay

Word Line
Delay

Bit Line Delay

RF Access
Time

Wire Power
Dissipation

Word Line
Power Dissipa-
tion

Bit Line Power
Dissipation

RF Access
Power Dissipa-
tion

AR p() b w p+() h p+()=

AC N r pe, ,() rN AR pe 3+()N()⋅ AFU N⋅+=

ASW N r pe, ,() pe 2+() pe 1+() bN()2

 2pe 3+() AFU

 pe 2+()w pe 1+()h+() rb

+[

]bN
3 2⁄

+=

ADRF N r pe, ,() rN AR 2()⋅ ASW N r pe, ,()
 AFU N⋅

+ +=

tw d() d v0⁄=

tword R p,() Cword w p+()Cw+()bR()
4

 tw w p+() bR()

+log=

tbit R p,() Cbit h p+()Cw+()R()
4

 tw h p+() bR()

+log=

ta R p,() tword R p,() tbit R p,()+=

Pw d() CwE0df
cyc

=

Pword R p,() Cword w p+()Cw)E+
0

bR()fcyc=

Pbit R p,() Cbit h p+()Cw+()E
0

bR[]

⋅
α bRfcyc

=

Pa R p,() Pword R p,() Pbit R p,()+=

12

lines with probability α. These power equations do not dif-
ferentiate between reads and writes of the register files.

Table 4. Area (A), Delay (t), and Power (P) of the 12 Register Organizations. The 3 letter subscripts denote the particular
architecture: (F)lat/(H)ierarchical/(S)tream, (S)calar/(V)ector-SIMD, and (C)entral/(D)istributed. Additional subscripts in the delay and

power equations denote global (G), stream buffer (SB), and local (L) delay and power.

Central (A) SIMD (B)

DRF (C) SIMD/DRF (D)

Hierarchical/Central (E) Hierarchical/SIMD (F)

Hierarchical/DRF (G) Hierarchical/SIMD/DRF (H)

Stream/Central (I) Stream/SIMD (J)

Stream/DRF (K) Stream/SIMD/DRF (L)

AFSC N() AC N ra rmT+ M, ,()=

tFSC N() ta ra rmT+()N M 3+()N,() 2tw AFUN()+=

PFSC N() M 3+()N P⋅ a ra rmT+()N M 3+()N,() 3Nbα P⋅ w AFUN()+=

AFVC N() C AFSC N C⁄()⋅=

tFVC N() tFSC N C⁄()=

PFVC N() C P⋅ FSC N C⁄()=

AFSD N() ADRF N rrrira rmT+ M, ,()=

tFSD N() ta 1 2⁄() rrrira rmT+() 2,() tw 2 AFSD N()()+=

PFSD N() rr 2+()N P⋅ a 1 2⁄() rrrira rmT+() 2,() 2M 3+()Nbα P⋅ w AFSD N()()+=

AFVD N() C AFSD N C⁄()⋅=

tFVD N() tFSD N C⁄()=

PFVD N() C PFSD N C⁄()⋅=

AHSC N() rmTN AR M G+()N()⋅ AC N ra G, ,()+=

tHSCG N() ta rmTN M G+()N,()=

tHSCL N() ta raN G 3+()N,() 2tw AFUN()+=

PHSCG N() M G+()N Pa rmTN M G+()N,()⋅=

PHSCL N() G 3+()N P⋅ a raN G 3+()N,() 3Nbα P⋅ w AFUN()+=

AHVC N() C AHSC N C⁄()⋅=

tHVCG N() tHSCG N C⁄()=

tHVCL N() tHSCL N C⁄()=

PHVCG N() C P⋅ HSCG N C⁄()=

PHVCL N() C P⋅ HSCL N C⁄()=

AHSD N() rmTN AR M G+()N() ADRF N rrrira G, ,()+⋅=

tHSDG N() ta rmTN M G+()N,() tw 2 ADRF N rrrira G,,()()+=

tHSDL N() ta 1 2⁄()rrrira 2,() tw 2 ADRF N rrrira G,,()()+=

PHSDG N() M G+()N P⋅ a rmTN M G+()N,() 2GNbα P⋅ w ADRF N rrrira G,,()()+=

PHSDL N() rr 2+()N P⋅
a

1 2⁄()rrrira 2,() 3Nbα P⋅ w ADRF N rrrira G,,()()+=

AHVD N() C AHSD N C⁄()⋅=

tHVDG N() tHSDG N C⁄()=

tHVDL N() tHSDL N C⁄()=

PHVDG N() C P⋅ HSDG N C⁄()=

PHVDL N() C P⋅ HSDL N C⁄()=

ASSC N() rmTNA
R

1() AC N ra G, ,() G M+()N rs G M+()N AR 2()⋅()+ +=

tSSCG N() ta rmTN 1,()=

tSSCSB N() ta rs G M+()N 2,()=

tSSCL N() tHSCL N()=

PSSCG N() Pa rmTN 1,()=

PSSCSB N() 2 G M+()N P⋅ a rs G M+()N 2,()=

PSSCL N() PHSCL N()=

ASVC N() C ASSC N C⁄()⋅=

tSVCG N() tSSCG N C⁄()=

tSVCSB N() tSSCSB N C⁄()=

tSVCL N() tHSCL N C⁄()=

PSVCG N() C P⋅ SSCG N C⁄()=

PSVCSB N() C P⋅ SSCSB N C⁄()=

PSVCL N() C P⋅ HSCL N C⁄()=

ASSD N() rmTNA
R

1() ADRF N rrrira G, ,() G M+()N rs G M+()N AR 2()⋅()+ +=

tSSDG N() tSSCG N()=

tSSDSB N() tSSCSB N() tw 2 ADRF N rrrira G,,()()+=

tSSDL N() tHSDL N()=

PSSDG N() PSSCG N()=

PSSDSB N() PSSCSB N() 2GNbα P⋅ w ADRF N rrrira G,,()()+=

PSSDL N() PHSDL N()=

ASVD N() C ASSD N C⁄()⋅=

tSVDG N() tSSCG N C⁄()=

tSVDSB N() tSSDSB N C⁄()=

tSVDL N() tHSDL N C⁄()=

PSVDG N() C P⋅ SSCG N C⁄()=

PSVDSB N() C P⋅ SSDSB N C⁄()=

PSVDL N() C P⋅ HSDL N C⁄()=

