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ABSTRACT

This paper deals with a periodic review inventory system in which a con-
stant proportion of stock issued to meet demand each period feeds back into
the inventory after a fixed number of periods. Various applications of the
model are discussed, including blood bank management and the control of
reparable item inventories. We assume that on hand inventory is subject to
proportional decay. Demands in successive periods are assumed to be indepen-
dent identically distributed random variables. The functional equation defining
an optimal policy is formulated and a myopic base stock approximation is
developed. This myopic policy is shown to be optimal for the case where the
feedback delay is equal to one period. Both cost and ordering decision compar-
isons for optimal and myopic policies are carried out numerically for a delay
time of two periods over a wide range of input parameter values.

INTRODUCTION

This paper deals with the analysis of inventory systems in which recycling occurs. The
term recycling is used here to indicate that a fixed fraction of the stock used to satisfy demand
returns to inventory after a fixed number of periods.

Feedback or recycling in inventory systems can occur in a number of different ways.
Examples include systems where customers buy items with a rent/purchase option and return
items that are not ultimately purchased. Another cause of recycling is the result of over-
ordering stock. This occurs in hospital and regional blood banks since physicians requesting
blood for their patients tend to over-order by a factor of two or three. A further application of
recycling occurs in retail sales systems where a fixed fraction of stock purchased by customers
may be returned, and subsequently mixed with existing inventory.
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The phenomenon of recycling can also be observed in reparable item inventories. An
issue stock inventory is maintained to replace items in the field which are subject to failure.
Failed items are returned for repair and after a fixed delay time (which includes the time
required for transportation and repair), the repaired item is returned to the issue stock inven-
tory. A fraction of those items that fail are condemned and leave the system forever. The
reparable item system is pictured in Figure 1.

FRACTION (1-a) OF ITEMS
ARE CONDEMNED AND LEAVE
THE SYSTEM

EXTERNAL
FAILED UNITS ARE REPAIR
SHIPPED IMMEDIATELY FACILITY

TO REPAIR FACILITY

FRACTION a OF ITEMS
ARE REPAIRED AND
RETURNED A PERIODS LATER

STOCK IS ISSUED TO REPLACE
FAILED UNITS
EXTERNAL DEMAND - ISSUE STOCK
ITEMS MAY BE ORDERED FROM
ESXJ:;,RL':';‘RL EXTERNAL SUPPLIER WITH
ZERO LEADTIME

FiGURE 1.

Previous analyses of this class of inventory system have been restricted primarily to simu-
lation studies of blood banks (Cohen and Pierskalla [2]), or systems where demand is deter-
ministic and the proportion of stock recycling is treated as a random variable (Cohen, Nahmias
and Pierskalla [3]). Related reparable item inventory models include Prawda and Wright [4]
and Allen and D’Esopo [1]. This paper treats the case where demand (or failure) is stochastic
and where the fraction of stock that feeds back into the system is fixed.

The paper begins with a description of notation and assumptions for a general model with
arbitrary recycle lag and stochastic demand and the functional equation satisfied by the optimal
order policy is formulated. A myopic approximation to the optimal order policy and conditions
for its optimality are derived for the case of an arbitrary recycle period. The optimality of this
policy for the case where the recycle period is equal to one is then demonstrated.

The final section reports on the results of a numerical analysis comparing optimal and
myopic policies for a variety of cases where the recycle lag is equal to two periods. These
results suggest that the myopic policy provides a very effective approximation to the optimal.
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MODEL ASSUMPTIONS AND NOTATION
A periodic review inventory system with the following features is considered:

® Successive demands {D;} are independent and identically distributed random variables
with known cumulative distribution function F(-) and density ().

® A fixed fraction, a, of stock issued to meet demand is returned after a delay of A >
1 periods. The fraction, 1 — a, is consumed.

] A fixed fraction, B, of stock on hand at the end of each review period survives,
without decay, into the next period and the fraction, 1 — B, is lost to decay.

] Excess demand is lost in each period.

® There is no leadtime for ordering. That is, orders are received in the period in which
they are placed.

®  Excess demand is lost (lost sales).

Time periods are numbered forward by integers n, n =1, 2, ..., T, where T is the decision
horizon for the problem.

The following variables describe the state of the system each period:

1 = (Iy,...,I,_y) is the vector of stock quantities issued to meet demand in the previ-
ous A—1 periods. Interpret /; as the quantity issued exactly / periods previously.

u = gstarting inventory before ordering but after the arrival of recycled stock in the
current period.

z = inventory on hand after ordering and after returns in the current period.

The state of the system at any point in time is described by the vector (1,1 ), and the decision
variable (the order quantity), is given by z — w.

We will adopt the common conventions that the holding cost function 4 (-) and the shor-
tage cost function p(-) are convex functions of ending stock in each period. The outdating cost
is assumed to be # per unit of stock that outdates at the end of each period, and the procure-
ment cost is ¢ per unit. If follows that the one period expected holding, shortage, and outdate
cost function, say L (z), is a convex function of the starting stock z, and is given by

L) = E{hlGz - D)1+ pl(D-2)*1+6(1-pB) (z— D)},
= [T —rWai+ [ pt—Df0dr+00-p) [ s Oa

Assuming that future costs are discounted by o where 0 < a < 1, it follows that the
functional equations defining an optimal policy are given by:
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C,(ul)=min{c(z — u) + L(2)

z2u

z
+af Cu Bz — 0+ al iy, ... L) f(War
+ aj; Cn+l (al)‘_l,Z,Il, .... ,I A_z)f(f)dt

for n>1 and Cry; () = 0. Note that this is equivalent to assuming that stock remaining at the
end of the horizon is not salvaged. Other salvage assumptions are possible and will be con-
sidered in the next section.

Here C, (1) has the interpretation as the minimum expected discounted cost at the start
of period n when u is the starting stock after returns, and / is the vector of previously issued
stock.

The process dynamics are implied in the functional equations above. Let ¢ be the realiza-
tion of demand in period n. Then there are two cases:

(@) t < z In this case (~ B) (z — 9 is lost due to decay and B(z — ¢t) transfers to the
next period which combines with the stock which recycles in period n + 1, al,_;.
Exactly  units are issued to meet the demand. In this case if (u,]) is the state vector
in period n, it follows that (8(z — ¢t) + al,_y,t1,,...,I,_,) is the state vector in
period n + 1.

(b) ¢ > z In this case ending stock in period » is zero and no stock decays or is
transferred to the following period. Starting stock the next period consists only of
the stock which recycles in period n + 1, which is al,_;. Since only z can be issued
to meet demand, the state vector one period hence is (al,_1,z,11,...,1,_5).

The optimal policy is to order the max (z, (I ) — u,0) where z,(/), the order to point,
minimizes the bracketed term on the right hand side of the functional equation above. Compu-
tation of an optimal policy will be difficult due to the limitations of dynamic programming with
vector valued state variables. However, for A = 1 under reasonably general conditions the
optimal policy can be shown to reduce to a single critical number in each period. In addition, a
critical number approximation is derived for the case A > 1.

A MYOPIC CRITICAL NUMBER APPROXIMATION

We will assume as above, that periods are numbered forwards and the planning horizon is
exactly T periods where A € T < +o. We ignore the case 7 < X\, as the feedback process
will not be relevant, and the optimal policy reduces to the ordinary critical number order policy.
The variables u, and z, are still to be interpreted as starting stock after returns before and after
ordering respectively in period n. In addition, let (/(1),...,7(\)) represent stock issued in the
final A periods. That is, /(1) is issued in period T — A + 1, /(2) is issued in period T — X + 2,
...,and J()) is issued in period T.

In order to construct the approximation we will need to assume that all stock remaining in
the system at the end of the horizon can be salvaged at a return equal to the purchase cost of ¢
per unit. This includes stock on hand at that time, (u7.;), and the stock issued in the final A
periods of the horizon (1), ..., I(\). In addition, we assume that the issued stock cannot be
salvaged until it returns to inventory. Hence al (1) is salvaged in period T + 1, a/(2) in period
[T]+) 2, ..., and af(\) in period T + X. (The salvage assumption was first used by Veinott
S].
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With these assumptions, the total discounted cost over T periods, say TC(z), when fol-
lowing the ordering policy z = (z,,...,z7) is

T A
TC(z) = E{E a" ez, —u,) + LI~ aTeuryy — ¢ Y e lal (k).
ne=i k=1

The process dynamics imply that
B(zp-1— D, for2< n <A
Un = [,B(z,,_l —D,_)*+amin (z,_,,D,_,) forA+ 1< n < T+1
and (k) = min(zz_,4,Dra+x) for 1 < k< A,

By a rearrangement of terms, one can show that

TC(z) = ZT, a1 W(z,) — cuy,

ne==l

where
W(z,) = Elc(z, — aB(z, — D,)* — a* a min(z,,D,)] + L(z,) for1 €< n< T.
We have the following result:
THEOREM 1: Assuming

1. All inventory on hand in periods T + 1, ..., T + X can be salvaged in that period
at a return of c¢ per unit.

2. p'(0) > (1—-ata)c

3. P[D,, > -q-i-‘;t-l-]z']=lforl <£n<T

4, uy < z*

where z* is the minimizing point of W (z) and is the root of the equation W'(z*) = 0, then the
optimal policy is to order to z* every period.

T T
PROOF: Since ), W,(z*) < Y W,(2), it follows that z* is the optimal order to point if

. nw=} nw}
z* can be achieved. It will be possible to order to z* in period n if and only if z* — u, > 0.
Following the policy z* in every period implies that

U, = B(z* = D,-)* + a min (z*D,-,) |
< B(z* = Dy-)* + az* = max(az* (a + B) z* — BD,_,).
Clearly az* < z* By assumption 3, (@ +8) z*-8D,.; < (@+8) z*— (@a+B8—-1)
z* = z* hence, u, < z*

Since W(z) is convex in z, and by assumption 2, #'(0) < 0, we have that z* > 0.
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a_+_g:_1] z’]=1for 1< n < T, and hence

the myopic policy defined in Theorem 1 is optimal when only assumptions (1), (2) and (4)
hold.

COROLLARY: For A =1, P{D, >

PROOF: For A = 1 we have,
u, = B(z*~ D,_)* + a min(z* D, ),

and it follows easily that u, < z* for all realizations of D,_;.

When all costs are linear, z* will be given by,

, . _ gl p—c(l—ara)
W z F p+h+0(1—B8)—~acB—-a*la)]

Assumption 3 in Theorem 2 is somewhat tautological when A > 2, since z* depends on
the distribution of D,. When this assumption does not hold, it may not be possible to order to
z* in every period as it will not necessarily be true that u, < z* However, since the expected
cost function, W(z), tends to be relatively flat in a neighborhood of the minimum, it seems
reasonable to conjecture that when assumption 3 is not met, ordering (z* — u,)* in every
period should give a good approximation.

In order to test this conjecture, numerical computations are performed for A = 2 in the
next section. Dynamic programming is used to compute the optimal stationary policy which is
then compared to z* for a variety of demand distributions and cost configurations.

NUMERICAL COMPARISONS FOR A = 2

A series of runs were carried out for a variety of configurations of the system parameters
to compare the effectiveness of the approximation to the optimal policy when the recycle delay
was two periods. In order to reduce the number of different factors considered, the cost param-
eters (c,h,p) are combined into the single constant m = (p — ¢)/(p + A) (which is motivated
by the solution to the newsboy problem). For each demand distribution the following factors
and levels are considered:

(1) cost ratio, m €
(2) return fraction, a €
(3) outdate cost, g € (1,2}
(4) outdate fraction, B €

These factor levels lead to a 36 case experiment. The discount factor o was fixed at .95,
order cost ¢ at 1 and holding cost 4 at .5. The required values of m were achieved by setting p
at 2.5, 5.5 and 28.5, respectively.

The total 36 case experiment was run, for uniform, exponential and geometric distribu-
tions each with a mean value of five which resulted in a total of 108 cases. The output for a
typical case is illustrated in Table I. The optimal solution was computed by standard value
iteration techniques and the myopic policy was computed from (1). A 30 period horizon was
selected to minimize transient effects. Convergence to the stationary optimal policy generally
occurred in ten periods or less. We note, from Table I, that both the optimal solution and cost
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penalty for using the myopic approximation are relatively insensitive to changes in the initial
inventory level. The maximum percent cost penalty for using the myopic policy is 0.3% in this
case.

TABLE I-— Optimal and Approximate Policies Jor the Case
m=.5a=.2,0 =18 = .8 Poisson Demand

Initial Optimal Myopic Average Cost
Inventory Ordgr Order-up per Period % Difference
I Function | -to Level in Cost
(z*(I)) (z» using z*(I) | using z*
0 6 5 3.232 3.240 0.2
1 6 5 3.227 3.237 0.3
2 6 5 3.225 3.236 0.3
3 5 5 3.211 3.218 0.2
4 5 5 3.205 3.212 0.2
5 6 5 3.200 3.208 0.3
6 6 5 3.196 3.205 0.3
7 6 5 3.193 1.204 0.3
8 5 S 3.179 3.186 0.2
9 5 5 3.173 3.181 0.3
10 6 5 3.169 3.176 0.2

Table II summarizes 36 runs selected from the set of 108 runs. The runs illustrated were
selected by taking the worst case (that is, the largest cost error) over the three demand distribu-
tions for each case. Optimal and myopic policies and costs for just the single initial inventory
level of five are indicated, since, as noted above, the results are not sensitive to the initial
inventory level. Table II also indicates the maximum percent cost differences for each case
taken over all initial inventory level values. Note that the maximum percent cost penalty
ranges from 0.0% to 6.9% over all factor values. In addition, also note that 71% of all 108 cases
had a maximum cost difference of less than 1% and that only 6.5% had a maximum cost
difference of more than 5%.

It seems reasonable to conjecture that the myopic policy will also provide a good approxi-
mation for values of A, the recycle delay parameter, larger than two as well. The approximation
has the dual advantage of being both easy to compute and easy to implement. The model
presented here is applicable to a variety of inventory problems where stock recycling is present,
including blood bank inventory control and reparable item management.
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Optimal Approx. Average
Run Demand Optimal [ Average . Cost of Maximum
# m | @ | theta | beta CDF z* (5) Cost at Pozlicy Approx. | % Penalty
I=25 Policy
1 S0 402 1 2 Geometric 2 3.372 1 3.501 4.0
2 541 .2 1 2 Poisson 6 4.802 b 5.026 4.7
3 95| .2 1 2 Uniform 10 7.658 9 7.969 4.1
4 S0 .5 1 .2 Poisson 5 3.041 4 3.198 5.2
5 a5 1 .5 1 2 Uniform 7 5.542 7 '5.542 0.0
6 951 .5 1 2 Uniform 10 6.890 9 7.21 4.7
7 S50 1.8 1 2 Poisson 5 2.566 4 2.745 6.9
8 a5 1 .8 1 2 Uniform 7 4.932 7 4932 0.0
9 951 .8 1 2 Uniform 10 6.188 9 6.525 5.5
10 50 ] .2 2 2 Geometric 1 3.589 1 3.593 B
11 a5 ] .2 2 2 Poisson 5 5.394 5 5.394 0.0
12 951 .2 2 2 Poisson 8 7.980 7 8.403 5.3
13 501 .5 2 .2 | Uniform 3 4.649 3 4.649 0.0
14 as 1.5 2 2 Uniform 7 6.603 6 6.639 0.1
15 951 .5 2 2 Poisson 8 7.236 7 7.655 5.9
16 S50 .8 2 2 Geometric 2 3.095 1 3.188 3.7
17 a5 1 .8 2 2 Poisson 6 4.101 5 4193 2.2
18 95 | .8 2 2 Poisson 8 6.557 7 7.003 6.7
19 50 ) .2 1 8 Poisson 6 3.200 5 3.208 0.4
20 T5 1 2 1 R Geometric 6 3.652 5 3.728 - 2.1
21 95 1 2 1 8 Geometric 9 4.608 9 4.609 0.0
22 S0 0.5 1 8 Uniform 7 3.161 6 3.217 1.9
23 a5 41 .5 1 8 Uniform 9 3.666 8 3.696 0.8
24 951 .5 1 8 Poisson 9 3.655 9 3.656 0.0
25 50 1 .8 1 .8 Geometric 3 2.162 4 2.185 2.6
26 51 .8 1 R Geometric 6 2.903 6 2.926 1.4
27 |95 ] .8 1 .8 Geometric 9 3.883 9 3.885 0.2
28 S50 .2 2 .8 Uniform 6 4.090 6 4.093 0.1
29 51 .2 2 .8 Poisson 7 3.944 6 4.030 2.3
30 95 1+ .2 2 .8 Poisson 9 4.828 8 5.060 4.8
31 500 .5 2 .8 Uniform 6 3.417 6 3.427 0.4
32 51 .5 2 .8 Poisson 7 3.208 6 3.323 3.6
33 951 .5 2 .8 Poisson 9 4.086 8 4.312 5.5
34 501 .8 2 8 Poisson 6 2.070 5 2.092 1.3
35 a5 1 .8 2 8 Poisson 7 2.629 6 2.699 2.1
36 951 8 2 8 Poisson 9 3.499 8 3.639 3.9
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