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ABSTRACT

We present a corpus-based study of musical rthythm, based
on a collection of 4.8 million bar-length drum patterns
extracted from 48,176 pieces of symbolic music. Ap-
proaches to the analysis of rhythm in music information
retrieval to date have focussed on low-level features for re-
trieval or on the detection of tempo, beats and drums in
audio recordings. Musicological approaches are usually
concerned with the description or implementation of man-
made music theories. In this paper, we present a quantita-
tive bottom-up approach to the study of rhythm that relies
upon well-understood statistical methods from natural lan-
guage processing. We adapt these methods to our corpus of
music, based on the realisation that—unlike words—bar-
length drum patterns can be systematically decomposed
into sub-patterns both in time and by instrument. We show
that, in some respects, our rhythm corpus behaves like nat-
ural language corpora, particularly in the sparsity of vo-
cabulary. The same methods that detect word collocations
allow us to quantify and rank idiomatic combinations of
drum patterns. In other respects, our corpus has proper-
ties absent from language corpora, in particular, the high
amount of repetition and strong mutual information rates
between drum instruments. Our findings may be of direct
interest to musicians and musicologists, and can inform the
design of ground truth corpora and computational models
of musical rhythm.

1. INTRODUCTION

In Western popular music and jazz, the main percussive
instrument is the drum Kkit, consisting of a collection of
drums and cymbals arranged around the drummer. Drum
kits can contain a large range of different instruments. The
bass drum (or kick drum) is usually the drum with the low-
est frequency and is operated via a foot pedal. The snare
drum, the dominant back-beat instrument, has a higher-
pitched sound with additional noise components from the
snares spanned across its lower skin. The hi-hat is made
from two cymbals facing each other, which the drummer
can open and close via a foot-pedal. The closed hi-hat has
a short, high-pitched sound, whereas the open hi-hat has a
longer sustain. Ride cymbals have a sustained high-pitched
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(a) a pattern in i meter

(b) pattern projected to the bass drum/snare drum space

Figure 1: Example drum patterns in drum tab notation,
with musical time on the x axis; strong lines are beats.
Drums from bottom to top: bd — bass drums, sd — snare
drums, hh — hi-hat closed/pedal, ho — hi-hat open, ri — ride
cymbals, cr — crash cymbals, to — toms, tb — tambourine,
hc — hand clap, pe — other percussion.

ring, while the crash cymbals’ sound is usually more noise-
like. Tom-toms are drums of intermediate sizes between
the bass and snare drums. Hand-claps and tambourine are
often used to provide additional colour, along with further
varied percussion instruments, which we do not discuss in
this study. The history and makeup of the modern drum kit
is covered comprehensively elsewhere, e.g. [3].

In music information retrieval (MIR), most research on
rhythmic features has concentrated on beats, meter and
tempo. The tracking of beats establishes a temporal grid on
a piece of music, which is useful to anchor other descrip-
tors of a musical piece in time. The timing of beats also
determines the tempo, which correlates with the perceived
speed of the music [10]. The automatic identification of
meter [9] is also based on beats, and provides additional
rhythmic information. However, neither meter nor tempo,
nor their combination, capture the temporal sequence of
rhythmic events. Several audio features have been devel-
oped to include this temporal information [5, 17, 19] with
considerable success, especially for clear-cut cases such as
the classification of ballroom dances [4]. Being concerned
with good performance in retrieval tasks, these methods
are deliberately agnostic to how the rhythmic signal was
originally created. On the other end of the spectrum lies
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the automatic transcription of music, and that of drums in
particular. Drum transcription algorithms [7, 22, 23] usu-
ally neglect musical higher-level context such as meter and
simultaneous rhythm patterns. One possible exception is
Paulus’s n-gram model of drum sequences [18] that in-
forms transcription. The n-gram model demonstrates that
context models can be useful to suppress errors, but it is
also quite obvious that modelling rhythm as sequences of
half-beat length symbols is a strong simplification that can-
not capture interactions of concurrent rhythms played on
multiple drums. A further simplification present in most
drum transcription papers is the very small set of different
drums considered: bass drum, snare drum and hi-hat. In
this paper, we consider a much larger rhythm space, both
in terms of temporal context and drum instrumentation.

Comparatively little work in MIR has quantitatively ex-
amined rhythms in symbolic data. While Muramaki’s work
on drum fill detection [15] is concerned with analysis, most
work is focussed on improving music production, for ex-
ample by combination drum loops of suitable complexity
[21]. The study of thythm has a long tradition in musicol-
ogy, but only in recent decades has empirical music analy-
sis found its way into the musicological tradition. Notable
tools include the Humdrum Toolkit [8], jSymbolic [14] and
music21 [2], which facilitate the processing of symbolic
music, but do not directly examine the statistical properties
of the corpus itself, nor provide tools as sophisticated as
those available for natural language processing. In the do-
main of harmony, some attempts have been made to anal-
yse chord progressions with language models [13,20].

In this paper, language models are employed to analyse
the statistical properties of a large corpus of drum parts, to
reveal the degree of variety within and between pieces, and
to discover interdependencies between different parts of
the drum kit. In the next section we describe our represen-
tation of rthythm patterns, while in section 3 an overview
of the data set, consisting of 48,176 MIDI files, is given.
Section 4 provides the results of our analyses, and the final
two sections contain a brief discussion and conclusions.

2. DRUM PATTERN DEFINITION

In order to build a corpus of drum patterns, we need to
segment the music into short chunks whose lengths corre-
sponds to meaningful metrical units. Since we are deal-
ing with a symbolic representation which provides unam-
biguous onset times, the main effort required is to parse
the events according to the metrical structure, suppress-
ing performance-related information such as fluctuations
in tempo, timing, and dynamics, which—for the purposes
of this study—we are not interested in. Instead, similar to
linguists building text corpora from stemmed words with
grammatical endings removed, we build reduced drum pat-
tern models by applying five levels of abstraction.

Bar segmentation. The tracks are segmented into bars as
encoded in the MIDI files. Each bar is a foken, the funda-
mental unit, similar to word tokens in language.

Drum categorisation. We summarise the General MIDI
standard drums into 10 known drum categories (see
Figure 1) and one unknown category.
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count portion

4/4 4305516 90.3%

3/4 188,297 3.9%

2/4 114,068 2.3%

6/8 53,681 1.1%

12/8 19,575 0.4%
other 84,830 1.7%

Table 1: Distribution of time signatures in the corpus.

Tempo abstraction. We discard tempo information (but
not metrical structure).

Intensity abstraction. We discard sound intensity infor-
mation, i.e. MIDI velocity.

Quantisation. We quantise the drum notes relative to the
beat, reducing the granularity to a grid of 12 equally spaced
divisions per beat span, and retain only their onset time.

The resulting representation contains approximately the
same information that would be found in traditional score
notation. After this “stemming” procedure, we charac-
terise a drum pattern via the presence (or absence) of drum
onsets for each beat, position within the beat, and drum
category, as visualised in the example drum tab represen-
tation shown in Figure la. Hence, a bar with IV, beats
can be represented as a binary sequence of NV, x 12 x 11
bits. For the most frequent time signature, §, the number
of beats is N;, = 4, and so the space of possible } patterns
allows 24X12x11 ~ 10159 different patterns. Thus, despite
five abstraction steps, we have retained an extremely large
pattern space. Since the space is much larger than any data
set, it is clear that large parts of the space will never ap-
pear in actual music. We show later that we can not only
quantify the size of the space used in a given corpus, but
also make predictions about how much of the space will be
used as the corpus grows.

We define drum pattern sub-spaces by discarding some
drums or metric positions. For example, if we restrict
our attention to sub-patterns made of only bass and snare
drums, a large number of different full patterns with, say,
different use of the hi-hat would be mapped to the sub-
pattern shown in Figure 1b.

3. DATA

We collected 72,283 unique MIDI files from the Internet.
In order to understand the nature of the resulting collec-
tion, we drew a random sample of 100 songs and manually
classified them. The sample mainly contains pop/rock mu-
sic (62 songs), film music (10), jazz (9), classical (7) and
country/folk music (6). Of the six remaining songs, five are
of various genres and one was not decodable. A large pro-
portion of the songs are good-quality renditions of popular
recordings.

A study of the within-track interonset intervals (IOIs)
on the whole dataset reveals that many songs are already
quantised; about a third of the songs (34%) contain > 99%
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(a) All metrical positions

predicted

# types at P Raw Rioe
drums #types 20Mtokens in% in% in%
all 656798 1688906 6.23 73.5 334
bd 46243 101230 045 91.1 64.2
sd 62647 143525 0.62 90.5 67.5
bd/sd 186688 454218 1.90 85.5 526
hh/ho 76351 174590 0.79 913 69.4
cmb 170344 415935 1.76 858 543
to 29394 70500 0.30 953 859
hc/tb/pe 84417 191712 0.88 944 81.9
bd/sd/cmb 466962 1176552 4.76 77.6 38.5
(b) Beats 1 and 2 only

predicted

# types at P Raw Rioe
drums #types 20Mtokens in% in% in%
all 342453 786850 3.30 82.1 48.0
bd 7602 14788 0.07 949 76.8
sd 14272 30612 0.14 947 79.5
bd/sd 48493 106701 047 91.3 68.5
hh/ho 21460 44131 020 945 79.1
cmb 57287 124465 0.54 90.8 64.8
to 7523 16782 0.07 97.2 92.1
hc/tb/pe 32014 67845 0.31 96.1 86.9
bd/sd/cmb 198699 454309 1.94 85.1 529

Table 2: Sub-pattern statistics. P is productivity (see
Section 4.2), R are repetition indices (Section 4.3).

I0I-quantised events, while 60% still contain > 75% IOI-
quantised events. Our impression that the songs are usually
carefully crafted for authentic playback is reflected in the
fact that 71% of the songs have varied velocities (less than
half of the notes uses the most popular velocity), i.e. it is
likely that only few songs are MIDI exports from music
typesetting programs.

In order to limit the influence of abnormally long songs
only notes less than 20 minutes into any song are con-
sidered. Very soft drum notes (velocity < 20) are re-
moved. We exclude songs with empty drum tracks, and
those whose musical beat is likely to be out of sync with
the MIDI beat (i.e. where the frequency of on-beat drum
notes is < 50% that of the most frequent quantisation).

After decoding, the collection contains 4,765,947 bar
tokens in 48,176 files, which corresponds to a mean of
around 99 bars per song. The overwhelming majority, 90%
of bars, is in § time, with only a few other time signatures
exceeding 1% of the corpus (see Table 1).

The terms type and token are borrowed from natural lan-
guage processing and will be used here as follows:

type: unique drum pattern (= unique word in language),

token: drum pattern type instance.

The overall number of bar types in our database is
656,798. The sub-pattern spaces retain the same number
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Figure 2: Type frequencies V,. by token count r for drum
patterns (filled squares), drum pattern by song (filled trian-
gles), the Brown language corpus (blank squares).

of tokens, but can have dramatically fewer distinct pattern
types, as Table 2 (column 2) shows.

4. RESULTS

This section provides an overview and discussion of some
insights that can be gained from our corpus of drum
patterns. More exhaustive information is available at
http:/fisophonics.net/ndrum.

4.1 Large Number of Rare Events

As with many natural language corpora, the distribution of
type counts and the frequencies of these type counts are ex-
tremely skewed. Figure 2 shows a plot called frequency-of-
frequencies plot, in which the number of type occurrences
r in the database is plotted against the number of types V.
that occur r times. The figure shows three graphs: drum
pattern counts, song-wise drum pattern counts (one per
song in which the type occurs), and word type counts from
a corpus of American English, the Brown Corpus. The
number V7 of types that occur only once in the whole col-
lection is greatest; tokens occurring twice already account
for much smaller fractions of the corpora, a phenomenon
often referred to as large number of rare events (LNRE).
The log-log scale plot in Figure 2 illustrates an addi-
tional property of the data: all distributions can be approx-
imated by a straight line, a characteristic of “scale-free”
distributions. For a discussion of this phenomenon, see,
for example, [16]. While the full drum pattern count (filled
squares) resembles the word distribution in the Brown cor-
pus in slope (the absolute height reflects that the Brown
corpus has only 1M tokens), it is not as smooth as the
Brown corpus’s. However, the unstable nature of the graph
is not random; rather, the higher values at multiples of
2 reflect the usual organisation of music in units of even
multiples of bars. As we would expect, then, counting the
number of songs in which a type appears leads to a much
smoother graph (filled triangles) that is unaffected by rep-
etitions. We will return to song-wise counts in Section 4.3.
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4.2 Vocabulary Growth

For LNRE distributions we can estimate how fast the num-
ber of types (in our case: distinct drum patterns) is growing
with vocabulary size. A popular measure for that is pro-
ductivity P [1]. For a corpus of size NV with V; types that
occur only once, productivity is calculated as

P =Vi/N. (1

This measure is an indicator of the potential to generate
new patterns. The productivity of large pattern spaces is
generally much higher than that of smaller sub-spaces. For
example, all productivity values in Table 2b, where the
sub-patterns are constrained to the first two beats of a bar,
are far smaller than the respective ones in table 2a. More
interestingly, however, there are also large differences to
be found between single drums. For example, the produc-
tivity of the snare drum as shown in table 2a is far greater
than that of the bass drum in the same table, suggesting
that snare drum patterns are used more creatively (most
probably due to the bass drum usually being operated by
one foot). In fact, assuming a Zipf-Mandelbrot model [6],
we can predict the vocabulary size as a function of corpus
size; Table 2 displays productivity values and the predicted
number of tokens for a vocabulary size of 20 million.

4.3 Repetition and Different Ranking Types

Simply using the relative frequencies p,s of pattern types
is the standard way to measure word probabilities, but it
is less informative in music because of the high amount of
repetition present. In our paper on chord progressions [12]
we suggest to use the proportion of songs a (chord) pattern
occurs in, which we call pg, here. For example, count-
ing a token only once per song reduces the overall token
count from N = 4,765,967 to Ny, = 1,264,139 for
the full pattern spaces. A softer way of reducing the in-
fluence of repetition is motivated by the observation that
drum patterns in consecutive bars are often identical: one
can eliminate tokens that are exact repetitions of the im-
mediately preceding token. This locally non-repeating set
has N, = 3,176,153 tokens, with relative frequencies
denoted by pjo.. We use the reduced token counts to define
local and song-wise repetition indices:

NOC NQW
lezlf# and Ry =1 — =¥

)
Table 2 lists the repetition indices (in %) for different sub-
pattern corpora. Even the full patterns have a song-wise
repetition index Ry, of 74%, meaning that only just more
than a quarter of the drum patterns per song are unique. A
similar picture emerges when looking at local repetition,
which accounts for Ry, ~ 33% of all tokens. Repetition is
even more dominant in smaller sub-patterns: Ry, = 90%
of snare drum pattern tokens are repeated within a song,
and Ry, = 68% are repetitions of the preceding bar.

In Figure 3, we show the 10 most common bar-length
patterns in the corpus. Empty patterns with different time
signatures occupy the 1st, 4th and 5th rank, while stan-
dard rock patterns using only bass, snare and closed high-
hat occupy the remaining ranks. A variation with a swing
high-hat pattern appears at rank 9.
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1.
hh —6—¢—6—6—6—0¢—0—
sd L 2 L 4

2. bd *
hh ¢—6—¢—6—6—6—0—6—
sd L 4 L 4

3 bd ¢ L —

4.

5.
hh ¢—6—¢—6—6—6—6—0—

- T S S S
hh  &—& —o—¢ 4
sd

7. bd *
hh —0—¢—¢—06—0—¢—¢—
sd L 2 L 4

8. bd @ *
hh ¢—6—¢—6—6—6—6—6—
sd L 4 L 4

9. bd *—
hg o o

10. Sd * T ® h

Figure 3: Ranking by p,s score (Section 4.3).

The song-wise results are shown in Figure 4, with the
empty patterns removed. Although some of the same pat-
terns appear, the non-empty pattern which occurs in the
most songs is a crash cymbal and bass drum on the first
beat of the bar, presumably at the end of a piece or sec-
tion. Rank 3 and 7 have quarter note patterns often used
for “counting in” a song, while ranks 4 and 8 are the two
sub-patterns of the rank 2 pattern—a single crash cymbal
and a single bass drum respectively. Ranks 5 and 6 con-
tain standard rock drum beats seen previously. The results
with local repetition removed (i.e. ranked by pj,.) are sim-
ilar and are not shown here. Comprehensive rankings can
be found at http://isophonics.net/ndrum.

4.4 Collocations and Typical Drum Patterns

Linguists have long realised that interesting, idiomatic
word combinations do not usually appear in the top ranks
when sorted by frequency. Collocations—combinations of
two words that occur more often than would be expected
from their individual frequencies—are usually more inter-
esting and meaningful. One strategy to discover colloca-
tions is to consider two hypothetical models: H;, by which
the likelihood of one of the tokens to occur depends on the
other, and H,, by which their occurrences are independent.
One can then calculate the likelihood ratio

L(H,)
L(Hz)

log A = log 3)

of the two hypotheses for any pair of word types—or
indeed drum pattern types. We follow Manning and
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- bd @ *—¢
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7. bd
8. bd &
Figure 4: Ranking by ps, score (Section 4.3).
hh —6—6—¢—6¢—6—
15 5 . T *
sd 4 \ g
20. bd 4
ho ————6¢——6¢—6¢—
hh & * ¢ 4
sd
27 B ¢ *

Figure 5: Ranking by collocation score (Section 4.4).

Schiitze’s approach [11, Chapter 5], assuming binomial
type count distributions, and calculate log A scores for
combinations of bass drum/snare drum patterns on the one
hand and hi-hat (open and closed) patterns on the other.

Ranking by the collocation score (3) results in a list of
typical drum patterns that need not necessarily be frequent.
Figure 5 shows some example of rarer patterns that never-
theless rank much higher than in the frequency rankings
discussed in Section 4.3. For example, the typical § pat-
tern at rank 15 appears only at rank 99 in the raw frequency
ranking (and at ranks 59 and 389 when ranked by 7, and
Tsw» Tespectively). The 3 pattern at rank 20, too, is much
further down the frequency rankings (48, 115, 264), as is
the disco-style pattern at collocation rank 27 (35, 67, 171).

4.5 Mutual Information

That the decomposition of drum patterns is meaningful can
be illustrated by the fact that the information flow between
the sub-patterns across the corpus models musical relation-
ships between them. The entropy (in bits) of a discrete
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Figure 6: Hierarchical clustering of nine drum types by
mutual information. The distance matrix is based on the
inverted, normalised mutual information values (see text).

distribution X in with probabilities p; is defined as

N
H(X)=- pilog,p; “)
=1

with the convention that if p; = 0, then p; log, p; = 0.
It expresses how much information is needed in order to
represent the distribution. While this is interesting in it-
self, we are interested in how much information two drum
pattern sub-spaces X and Y share. This is what mutual
information expresses. It is defined as

I(X;Y)=HX)+HY)-HX,Y). (5

To normalise the measure we divide by the sum of the in-
dividual entropies, and to turn the similarity into a measure
of divergence we take the exponential of its negation:

I(X;Y) } .

H(X)+ H(Y)

This allows us to calculate pair-wise divergence values be-
tween all drum types. The result is visualised in Figure 6
as a binary tree obtained by hierarchical clustering with
the complete-linkage algorithm. The more information is
shared between drums according to d, the closer they will
appear on the tree. The algorithm has indeed recovered
aspects of the usage of the drum kit, with the drums that
form the core of most rthythms in popular music—bass
drum, snare drum and hi-hat—grouped together on the
right, loosely associated with the percussion instruments.
Within the remaining drums on the left hand side, the ride
cymbals have their own branch, whereas the tambourine is
grouped with hand claps, and crash cymbals with tomtoms,
with each grouping suggesting high mutual information.

d(X,Y) =exp {— (6)

5. DISCUSSION AND FUTURE WORK

We must be aware that findings made in the MIDI domain
may only partially be applicable to other music. Further-
more, the size of the database prohibits the manual verifi-
cation of every song. In addition to the measures described
in Section 3, automatic sanity checks could further reduce
the noise in the data.

We expect that the outcomes of the present study will be
valuable to musicians and researchers, so we are interested
in a rigorous evaluation of its usefulness. Several scenar-
ios are conceivable. For example, our system can easily
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be extended to return a ranked list of pattern synonyms,
i.e. patterns that are used in similar contexts as the query
pattern—a creative tool for drummers. A useful music in-
formatics application could be to extend the promising n-
gram technique for audio drum transcription proposed by
Paulus, especially with models that “back off”’ [11, Chapter
6] not only in time, but also in the sub-pattern instrument
spaces presented in this paper.

6. CONCLUSIONS

We have introduced a novel method of empirical research
on musical thythm by considering bar-length drum pat-
terns and treating them analogously to words in natural lan-
guage processing. This paper has shown that the approach
yields useful and interesting results because the palette of
tools available from natural language processing can—to a
large extent—be used in the musical domain, too.

We have found that the distributions of drum patterns
resemble those of and English words, and have used this
fact to predict different vocabulary growth behaviours in
our musical corpus. Vocabulary growth predictions can be
useful to inform decisions on how much ground truth is
needed to cover a given proportion of unseen data.

We have discovered some properties that clearly distin-
guish our data from language corpora, most prominently
the extremely high degree of repetition. A second, more
subtle, difference is that drum patterns can be decomposed
in time and by instrument, yielding distributions with dif-
ferent characteristics.

We have proposed three simple ways of ranking drum
patterns by raw frequency, repetition-reduced frequency,
and song frequency. In order to identify not only fre-
quent, but inferesting drum pattern combinations, we have
applied collocation ranking to our drum corpus. For
musicians, the pattern rankings, which can be found at
http://isophonics.net/ndrum, may be the most interesting
aspect of this paper.

Finally, by calculating the mutual information flow be-
tween sub-patterns pertaining to the individual drum cat-
egories, drum categories that are musically related cluster
together.

We believe that the corpus-based study of rhythm as
proposed in this paper is interesting not only to musi-
cians. Musicologists and music informatics researchers
might find it a valuable resource to obtain a quantitative
view on rhythm and drum patterns.
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