
Royal Institute of Technology (KTH)
Dept. of Microelectronics and Information Technology (IMIT)

Stockholm, Sweden

Universidad Politécnica de Madrid (UPM)
Facultad de Informática (FI)

Madrid, Spain

Secure Mobile Voice over IP

Master of Science Thesis

June 2003

Student: Israel M. Abad Caballero
Supervisor at KTH / IT: Professor Gerald Q. Maguire Jr.
Supervisor at FI UPM: Professor Pedro Gómez−Vilda

Secure Mobile Voice over IP

Abstract

Voice over IP (VoIP) can be defined as the ability to make phone calls and to send faxes (i.e., to do
everything we can do today with the Public Switched Telephone Network, PSTN) over IP−based data
networks with a suitable quality of service and potentially a superior cost/benefit ratio.

There is a desire to provide (VoIP) with the suitable security without effecting the performance of this
technology. This becomes even more important when VoIP utilizes wireless technologies as the data
networks (such as Wireless Local Area Networks, WLAN), given the bandwidth and other constraints of
wireless environments, and the data processing costs of the security mechanisms. As for many other (secure)
applications, we should consider the security in Mobile VoIP as a chain, where every link, from the secure
establishment to the secure termination of a call, must be secure in order to maintain the security of the
entire process.

This document presents a solution to these issues, providing a secure model for Mobile VoIP that minimizes
the processing costs and the bandwidth consumption. This is mainly achieved by making use of high−
throughput, low packet expansion security protocols (such as the Secure Real−Time Protocol, SRTP); and
high−speed encryption algorithms (such as the Advanced Encryption Standard, AES).

In the thesis I describe in detail the problem and its alternative solutions. I also describe in detail the selected
solution and the protocols and mechanisms this solution utilizes, such as the Transport Layer Security (TLS)
for securing the Session Initiation Protocol (SIP), the Real−Time Protocol (RTP) profile Secure Real−Time
Protocol (SRTP) for securing the media data transport , and the Multimedia Internet KEYing (MIKEY) as
the key−management protocol. Moreover, an implementation of SRTP, called MINIsrtp, is also provided.
The oral presentation will provide an overview of these topics, with an in depth examination of those parts
which were the most significant or unexpectedly difficult.

Regarding my implementation, evaluation, and testing of the model, this project in mainly focused on the
security for the media stream (SRTP). However, thorough theoretical work has also been performed and will
be presented, which includes other aspects, such as the establishment and termination of the call (using SIP)
and the key−management protocol (MIKEY).

i

Secure Mobile Voice over IP

Sammanfattning

Voice over IP (VoIP) kan defineras som förmågan att göra ett telefonsamtal och att skicka fax (eller att göra
allting som man idag kan göra över det publika telefonnätet) över ett IP−baserat nätverk med en passande
kvalitet och till lägre kostnad, alternativt större nytta.

VoIP måste tillhandahållas med nödvändiga säkerhetstjänster utan att teknikens prestanta påverkas. Detta
blir allt viktigare när VoIP används över trådlösa länktekniker (såsom trådlösa lokala nätverk, WLAN), givet
dessa länkars begränsade bandbredd och den bearbetningkraft som krävs för att exekvera
säkerhetsmekanismerna. Vi måste tänka på VoIPs säkerhet likt en kedja där inte någon länk, från säker
uppkoppling till säker nedkoppling, får fallera för att erhålla en säker process.

I detta dokument presenteras en lösning på detta problem och innefattar en säker modell för Mobile VoIP
som minimerar bearbetningskostnaderna och bandbreddsutnyttjandet. Detta erhålls huvudsakligen genom
utnyttjande av säkerhetsprotokoll med hög genomströmning och låg paketexpansion, såsom "Secure Real−
time Protocol" (SRTP), och av krypteringsprotokoll med hög hastighet, såsom "Advanced Encryption
Standard" (AES).

I detta dokument beskriver jag problemet och dess alternativa lösningar. Jag beskriver också den valda
lösningen och dess protokoll och mekanismer mer detaljerat, till exempel "Transport Layer Security" (TLS)
för att säkra "Session Initiation Protocol" (SIP), SRTP för att skydda transporten av data och "Multimedia
Internet KEYing" (MIKEY) för nyckelhantering. En implementation av SRTP, kallad MINIsrtp, finns också
beskriven.

Beträffande praktiskt arbete och tester av lösningsmodellen har detta projekt fokuserats på skyddandet av
datatransporten (SRTP), dess implementation och prestanda. Emellertid har en grundlig teoretisk
undersökning genomförts, vilken innefattar andra aspekter såsom telefonsamtalets uppkoppling och
nedkoppling (med hjälp av SIP) och valet av passande nyckelhanteringsprotokoll (MIKEY) för att stödja
SRTP.

ii

Secure Mobile Voice over IP

Preface

This work has been performed as a degree project at Telecommunication Systems Laboratory (TSLab),
Department of Microelectronics and Information Technology (IMIT), Kungl Tekniska Högskolan (KTH),
Stockholm, Sweden, during the period February 2003−June 2003.

I would like to express my sincere thanks to:

Prof. Gerald Maguire, my supervisor at KTH, for his help, his encouragement, his suggestions, and
the opportunity he gave me of joining IMIT for developing my degree project;
Jon−Olov Vatn, for all his inestimable help, his patient, his continuous encouragement, his
suggestions, and his kindness;
Erik Eliasson, for his help to develop MINIsrtp , his permission to use MINISIP and MIKEY source
code, and for his ideas and suggestions for the project;
Prof. Pedro Gómez−Vilda, my supervisor at FI UPM, for his support and the opportunity he gave
from my home university of studying at KTH;
all the friends who were near me during my stay in Stockholm, specially Álvaro, Jürgen, and Nacho.

A special thank to my parents, who gave me the opportunity of coming and studying here in Stockholm , and
always support my decisions. To my family and friends, that took care of me from Spain during my stay
here. To Miguel, my brother, one of my best friends and one of my strongest supports. And specially to
Rocío, for all the love she gave me during this year, and without whose continuous support and infinite
patient this would not have been possible.

Other acknowledgements:

Petra Rubalcaba (FI UPM); Elisabetta Carrara (Ericsson); Mark Baugher and David McGrew (Cisco
Systems, Inc.); Aaron Gifford; Johan Bilien; Jürgen Prokop for his help with Figure 5.5; Professor Jean−
Jacques Quisquater and the Microelectronics Laboratory Crypto Group (Université Catholique de Louvain,
UCL), for their permission for using Figure 5.3.

The source code shown in this document that is copyright protected by Erik Eliasson (TSLab, IMIT, KTH)
appears with his permission.

Figure 5.3 appears in this document with the explicit permission of Professor Jean−Jacques Quisquater,
Microelectronics Laboratory − Crypto Group, Université Catholique de Louvain (UCL).

iii

Secure Mobile Voice over IP

Table of Contents

Abstract .. i

Sammanfattning ... ii

Preface .. iii

1. Introduction ... 1

2. Voice Over IP Overview .. 3
2.1 Introduction .. 3
2.2 Components, Protocols, and Standards .. 3

3. Introduction to SIP and RTP ... 6
3.1 Session Initiation Protocol (SIP) ... 6

3.1.1 Introduction ... 6
3.1.2 Functionality ... 6
3.1.3 SIP Requests and Responses ... 8

3.2 Real−Time Protocol (RTP) ... 9
3.2.1 Introduction ... 9
3.2.2 Terminology and Definitions ... 10
3.2.3 RTP Packet Format .. 10
3.2.4 RTCP Packet Format ... 11

4. Security Services .. 13
4.1 Security Attacks .. 13
4.2 Authentication .. 14
4.3 Access Control ... 14
4.4 Data Confidentiality ... 14
4.5 Data Integrity .. 15
4.6 Non−Repudiation .. 15
4.7 Availability ... 15

5. Cryptography Overview ... 16
5.1 Basic Knowledge .. 16

5.1.1 Introduction .. 16
5.1.2 Symmetric Cryptography ... 17
5.1.3 Asymmetric Cryptography ... 18
5.1.4 Symmetric Cryptography vs. Asymmetric Cryptography 19
5.1.5 Cryptanalysis ... 19
5.1.6 One−way Hash Functions and MACs ... 20
5.1.7 Overview of the Hash−based Message Authentication Code: HMAC 21
5.1.8 Certificates .. 21
5.1.9 Location of encryption devices ... 22

5.2 Basic Algorithm and Methods ... 22
5.2.1 Advanced Encryption Standard (AES) .. 22

5.2.1.1 AES History .. 22
5.2.1.1 Overview of the Algorithm ... 22

5.2.2 Data Encryption Standard (DES) .. 25
5.2.3 Secure Hash Algorithm (SHA) ... 25

5.2.3.1 SHA History ... 25

iv

Secure Mobile Voice over IP

5.2.3.1 Overview of the Algorithm .. 25
5.2.4 Hash−Based Message Authentication Code 27

6. Public−Key Infrastructures ... 29
6.1 Introduction and Terminology .. 29
6.2 X.509 Certification Infrastructure .. 29

6.2.1 Chaining ... 31
6.2.2 Revocation of Certificates and Certificate Revocation Lists (CRLs) 31

6.3 Certification Infrastructure Models .. 33

7. Introduction to Security Protocols and Related Protocols 36
7.1 Internet Protocol Security (IPSec) .. 36

7.1.1 Introduction, Applications, and Benefits of IPSec 36
7.1.2 IPSec Architecture ... 37

7.1.2.1 IPSec Transport and Tunnel Modes .. 37
7.1.2.2 Authentication Header (AH) .. 38
7.1.2.3 Encapsulating Security Payload (ESP) 39

7.2 Transport Layer Security (TLS) ... 40
7.2.1 Introduction, Applications, and Benefits .. 40
7.2.2 SSL/TLS Architecture .. 40

7.2.2.1 SSL/TLS Record Protocol ... 40
7.2.2.2 SSL/TLS Handshake Protocol ... 42

7.3 Key Management Protocols ... 44
7.3.1 Introduction .. 44
7.3.2 IKE / ISAKMP ... 45
7.3.3 Simple Diffie−Hellman Key Exchange .. 45

8. Objective: Enabling a Secure Mobile VoIP call ... 47

9. Mobile Voice over IP: The Model and its Components 49
9.1 Significant Components ... 49

9.1.1 Mobile Nodes ... 49
9.1.2 SIP Servers ... 50
9.1.3 DSN Servers ... 50

9.2 The SIP Trapezoid .. 50
9.3 The SIP Registration ... 51
9.4 The RTP Session ... 51
9.5 Other Components .. 51

9.5.1 Home Agents .. 52
9.5.2 AAA Servers .. 52
9.5.3 Access Points .. 52

10. Alternative Solutions for Secure Mobile Voice over IP 54
10.1 Security Requirements of the Model .. 54
10.2 Securing SIP .. 55

10.2.1 Using SSL/TLS in a PKI ... 56
10.2.2 Using IPSec ... 57
10.2.3 Securing SDP Bodies and SIP Headers ... 58
10.2.4 Securing the DNS look−up .. 58
10.2.5 Conclusions .. 58

10.3 Securing the media stream ... 59
10.3.1 Secure Transport Protocol ... 59
10.3.2. Key Management .. 59

v

Secure Mobile Voice over IP

11. A Secure Model for Mobile Voice over IP ... 61
11.1 Overview of the Model .. 61
11.2 Interoperation of the Components ... 62
11.3 Rationale .. 63

11.3.1 TLS supported by a PKI .. 63
11.3.2 DNSSEC .. 63
11.3.3 The User Agent: MINISIP .. 64
11.3.4 SRTP vs. IPSec and VPNs .. 64
11.3.5 MIKEY .. 64

12. SIP Security ... 65
12.1 Background ... 65
12.2 TLS within SIP ... 65
12.3 A First Approach .. 66

13. Secure Real−Time Protocol .. 67
13.1 SRTP Description .. 67

13.1.1 SRTP Packet .. 67
13.1.2 SRTCP Packet .. 69
13.1.3 Message Authentication and Integrity ... 70
13.1.4 Key Derivation ... 70
13.1.5 Cryptographic Context ... 71
13.1.6 Packet Processing ... 71
13.1.7 Predefined Algorithms ... 71

13.1.7.1 Encryption .. 72
13.1.7.2 Message Authentication and Integrity 72

13.2 SRTP Implementation: MINIsrtp .. 72
13.2.1 Introduction .. 72
13.2.2 Tools ... 73
13.2.3 Features .. 73
13.2.4 Description ... 73

13.2.4.1 Classes .. 74
13.2.4.2 Algorithm .. 75
13.2.4.3 SRtpPacket Class Methods ... 76
13.2.4.4 CryptoContext Class Methods .. 77
13.2.4.5 Bug Information .. 78
13.2.4.6 License ... 78

14. Multimedia Internet KEYing (MIKEY) ... 79
14.1 Overview ... 79
14.2 MIKEY Framework for Secure Mobile VoIP ... 82

14.2.1 Terminology Relationship ... 82
14.2.2 MIKEY within SIP ... 82
14.2.3 MIKEY Integration into SDP .. 83
14.2.4 Error Handling ... 83
14.2.5 MIKEY Over an Unreliable Transport Protocol 83
14.2.6 MIKEY Payloads ... 83
14.2.7 MIKEY Interface ... 84
14.2.8 MIKEY Exchange Method: Signed Diffie−Hellman 84

15. Description of the Implementation of the Model and its Analysis 85
15.1 Implementation .. 85

15.1.1 MINIsrtp Development .. 85
15.1.2 Integration of MINIsrtp into MINISIP User Agent 85

vi

Secure Mobile Voice over IP

15.1.3 Setting up of the SIP Servers .. 86
15.2 Analysis and Validation of the Model ... 86

15.2.1 MINIsrtp Correctness .. 87
15.2.2 Performance Measurements on MINIsrtp 88

16. Conclusions and Future Work .. 93
16.1 Conclusions .. 93
16.2 Future Work in this Area .. 93

Appendix A: MINIsrtp Source Code .. 95
Appendix B: A First Approach to a MIKEY Messages Implementation 114
Appendix C: Acronyms .. 118
Appendix D: Notation .. 120
Appendix E: Glossary ... 121

Figures and Tables Index .. 123

References ... 126

vii

Secure Mobile Voice over IP

1 Introduction

The integration of Voice over IP (VoIP) into the wireless environments has become the new challenge
within the telecommunications world. The limited bandwidth and other constraints present in the wireless
environment limit the performance of this technology. Furthermore, the addition of suitable security
mechanisms to Mobile VoIP in order to provide the process with the necessary security services limits more
that performance.

This document presents a possible solution for Secure Mobile Voice over IP. Two main ideas have been kept
in mind while designing this solution. First, we must carefully define the security services which the model
is to be provided with. Second, suitable security mechanisms must be selected in order to implement the
necessary security services without effecting the performance of the model. Our solution for this issue,
provides a secure model for Mobile VoIP that minimizes the processing costs and the bandwidth
consumption. This is mainly achieved by making use of high−throughput, low packet expansion protocols;
and high−speed encryption algorithms.

We may consider a VoIP call as a three−phase process: establishment, conversation, and termination. The
first and the third phases typically make use of a signalling protocol, such as the Session Initiation Protocol
(SIP), while the second utilizes the Real−Time Protocol (RTP) to transport the media data. Therefore, this
project handles the signalling protocol security and the data transport protocol security independently. The
main goal of this document is the description of a suitable solution to achieve this security without effecting
the performance of the model.

Mobility aspects of the model are not explicitly considered in this project, although this paper may be one of
the bases for future work in this area, since the proposed solution is based on the use of mobile devices
operating in wireless environments.

Regarding practical work and tests of the model, this project in mainly focused on the security for the media
stream (by using the Secure Real−Time Protocol, SRTP). However, thorough theoretical work has also been
performed, which includes other aspects as said above, such as the establishment and termination of the call
(using the Session Initiation Protocol, SIP) and the key−management protocol to be used.

This paper is mainly divided into two parts. The first part gives a detailed description of several protocols,
mechanisms, and concepts important for the context of the project, while the second part is entirely related
to the problem itself, showing some requirements of the model, some alternative solutions, and finally the
selected architecture and the rationale.

Regarding the first part, a short introduction to VoIP is given in section 2. The Session Initiation Protocol
(SIP) and the Real−Time Protocol (RTP) are briefly described in section 3. Section 4 introduces the reader to
the different Security Services we need to provide. These services are implemented by security mechanisms.
Probably the most important security mechanism today is cryptography, described in detail in section 5.
Furthermore, the cryptographic algorithms used in our model, such as Advanced Encryption Standard (AES)
and Hash−Based Message Authentication Code based on Secure Hash Algorithm (HMAC−SHA1) are also
described. Section 6 gives a brief introduction to the Public−Key Infrastructures and the use of certificates.
Finally, several Security Protocols, such as Transport Layer Security (TLS) and IP Security Architecture
(IPSec) are described in section 7.

The second part starts by presenting the problem to be solved in section 8. Section 9 makes an overall
presentation of the Secure Mobile VoIP components and requirements. Alternative solutions to secure the
model are given in section 10, while section 11 presents our solution and a rationale for it. Section 12
describes in more detail than the previous section our solution for secure SIP by establishing a Public Key
Infrastructure (PKI) supporting TLS. The solution selected for securing the media data (Secure Real−Time

1

Secure Mobile Voice over IP

Protocol, SRTP) is thoroughly described in section 13 along with its implementation (MINIsrtp). SRTP is a
high−throughput security profile of RTP that minimizes the packet expansion. The description of the key−
management protocol chosen to support the SRTP sessions (Multimedia Internet KEYing, MIKEY) and a
framework for this project are presented in section 14. MIKEY is an efficient key−management protocol
specifically oriented to support secure media transport protocols, such as SRTP. Section 15 contains the
analysis and evaluation of our solution.

To end with, some conclusions and a summary of future work regarding the project are given in section 16.

Appendix A presents the MINIsrtp source code, Appendix B provides a first approach to a reference
implementation for MIKEY messages and payloads, while the acronyms, the notations, and the glossary of
this paper are given in Appendix C, Appendix D, and Appendix E, respectively. Finally I provide an index of
figures and tables, and the list of references.

2

Secure Mobile Voice over IP

2 Voice over IP Overview

Voice over IP has become a very interesting research area within the telecommunications field during the
last years, given its advantages regarding low call costs. This report examines its integration into the
wireless communications world given the limited bandwidth and other constraints present in this
environment. The desire to provide suitable security support is the aim of many researchers nowadays. This
sections briefly introduces the reader to VoIP technology.

2.1 Introduction

Voice over IP (also referred to asVoice over Packet, Voice over Internet Protocol, or simply VoIP)
consists of several interconnected components that convert a voice signal into a stream of packets on a
packet network, and viceversa. Thus, VoIP can be defined as the ability to make phone calls (i.e., to do
everything we can do today with thePublic Switched Telephone Network,PSTN) and to send faxes over
data networks with a suitable quality of service and much superior cost/benefit.

A new rich set of advantages and possibilities has emerged with the VoIP technology. Since data traffic
has been growing much faster during the last years than telephone traffic, there has been considerable
interest in transporting voice over data networks (allowing this voice and fax traffic to travel concurrently
with data traffic over a packet data network), rather than the traditional data over voice networks. This
fact places the existing telephone capabilities at a significantly lower "total cost of operation". As far as
the end users are concerned, a significant example would be the cost savings for long−distance telephone
calls, where these users would not be imposed with additional constraints. On the other hand, the increase
of their traffic volumes becomes very attractive for theInternet Service Providers(ISPs), and the
equipment producers now have an opportunity to innovate and compete.

2.2 Components, Protocols, and Standards

Figure 2.1 depicts the infrastructure of a VoIP system. A significant component of the model is the
Gateway. The Gateway is in charge of converting the media provided in one type of network to the format
required for another type of network.

3

Secure Mobile Voice over IP

Figure 2.1 VoIP Infrastructure

The voice packets are transported using IP in compliance with a specification for transmitting multimedia
(voice, fax, video, and data) across a network. There are several specifications, recommendations, and
standards for performing this transmission:

� ITU−T H.323
� Media Gateway Control Protocol (MGCP), from level 3, Bellcore, Cisco, and Nortel
� IETF MEGACO/H.GCP
� IETF Session Initiation Protocol (SIP)
� ITU−T T.38
� IETF SIGTRAN
� Skinny, from Cisco

SIP is nowadays of special interest. SIP is an IETF standard specified in Request For Comments (RFC)
3261[3], and defines a signaling protocol for creating, modifying, and terminating sessions1. Regarding
the data transport itself, the most important protocol to handle this is the Real−Time Protocol (RTP)[2].

As far as the quality of service (QoS) and performance are concerned, VoIP is a delay−sensitive
application, so a well−engineered, end−to−end network is necessary. Issues such as delay, jitter,
congestion, packet−loss, and misordered packet arrival must be carefully handled.

1. These sessions are considered exchanges of data between participants, and include Internet telephone calls, multimedia
distributions, and multimedia conferences.

4

Internet

Wireless

ISDN

PSTNInternet

Ingress
Router

MCU

Gateway

Gatekeeper

Router PC

Telephone

Telephone

Handphone

Secure Mobile Voice over IP

The following list summarizes some examples of services provided by a VoIP network according to
market requirements:

� Phone−to−phone
� PC−to−phone and phone−to−PC
� fax−to−fax
� fax−to−email and email−to−fax
� Wireless Connectivity
� PC−to−PC

This study is concerned with the PC−to−PC VoIP service, assuming the users have the appropriate
software and hardware installed on their PCs (user agents, sound card, headsets, etc.).

5

Secure Mobile Voice over IP

3 Introduction to SIP and RTP

This section provides a short introduction to the Session Initiation Protocol (SIP) and the Real−Time
Protocol (RTP), widely used in VoIP technology. SIP is the most commonly used protocol to create and
manage the VoIP media sessions, while RTP is the transport protocol in charge of the transmission of the
data in a VoIP session.

3.1 Session Initiation Protocol (SIP)

3.1.1 Introduction

SIP is a signaling protocol used for establishing, modifying, and terminating sessions between
users. SIP is defined by IETF as a standard in RFC 3261.

There are many applications of the Internet that require the creation and management of sessions,
such as multimedia real−time exchanges, which this project is concerned with. There are various
protocols designed to carry this real−time data (voice, video, etc.), such asReal−Time Protocol
(RTP), and SIP works in concert with these protocols by establishing, managing, and terminating
these exchanges.

As described in the SIP standard (RFC 3261), SIP is an application−layer control protocol with the
ability to manage multimedia sessions, such as Internet telephone calls, which makes this protocol
suitable for its use in VoIP.

SIP supports five aspects regarding the establishment and termination of communications sessions:

� User location: Determination of the destination end system.
� User availability: Determination of the willingness of the call party to accept a call to

this device.
� User capabilities: Negotiation of the session parameters.
� Session setup: Establishment of the session.
� Session management: Modification and termination of the session.

Finally, two important ideas to keep in mind are that SIP doesnot provide services, but rather
provides primitives that can be used to implement these services; and that SIP works with either
IPv4 or IPv6.

SIP makes use of anofferer/answerermodel, in which the caller represents theofferer and the
called party represents the answerer.

The purpose of this section is to introduce the SIP protocol. Details such as security issues related
to SIP (one of the goals of this project) are described in detail later in this document.

3.1.2 Functionality

This subsection presents a simple example of the use of SIP between two end users. This example
is related to theSIP Trapezoidand it only shows a simple SIP message exchange. The SIP
Trapezoid is depicted in figure 9.1 and described in section 9.1.

6

Secure Mobile Voice over IP

In this example, one user (the offerer, referred to as "Alice" for simplicity) calls another user (the
answerer, referred to as "Bob") using his SIP identity, a type ofUniform Resource Identifier(URI),
called SIP URI. This SIP URI is similar to an email address and it contains the user name and the
host identifier (for example alice@kth.se). Alice sends a request called INVITE2 to Bob’s provider
SIP server (su.se proxy) via her provider’s SIP server (kth.se proxy). If Bob accepts the call, the
media session is established. Figure 3.1 depicts this process. Section 3.1.3 briefly describes the
requests and responses.

Figure 3.1 SIP setup

There are other aspects of SIP functionality besides the establishment and the termination of the
call. For instance another important issue regarding SIP is the registration of the users with their
provider’s servers. When a SIP−based device (calledUser Agent) comes online, it first must
perform registration with a SIP Registration Server (calledRegistrar). This process is handled by
sending a REGISTER message. Registrations are not normally permanent, they bind the user’s ID
with an IP address where it can be contacted. A brief description of the REGISTER message is
given in the next subsection.

The following list enumerates the main abilities SIP has in the VoIP context:

2. INVITE is an example of SIP method. These methods are described in section 3.1.3.

7

Alice kth.se
proxy

su.se
proxy

Bob

1. INVITE

2. INVITE

4. INVITE3. 100 Trying

5. 100 Trying

6. 180 Ringing

7. 180 Ringing

8. 180 Ringing 9. 200 OK

10. 200 OK

11. 200 OK

12. ACK

MEDIA
SESSION

14. 200 OK

13. BYE

Secure Mobile Voice over IP

� Registering a user with a system
� Inviting users to join a session
� Negotiating the terms and conditions of a session
� Establishing the media stream between two or more end points
� Terminating sessions

More information and details about SIP can be found in the SIP standard (RFC3261).

3.1.3 SIP Requests and Responses

As seen in Figure 3.1, SIP is based on HTTP−like request/response (also referred to as
offer/answer) model. The SIP specification defines a set of request messages (which in turn invoke
SIP methods) and responses to those requests.

The most important method in SIP is theINVITE method, which is used to establish a session
between participants (these participants are supposed to have previously registered with their
respective provider’s SIP Registrars). As an example, the following paragraph shows how the first
INVITE message shown in Figure 3.1 looks:

INVITE sip:bob@su.se SIP/2.0
Via: SIP/2.0/UDP pc33.kth.se;branch=z9hG4bK776asdhds
Max−Forwards: 70
To: Bob <sip:bob@su.se>
From: Alice <sip:alice@kth.se>;tag=1928301774
Call−ID: a84b4c76e66710@pc33.kth.se
CSeq: 314159 INVITE
Contact: <sip:alice@pc33.kth.se>
Content−Type: application/sdp
Content−Length: 142

(Alice’s SDP not shown)

The first line identifies the method name, and the following lines are a minimum required set of
fields of the INVITE message header. These fields are briefly described below:

� Via contains the address at which Alice expects to receive response to her request. The
branch parameter identifies the transaction.

� To contains a display name and the SIP URI to which the request was directed.

� From identifies the originator of the request by his/her display name and his/her SIP
URI. The tag parameter is used for identification purposes.

� Call−ID is a globally unique identifier for this call.

� CSeqstands for Command Sequence and it is an integer used as a traditional sequence
number.

� Contact is a SIP URI that represents a direct route to contact Alice.

� Max−Forwards limits the number of hops to the destination.

� Content−Type describes the message body (the body is not shown).

8

Secure Mobile Voice over IP

� Content−Length defines the length of the message body.

Section 20 in SIP standard describes the complete set of header fields.

The details of the session to be established are not explicitly described by SIP, but these details are
carried in the SIP message body encoded by other protocol, typically theSession Description
Protocol (SDP)[8].

Another important SIP method isREGISTER. As said above, this method is used to register a
device address with a system (via SIP Registration Server or Registrar). It is necessary for a device
to perform the registration in order to provide location information to permit incoming calls.

Other SIP methods are:

� ACK: Confirms that the client has received a final response to an INVITE request.
� BYE: Indicates that the user wants to terminates a session. This message may be sent by

either the originator of the call or the receiver.
� CANCEL: Cancels a previous request message3.

There are many different responses to these methods carried by request messages, all of them
divided into six different groups [7]:

� 1xx Responses: Informational Responses (e.g. 180 Ringing and 100 Trying).
� 2xx Responses: Successful Responses (e.g. 200 OK).
� 3xx Responses: Redirection Responses (e.g. 302 Moved Temporarily).
� 4xx Responses: Request Failure Responses (e.g. 404 Not Found).
� 5xx Responses: Server Failure Responses (e.g. 503 Service Unavailable).
� 6xx Responses: Global Failure Responses (e.g. 600 Busy Everywhere).

The complete list and description of the SIP requests and responses can be found in the SIP standard.

3.2 Real−Time Protocol (RTP)

3.2.1 Introduction

Since 1996, the Real−Time Protocol (RTP) is an IETF standard specified in Request For
Comments (RFC) 1889. RTP is a transport protocol for real−time applications which provides end−
to−end network functions and services suitable for transmitting real−time data, such as audio,
video, or simulation data, over unicast or multicast network services. RTP runs on top of a non−
reliable transport protocol, such as UDP, to make use of the underlying multiplexing and checksum
services.

RTP also provides a control protocol calledRTP Control Protocol(RTCP), used for monitoring
data delivery and to provide minimal control and identification functionality.

The services provided by RTP for the real−time data delivery include sequence numbering, payload
type identification (such as audio samples or compressed video data), timestamping, and delivery
monitoring. Security services for RTP and RTCP may be provided in several different ways, such
as IPSec encapsulation over Virtual Private Networks (VPNs). The RTP standard also presents

3. It is important not to confuse CANCEL message with BYE message. See Chapter 7, pg. 164 in [7] for a better clarity.

9

Secure Mobile Voice over IP

some mechanisms to provide this security. However, a powerful alternative is the RTP profile
Secure Real−Time Protocol(SRTP)[15]. RTP security issues and solutions to secure the RTP and
RTCP traffic (one of the goals of this project) are described in detail later in this document.

3.2.2 Terminology and definitions

Of special interest for us is the definition of an RTP Session given in RFC 1889:

"RTP session:The association among a set of participants communicating with RTP. For
each participant, the session is defined by a particular pair of destination transport
addresses (one network address plus a port pair for RTP and RTCP). The destination
transport address pair may be common for all participants, as in the case of IP multicast, or
may be different for each, as in the case of individual unicast network addresses plus a
common port pair. In a multimedia session, each medium is carried in a separate RTP
session with its own RTCP packets. The multiple RTP sessions are distinguished by different
port number pairs and/or different multicast addresses"[2].

Other significant definitions are summarized as follows:

� Synchronization Source (SSRC):The source of a stream of RTP packets identified by a
32−bit numeric SSRC identifier carried in the RTP header, so as not to be dependent
upon the network address. The RTP sender is an example of such a source. More
information can be found in [2].

� Contributing Source (CSRC): A source of a stream of RTP packets that has contributed
to the combined stream produced by theRTP mixer. The list of these sources is called
CSRC list . More information about RTP mixer can be found in [2].

� End system:An application that generates the content to be sent in RTP packets and/or
consumes the content of received RTP packets. An end system can act as one or more
synchronization sources in a particular RTP session, but typically act as only one (See
[2]).

3.2.3 RTP Packet Format

The RTP packet consists of a fixed header, a possibly empty list of contributing sources (unicast
transmission), and a payload. The payload contains the real−time application data, such as audio or
video data. Detailed information about the payload types is given in the RTP standard (RFC 1889).

The RTP header is depicted in Figure 3.2, and the fixed part has the following fields:

� Version (V): 2 bits. This field identifies the version of RTP. By default it is set to the
value 2 for the RFC 1889 RTP specification.

� Padding (P): 1 bit. Set to the value 1 if padding has been applied to this packet.

� Extension (X): 1 bit. If the extension bit is set, the header is followed by exactly one
extension field. Detailed information about the RTP extensions is given in section 5.3.1
in [2].

� CSRC count (CC): 4 bits. This field contains the number of CSRC identifiers that follow
the RTP header.

10

Secure Mobile Voice over IP

� Marker (M): 1 bit. The interpretation of this field is defined by a RTP profile. See
section 5.3 in [2] for further information about RTP profiles.

� Payload Type (PT): 7 bits. This field identifies the format of the RTP payload and
determines its interpretation by the real−time application.

� Sequence Number:16 bits. This field increments by one for each RTP packet sent. It
may be used by the receiver to detect packet loss. The initial value of this field is random.

� Timestamp: 32 bits. This value reflects the sampling instant of the first octet in the RTP
packet. As for the sequence number, the initial value is random.

� SSRC: 32 bits. This field identifies the synchronization source.

The CSRC list (zero to fifteen items, each 32 bits in length) identifies all the contributing sources
for the payload of the packet. As noted above, the CC field in the fixed header contains the number
of sources identified.

0 8 16 31

V P X CC M PT Sequence Number

Timestamp

Synchronization Source (SSRC) Identifier

Contributing Source (CSRC) Identifier

...

 Figure 3.2 RTP Header Format

In the figure, the dark grey part corresponds to the fixed header, while the light grey part indicates
the optional CSRC list.

3.2.4 RTCP Packet Format

RTP specification in defines several types of RTCP packets:

� SR: Sender Report. Used by a sender for transmitting statistics.
� RR: Receiver Report. Used by a receiver for transmitting statistics.
� SDES: Source Description items.
� BYE: Indicates end of participation.
� APP: Application specific functions.

Each RTCP packet begins with a fixed part similar to that of RTP data packets. This part is
followed by structured elements of variable length according to the packet type, but always ending
on a 32−bit boundary[2].

As an example, Figure 3.3 depicts the format of a SR RTCP packet.

11

Secure Mobile Voice over IP

0 8 16 31

V P RC PT=SR=200 Length

SSRC of sender

NTP timestamp, most significant word

NTP timestamp, least significant word

RTP timestamp

Sender’s packet count

Sender’s octet count

SSRC_1 (SSRC of first source)

Fraction lost Cumulative number of packets lost

Extended highest sequence number received

Interarrival jitter

Last SR (LSR)

Delay since last SR (DLSR)

SSRC_2 (SSRC of second source)

...

Profile−specific extensions

Figure 3.3 SR RTCP Packet Format

The dark gray part at the top of the figure identifies the RTCP header. This is followed by the
sender info.The white part corresponds to the differentreport blocks. Finally certain extensions
(depending on the RTP profile being used) may be added.

The RTCP header contains the following fields:

� Version (V): Identical to that in RTP.

� Padding (P): Used for the same purpose as in the RTP header.

� Reception Report Count (RC): 5 bits. Indicates the number of reports in this packet.

� Packet Type (PT): 8 bits. In this case it is set to the value 200, identifying a SR packet.

� Length: 16 bits. Length of the RTCP packet in 32−bit words minus 1.

� SSRC: 32 bits. The SSRC identifier for the RTCP packet originator.

The description of the rest of the fields is out of the scope of this document. For further information
about the sender info, the report blocks, and the extensions, refer to RTP standard (RFC 1889).

12

Secure Mobile Voice over IP

4 Security Services

A Security Service is a service that enhances the security of the systems and the transfers between them, and
is intended to counter Security Attacks4. The Security Services make use of Security Mechanisms. As a
matter of fact, a Security Service implements a Security Policy, and is implemented by a Security
Mechanism. We define Security Mechanism as a mechanism which is designed to detect, prevent and/or
recover from a Security Attack. In the first section, a brief description of Security Attacks is given. The rest
of the sections deal with each one of the main six5 Security Services: Authentication, Access Control,
Confidentiality, Integrity, Non−Repudiation, and Availability. For further information, see [41].

4.1 Security Attacks

Security Attacks are divided into two main groups: Passive Attacks and Active Attacks. A short
description is given in the following paragraphs.

� Passive Attacks:Those whose goal is to obtain information that is being transmitted. Passive
Attacks are divided into two main groups:

� Release of message contents: Interception of the content (possibly sensitive) of a
message.

� Traffic Analysis: Interception for observing the patterns of the messages to guess the
nature of a communication.

� Active Attacks: Those which involve some modification or alteration of the data stream, or the
creation of a false stream. Active Attacks are in turn divided into four groups:

� Masquerade: It implies one entity pretending to be a different entity.
� Replay Attack: It consists of the capture of sensitive data, and its subsequent

retransmission to produce an unauthorized effect.
� Modification of messages: It implies the alteration, deletion, delay, or reordering of some

portion of a message, producing an unauthorized effect.
� Denial of Service(DoS) Attack: DoS attack prevents or inhibits the normal use or

management of communication facilities by disabling or overloading them.

Passive Attacks are difficult to detect, since they do not imply alteration of the data. Thus, the solution is
the prevention of these attacks, and the mechanism used is encryption.

On the other hand, Active Attacks are difficult to prevent, since that would imply the physical protection
of resources and paths. Therefore, the solution is to detect and recover from these attacks.

4. A security attack is defined as an assault on system security that derives from an intelligent threat (which might exploit a
vulnerability), and compromises the security of information owned by a organization.
5. In fact, OSI establishes five main Security Services, but I have added here a short definition for a sixth: Availability, since it is
very related to Denial of Service (DoS) attacks, unfortunately very common nowadays.

13

Secure Mobile Voice over IP

4.2 Authentication

Authentication is the assurance that the communicating entity is who it claims to be. Two main concepts
regarding Authentication are involved in an ongoing interaction:

� At the connection initiation the service assures that both entities are authentic.
� The service must assure that the connection is not interfered with in such a way that a third party

can masquerade as one of the two legitimate parties for unauthorized purposes.

We must distinguish between two specific authentication services:

� Peer Entity Authentication: This services implies the corroboration of the identity of a peer
entity, and attempts to provide confidence that an entity is not performing either a masquerade or
unauthorized replay of previous connections.

� Data Origin Authentication: Provides for the corroboration of the source of a data unit. This
specific authentication services assures, in a connectionless transfer, that the source of a received
message is as claimed. Note that this specific service does not protect against duplication or
modification of data units.

4.3 Access Control

Access Control service deals with the ability to limit and control the access to host systems and
applications via communication links6. A more general definition refers to the prevention of
unauthorized use of computer and network resources.

Note that it requires previous authentication to assign the correct right to each user to achieve an access
control service.

4.4 Data Confidentiality

Data Confidentiality service is defined as the protection of transmitted data from passive attacks, or
more generally, the protection of data from unauthorized disclosure.

Regarding the content of the data transmission, it is possible to apply Confidentiality at several levels,
such asthe all messages level, some messages level, some fields of the messages level, etc. Note that
such refinements might be, in certain situations, less useful and even more complex to implement.

Another important aspect in Data Confidentiality is theFlow characteristics Privacy, which deals with
the prevention against traffic analysis attacks mentioned in section 4.1.

The following list enumerates the different specific confidentiality services:

� Connection Confidentiality (connection protection)
� Connectionless Confidentiality (single data block protection)
� Selected−Field Confidentiality (on a connection or of a single data block)
� Traffic−Flow Confidentiality (the information from which traffic patterns can be derived)

6. In the context of network security.

14

Secure Mobile Voice over IP

4.5 Data Integrity

The Data Integrity service assures that the data received are exactly as sent by an authorized entity (i.e.
no alteration, modification, insertion deletion, or replay). The integrity service, as in the confidentiality
service, can be applied to a connection, single message, or selected fields of a single message.

It is necessary to distinguish between integrity services with or withoutrecovery.This means that we
would like just to report an integrity violation (service without recovery), orto report and recover
from the violation (service with recovery).

The following list shows the different specific integrity services:

� Connection Integrity with Recovery
� Connection Integrity without Recovery
� Selected−Field Connection Integrity
� Connectionless Integrity
� Selected−Field Connectionless Integrity

4.6 Non−Repudiation

The Non−Repudiation service prevents the sender or the receiver from denying that they transmitted a
message. Therefore, when a message is sent, the receiver can prove that the alleged sender sent the
message. Similarly, when a message is received, the sender can prove that the receiver in fact received
the message.

Thus, we distinguish between two different specific Non−Repudiation services:

� Origin Non−Repudiation
� Destination Non−Repudiation

4.7 Availability

As described in [41], Availability is "the property of a system or a system resource being accessible
and usable upon demand by an authorized system entity, according to performance specifications for
the system". Thus, an Availability service protects a system so as to ensure its availability. One the
main purposes of an Availability service is the protection against DoS attacks, described in section 4.1.

15

Secure Mobile Voice over IP

5 Cryptography Overview

This chapter is divided into two main parts and gives a brief introduction to the basic elements and methods
used by cryptography. First, some basic knowledge necessary to understand concepts as Private or Public
Cryptography is given. The same subsection also presents some other concepts, such as certificates and the
one−way functions. The second part is specifically oriented to this project and the cryptographic tools it
utilizes (such as the algorithms used by SRTP). This part deals with some specific cryptographic algorithms
and mechanisms to provide confidentiality and message integrity: Advanced Encryption Standard (AES)[34]
and HMAC−SHA1[35] are described in detail here. Most of the information in this section has been
obtained from [41], along with other sources.

5.1 Basic Knowledge

5.1.1 Introduction

Cryptography is the science of secret writing. We can also define it as the art of keeping messages
private over an insecure medium. The generic scenario is shown in Figure 5.1, obtained from [41].
This scenario deals with two entities who want to communicate in a secure way, adding privacy to the
message exchange, so that an intruder (eavesdropper) has no possibility to read the messages. The
solution to this issue consists of coding such messages in order to avoid an unauthorized person
retrieving the original text. This scheme is calledsymmetric cryptography, and it is the most simple
case in cryptography. Another possible cryptographic scheme is theasymmetric cryptography.Further
sections will give a short description of both cryptographic mechanisms.

 Secret key Secret key

plaintext ciphertext original plaintext

P C P

Figure 5.1 Simplified Model of Symmetric Encryption

We have 5 components in this scheme:

� Plaintext: This is the original message or data that is fed into the algorithms as input.

� Encryption algorithm: The encryption algorithm performs various substitutions and/or
transformations on the plaintext. It is also called cipher.

� Secret key:The secret key is also input to the algorithm. The exact substitutions and/or
transformations performed by the algorithm depend on this key.

16

E n cr ypt ion
E (P)

Decr ypt ion
D(C)

Secure Mobile Voice over IP

� Ciphertext: This is the scrambled message produced as output. It depends on the
plaintext and the secret key. Note that two different keys applied on the same plaintext,
and using the same algorithm, will produce two different ciphertexts.

� Decryption algorithm: This is essentially the encryption algorithm run in reverse. It
basically takes the ciphertext and the same secret key and produces the original message.

The following paragraphs deal with some terms and their definitions.

As said above, acipher is a mathematical function used to encrypt/decrypt messages. It is also called
cryptographic algorithm.

The process of coding a message is calledencryptionE(P), and its output is the ciphertext.Decryption
D(C) is recovering the original message. Thus, we have that E(P)=C and D(C)=P, such that
D(E(P))=P.

Cryptanalysisis the science of breaking ciphers. It consists of the process of attempting to discover
the original message (plaintext) or the key.

Cryptology encompasses both cryptography and cryptanalysis subjects.

It is important to remark that, in most cases, the security of encryption relies on the secrecy of the key,
rather than the secrecy of the cipher. By using cryptography we are mainly providing confidentiality
using keys, although other security mechanisms supporting the rest of security services (such as the
digital signature for data origin authentication) make use of cryptography. Thus, cryptography
enhances computer security, but it is not a substitute for it.

5.1.2 Symmetric Cryptography

Symmetric encryption is also referred to as conventional encryption, secret−key, or single−key
encryption. It remains the most widely used of the two types of encryption.

In this scheme, one only key is used by the entities to encrypt and decrypt a message, so that this
shared key, which must be kept secret by both entities, is previously exchanged, or even distributed by
a trusted third party to both entities. The basic scenario and its components were shown in the previous
section, in the Figure 5.1.

The two main requirements for secure use of symmetric encryption are the following:

� A strong encryption algorithm is needed. We would like the algorithm to be such that an intruder
with access to this algorithm and some different ciphertexts, would be unable to decrypt those
ciphertexts and/or guess the secret key used. This requirement becomes stronger if we consider
that the intruder should not be able to figure out the key even when having access to the
ciphertext and the matching plaintext.

� Both sender and receiver must have obtained copies of the secret key in a secure and secret
fashion, and must keep it secret. Of course, if someone intercepts the key and knows the
algorithm being used, the exchanged data is readable.

Thus, this key exchange is one of the main challenges in symmetric cryptography, and the fact of
distributing or exchanging this key in a secret and secure way becomes a problem in this scheme7. In

7. As a matter of fact, the principal security problem in symmetric cryptography is maintaining the secrecy of the key.

17

Secure Mobile Voice over IP

addition to this, if the number of users in a certain community is high, so it is the number of keys. This
may cause an important overload to the administration system.

We have to distinguish between two different types of symmetric ciphers:

� Stream ciphers: take a data stream and a key as input, and combine each bit of plaintext with one
bit of the key. These ciphers are suitable for hardware implementation.

� Block ciphers: operate on data blocks of a particular size and encrypt them with a key, and are
suitable for software implementations.

Some examples of symmetric ciphers areData Encryption Standard(DES)[49],Triple DES(3DES),
International Data Encryption Algorithm(IDEA), Blowfish, RC5, andAdvanced Encryption Standard
(AES). The latter is also known asRijndael Cipher, and it is the algorithm selected in the SRTP
implementation, provided in this document, to encrypt the media stream. A wide description of AES
cipher is given in section 5.2.1, and a shorter description of DES and 3DES is also given in section
5.2.2.

5.1.3 Asymmetric Cryptography

Asymmetric encryption is also known as public−key encryption. It is of equal importance to
symmetric encryption, and it finds use in message authentication and key distribution.

Public−key cryptography was firstly publicly proposed by Diffie and Hellman in 1976, and it involves
the use of two different keys, the private and the public key. This fact has important consequences in
the areas of confidentiality, key distribution and authentication.

Asymmetric cryptography has the same components as the symmetric cryptography, except the secret
key. Instead of using the same secret key to encrypt and decrypt the message, public−key cryptography
makes use of two different keys, grouped in a owner’s pair. One of the keys of this pair is used for
encryption, and the other is used for decryption. These keys are called the private key and the public
key. The former is kept secret by the owner and it is used to encrypt data, as well as decrypt data
encrypted by the public key of the pair. On the other hand, the public key is made public by the owner
for others to use, and it is used to encrypt data, or to decrypt data encrypted with the private key.

With this approach, all participants in a encrypted communication have access to other participant’s
public keys. Furthermore, as said before, private keys are generated locally by each participant and
therefore never distributed.

The essential steps in public−key cryptography, shown in Figure 5.2, are the following:

� Each user generates his or her pair of keys.
� Each user places one of the two keys in an accessible public register. The companion key is kept

secret by its owner.
� One user who wants to send a private message to the other, encrypts that message with the

receiver’s public key.
� The receiver gets the message and decrypts it with his or her private key. Note thatonly the

receiver can decrypt the message, since it is assumed that he or she is the only who knowing the
private key.

18

Secure Mobile Voice over IP

 Receiver’s public key Receiver’s private key

plaintext ciphertext original plaintext

P C P

Figure 5.2 Simplified Model of Asymmetric Encryption providing Confidentiality

Another possibility in asymmetric encryption is its use as the basis for digital signatures. Let us
consider the case in which one user sends a message encrypted with his or her private key. In this
scheme, data origin authentication (without confidentiality) is provided, since the sender proves his or
her identity by being the only possessor of the right private key.

The most important examples of public−key algorithms are RSA Public−Key Encryption Algorithm,
and the Diffie−Hellman Key Exchange. Other public−key ciphers are Digital Signature Standard
(DSS) and Elliptic−Curve Cryptography.

5.1.4 Symmetric Cryptography vs. Asymmetric Cryptography

Public−key cryptography is powerful, but it does not suit every situation. Furthermore, there are some
common misconceptions concerning public−key cryptography (from [41]):

� Public−key encryption is more secure from cryptanalysis than secret−key cryptography.As
a matter of fact, the security in any cryptography scheme depends on the length of the key and the
computational work needed to break the cipher. In principle, there is no proof about the idea that
one scheme is superior to the other from the point of view of withstanding cryptanalysis.

� Public−key encryption has made secret−key encryption obsolete.On the contrary, the
computational overhead of current public−key cryptography makes secret−key cryptography will
not be abandoned.

� Key distribution in public−key cryptography is trivial. In fact, it is still necessary for public−
key cryptography to use some form of protocol, often involving a central and trusted agent.
Furthermore, "the procedures involved are not simpler or more efficient than those used for
secret−key cryptography" [41].

Thus, asymmetric algorithms are not substitute for symmetric algorithms. The most common
solution, adopted in most of the models, consists of a hybrid cryptosystem.

5.1.5 Cryptanalysis

As said above, cryptanalysis is the process of attempting to discover the plaintext or the key. The
attacker will act depending on the information available and the nature of the encryption scheme.

19

E n cr ypt ion
E (P)

Decr ypt ion
D(C)

Secure Mobile Voice over IP

A encryption algorithm is generally designed to withstand aknown−plaintext attack.In this attack, the
information available for the cryptanalyst is the following:

� Encryption algorithm
� Ciphertext to be decoded
� One or more plaintext−ciphertext matching pairs formed with the secret key

If an encryption algorithm is to be proved as secure (computationally secure), the applied criteria
comprises these two aspects (from [41]):

� The cost of breaking the cipher exceeds the value of the encrypted information
� The time required to break the cipher exceeds the useful time of the information

Table 5.1 (from [41]) shows how much time is involved in the key search for various key sizes.

Key Size (bits)Key Size (bits) Number of AlternativeNumber of Alternative
KeysKeys

Time Required at 1Time Required at 1
Encryption/µsEncryption/µs

Time Required at 10Time Required at 1066

EncryptionEncryption //µsµs

32 232 = 4.3 x 109 231 µs = 35.8 minutes 2.15 milliseconds

56 256 = 7.2 x 1016 255 µs = 1142 years 10.01 hours

128 2128 = 3.4 x 1038 2127 µs = 5.4 x 1024 years 5.4 x 1018 years

168 2168 = 3.7 x 1050 2167 µs = 5.9 x 1036 years 5.9 x 1030 years

26 characters (permutation) 26! = 4 x 1026 2 x 1036 µs = 6.4 x 1012

years
6.4 x 106 years

Table 5.1 Average Time Required for Exhaustive Key Search[41]

5.1.6 One−way Hash Functions and MACs

A one−way hash function accepts a variable size messageM as input and returns a fixed−size message
digest H(M). It is used to authenticate a message so that the hash result is sent along with the original
message in such a way that the recipient can verify that the message digest is authentic. The function
H() is called one−way function since it is relatively easy to compute (one way), but significantly
harder to reverse. Some examples of one−way hash functions are MD5 Message Digest Algorithm and
Secure Hash Algorithm (SHA−1). A detailed description of the latter is given in section 5.2.3, since it
is used in the SRTP implementation.

One−way hash functions are also known asnon−keyed hash functionsor Message Description Code
(MDC).

Some requirements for secure hash functions are described in [41] as follows:

� H() can be applied to a block of data of any size
� H() produces a fixed−length output
� H(x) is relatively easy to compute for any given x
� One−way property: Given a value h, it is computationally infeasible to find x such that H(x) = h
� Weak collision resistance property: Given a blockx, it is computationally infeasible to findy ≠ x

with H(y) = H(x)

20

Secure Mobile Voice over IP

� Strong collision resistance property: It is computationally infeasible to find a pair (x, y) such that
H(y) = H(x)

On the other hand, when a shared secret is added to compute the digest, we get a Message
Authentication Code (MAC). Thus, we can illustrate the MAC as follows:

MACM = F(KAB, M)

where KAB is the secret shared between the parties.

MACs are also referred to as keyed hash functions.

With this approach, message integrity and data origin authentication are provided. Several algorithms
can be used to generate the digest, such as DES, although in recent years, there has been increased
interest in developing a MAC based on a cryptographic hash code (Hash−Based MAC, HMAC). The
reasons and approaches to this technique are described in the next section.

5.1.7 Overview of the Hash−based Message Authentication Code : HMAC

The reasons for the interest in basing MAC on hash functions are the following:

� Cryptographic hash functions execute faster in software than the conventional encryption
algorithms such as DES.

� Library code for cryptographic hash functions is widely available.
� Unlike conventional encryption algorithms, there are no export restrictions for cryptographic

hash functions.

The approach which has received more support is HMAC, which treats the cryptographic hash
function as ablack box8, enhancing efficiently the use of different functions to generate the digest. A
wide description of HMAC is given in section 5.2.4, since it is used (based on SHA−1 hash algorithm)
for the SRTP implementation, as well as for other important protocols such as TLS and IPSec.

5.1.8 Certificates

Public−key cryptography is related to the use of certificates. The most widely used type of certificate
is defined in ITU−T X.509 standard (see [19]). The heart of the X.509 scheme is the public−key
certificate associated with each user.

Certificates are assumed to be created and signed by a trusted third party, known as theissueror
Certification Authority(CA). Basically, a certificate contains the public key associated with each user,
among other information, such as the user name and the certificate expiration date.

A wide description of certificates and certification infrastructures (also referred to as Public−Key
Infrastructures) is given in section 6.

8. The hash function implementations can be integrated as modules when implementing HMAC, making those functions easy to
modify or even replace if desired.

21

Secure Mobile Voice over IP

5.1.9 Location of encryption devices

Before using encryption mechanisms, it is necessary to decide what and where we want to encrypt.
There are two fundamental alternatives:

� Link encryption
� End−to−end encryption

Link encryption refers to lower layers (physical or link layer) encryption. It is the easiest way to
encrypt data, and it is often implemented by hardware encryption devices in every node in the network.

Every node traversed decrypts the incoming packet, process it, and encrypts it again before sending it
out the link. The problem in Link encryption is that the data is in clear text inside each node it has to
traverse to reach its destination.

The alternative to Link encryption is End−to−end encryption. It places the cryptographic equipment
between the network and the transport layers, thus protecting the data from the source to the final
destination. Disadvantages of this scheme are that it allows traffic analysis, and makes the key
management more complex.

The encryption can also take place at the highest OSI layers (presentation and application), making it
independent of the network used, but requiring interaction with the user’s software.

5.2 Basic Algorithms and Methods

5.2.1 Advanced Encryption Standard (AES)

5.2.1.1 AES History

In 1997, the National Institute of Standards and Technology (NIST) issued a call for proposals for a
new Advanced Encryption Standard (AES), which should have a security strength equal to or better
than other algorithms such as 3DES, and provide significantly improved efficiency. In addition to
these requirements, NIST specified that AES must be a symmetric block cipher with a block length
of 128 bits and support for key lengths of 128, 192 and 256 bits.

The selected final standard adopted the Rijndael cipher as the proposed AES algorithm. Rijndael
was developed by Dr. Joan Daemen and Dr. Vincent Rijmen, and was published as a final standard
(FIPS PUB 197) in November of 2001.

5.2.1.2 Overview of the Algorithm

AES uses a block length of 128 bits and a key length which can be of 128, 192, or 256 bits,
although in the description in this section we assume a length of 128 bits for the key. This 128−bit
length is likely to be the most commonly implemented and the one used in the SRTP
implementation described in section 13.2. The mode of operation of AES used in such an
implementation is Counter Mode (CTR)[47].

When it comes to computational efficiency, Rijndael cipher is alow−cost, high−speedencryption
algorithm. This is the main reason which makes Rijndael cipher suitable for real−time traffic

22

Secure Mobile Voice over IP

encryption, where the performance of the encryption/decryption process becomes very important.
Figure 5.3 (from [48]9) shows the time taken for the different tasks to perform by some of the AES
candidates, included Rijndael.

Figure 5.3 Time (clock cycles) taken by some AES candidates [48]

The overall encryption/decryption structure in CTR mode is shown in Figure 5.4, based on figure 1
in [47]. In this figure, M is the plaintext, K is the key, and ctr is a counter. The ciphertext is (ctr, C),
or, more generally,C together with something adequate to recoverctr. Decryption is the same as
encryption with theM and theC interchanged10. C is the XOR (exclusive−or) ofM and the first |M|
bits of the pad EK(ctr) | EK(ctr+1) | EK(ctr+2)... .

9. This figure appears in this document with the explicit permission of its owner, Professor Jean−Jacques Quisquater,
Microelectronics Laboratory Crypto Group, Université Catholique de Louvain (UCL), Louvain, Belgium.
10. The ciphertext is often referred to as C, rather than (C, ctr).

23

Secure Mobile Voice over IP

 Figure 5.4 Encryption and Decryption Process in CTR Mode[47]

The structure of the algorithm is quite simple. For both encryption and decryption, the cipher starts
by an Add Round Key stage, followed by nine rounds of four stages each one. These stages are the
following:

� Substitution of bytes (Byte Sub)
� Shifting of rows (Shift Row)
� Mixing of columns (Mix Column)
� Add Round Key

Finally, there is a final round of three stages (all the stages indicated above, except the mixing of
the columns). Figure 5.5 (based on figure 2 from [46]) depicts the structure of a full encryption
round.

Figure 5.5 AES Encryption Round [46]

24

E

Ctr

K

M 1

C1

E

ctr +1

K

M 2

C2

E

ctr +
n −2

K

M n −1

C1

E

ctr +
n −1

K

M n

C2

Encryption Process

E

Ctr

K

C1

M 1

E

Ctr +
1

K

C2

M 2

E

ctr +
n −2

K

Cn −1

M 1

E

ctr +
n −1

K

Cn

M 2

Decryption Process

Secure Mobile Voice over IP

5.2.2 Data Encryption Standard (DES)

DES is the most widely used encryption algorithm. It was adopted by the NIST in 1977 (FIPS PUB
46). It is also known as the Data Encryption Algorithm (DEA) by ANSI and as the DEA−1 by the ISO.

The length of the plaintext block to be processed is 64 bits, and the length of the key is 56 bits. The
structure of the algorithm is a minor variation of theFeistel Structure(see [41], pages 32−34). There
are sixteen rounds of processing, each one using a subkey generated from the 56−bit original. More
details concerning the encryption/decryption process are in [49].

Nowadays, DES is a worldwide standard, and its security has been long questioned, since several
studies have estimated costs and times for attacking and breaking DES. Despite numerous approaches
no one has thus far succeeded in discovering a fatal weakness in the algorithm. However, a more
serious concern is the key length. In July 1998 theElectronic Frontier Foundation(EFF) announced
that it had broken a DES encryption, in less than three days, using acracker machinebuilt for less
than $250,000. Assuming the EFF machine performs 106 decryptions/µs, the use of a key of 128 bits,
very common among contemporary algorithms, it would take the EFF cracker over 1018 years to break
the code. So a 128−bit key is guaranteed to result in an algorithm that is unbreakable by brute force
with present technology.

In 1999, 3DES was incorporated as part of the Data Encryption Standard. 3DES uses three keys and
three executions of the DES algorithm, so that the effective length of the key becomes 168 bits,
making the brute−force attacks effectively impossible. Although 3DES is nowadays widely used, AES
is intended to replace it in a number of years. Meanwhile, 3DES and AES will coexist as FIPS−
approved algorithms, allowing for a gradual transition to AES.

5.2.3 Secure Hash Algorithm (SHA)

5.2.3.1 SHA History

The Secure Hash Algorithm (SHA) was also developed by the NIST, and was published as a
standard (FIPS PUB 180) in 1993. A revised version was issued as FIPS PUB 180−1 in 1995, and
is generally known as SHA−1.

5.2.3.2 Overview of the Algorithm

As described in [41], the algorithm takes a message with a maximum length of 264bits as input, and
generates a digest of 160 bits. The input is processed in 512−bit blocks.

The overall process performed by the algorithm to produce a message digest is depicted in the
figure 5.6 (based on figure 3.4 from [41]).

25

Secure Mobile Voice over IP

Figure 5.6 Message Digest Generation Using SHA−1[41]

The processing consists of four steps, briefly described as follows:

� Step 1:Append padding bits. The message must be padded so that its size is congruent to
448 modulo 512. Note that padding isalwaysadded, even if the message has already the
desired length.

� Step 2: Append length. The length of the original message, in a block of 64 bits, is
appended to the message.

� Step 3: Initialization of the MD buffer. This 160−bit length buffer is used to hold
intermediate and final results of the hash function. This buffer appears as five 32−bit
registers, each one initialized with certain hexadecimal values.

� Step 4: Process message in 512−bit blocks. This is performed by a module, known as
compression function, which consists of four rounds of 20 stages each. Each round uses a
different primitive logical function. This step is depicted in Figure 5.7 (based on figure
3.5 from [41]).

26

Secure Mobile Voice over IP

Figure 5.7 SHA−1 Processing of a Single 512−Bit Block (SHA−1 Compression Function)[41]

5.2.4 Hash−Based Message Authentication Code (HMAC)

The design objectives for HMAC are described in [35] and [41] as follows:

� To use, without modifications, available hash functions that perform well in software and for
which code is freely and widely available.

� To allow for easy replaceability of the embedded hash function in case faster or more secure hash
functions are found or required.

� To preserve the original performance of the hash function without incurring a significant
degradation.

� To use and handle keys in a simple way.

� To have a well−understood cryptographic analysis of the strength of the authentication
mechanism based on reasonable assumptions on the embedded hash function.

27

Secure Mobile Voice over IP

The HMAC can be expressed as follows:

HMACK(M) = H[(K+ ⊕ opad) || H[(K+ ⊕ ipad) || M]],

where:

� H is the embedded hash function, such as SHA−1
� M is the message input to HMAC
� K+ is the secret key K padded with zeros on the left
� opad is the value 01011100 repeatedb/8 times, whereb is the number of bits in a block (e.g.

512 bits)
� ipad is the value 00110110 repeatedb/8 times, whereb is the number of bits in a block (e.g. 512

bits)
� ⊕ is the logical XOR operation

28

Secure Mobile Voice over IP

6 Public−Key Infrastructures

Public−Key Infrastructures (PKIs) are commonly used nowadays as the base to provide different security
services, such as authentication, confidentiality, message integrity, and non−repudiation; and they are the
support for SSL/TLS, a good alternative for securing the SIP protocol. PKIs are strongly based on the use of
certificates and, thus, on the use of public−key cryptography. For further information about Public−Key
Infrastructures refer to [50, 51].

6.1 Introduction and Terminology

A Public−key Infrastructure is the backbone for large−scale use of public−key cryptography. Some
concepts such as X.509 certificates and digital signature are related to the public−key infrastructures.
These terms and others are described in the following list:

� X.509 Public−Key Certificate: The most widely used format of public−key certificate. It is the
heart of the X.509 scheme, as mentioned in section 5.1.8. The public−key certificate is issued by
a Certification Authority(CA) which certifies that the public−key belongs to the holder indicated
in the certificate. Section 6.2 gives a more detailed description of the X.509 certificates.

� Digital Signature: It is the digital equivalent of a hand−written signature. The digital signature is
created by using public−key cryptography. The sender encrypts the message to be sent (usually a
hash of the message) with his or her private key, such that the receiver can ensure the incoming
message was sent only by the sender.

� Electronic Signature: It is the electronic equivalent of the hand−written signature, through
public−key cryptography (digital signature) or biometrics (dynamic signature).

� Certification Authority (CA): The Certification Authority is the organization that issues the
public−key certificates. These authorities may also provide some other cryptographic services,
such as certificate distribution or certificate revocation (by usingCertificate Revocation Lists,
known as CRLs). The CAs are also referred to as Trusted Third Parties (TTPs).

� Public−Key Infrastructure (PKI): Infrastructure with CAs. Several examples of PKI models
are shown in the section 6.3. For further information, a good reference to PKIs can be found in
[51].

Therefore, a PKI is basically a coherent structure of CAs, and it is nowadays considered as a prerequisite
for security in large networks and distributed systems. It can be seen as a big certificate database where
users can retrieve other users’ certificates, in order to have access to their public keys. For example, one
user who wants to communicate with other, must previously retrieve the other user’s certificate and, thus,
his or her public key.

6.2 X.509 Certification Structure

The X.50911 certificate[19] is the most common certificate format used nowadays. It is part of the scheme
defined in the X.500 series of recommendations that define adirectory service.In this scheme, a
directory is a server or distributed set of servers that maintains a database of information about users.

11. The X.509 certificate is part of the ITU−T recommendation X.509, which in turn is part of the X.500 series.

29

Secure Mobile Voice over IP

These directories may serve as the repository of X.509 public−key certificates, which contain the public
key of the user along with other information, and are signed by a CA.

The X.509 public−key certificate is assumed to be created by a trusted CA, and placed in the directory by
the CA or even by the user itself. Thus, this directory provides the easily accessible location for the users.

Furthermore, the X.509 is an important standard, since the certificate structure and authentication
protocols defined in X.509 are used in a variety contexts, such as IP Security (IPSec) and Transport Layer
Security (TLS). Figure 6.1 shows the general format of a X.509 certificate. These certificates have the
following features:

� The certificates are generated and signed by a CA, and any user with access to the CA’s public
key can verify the public key of the user who is certified in the certificate.

� No party other than the CA can modify the certificate without this being detected.
� They can be placed in the directory without protection because they are unforgeable.
� A certificate may also be directly delivered to another user.

Version

Certificate Serial Number

Signature Algorithm Identifier

Issuer X.500 Name

Period of Validity

Subject X.500 Name

Subject’s Public Key Information

Issuer Unique Identifier

Subject’s Unique Identifier

Extensions

CA’s Signature

Figure 6.1 X.509 version 3 certificate format

The X.509 version 3 format includes the following components:

� Version: Differentiates among successive versions of the certificate format. The default version
is 1. Version 2 adds the Issuer Unique Identifier and Subject Unique Identifier fields, and version
3 adds the Extensions field.

� Certificate Serial Number: A unique within the issuing CA integer value associated with this
certificate.

� Signature Algorithm Identifier: The algorithm used by the CA to sign the certificate and its
parameters

30

Secure Mobile Voice over IP

� Issuer X.500 Name: X.500 distinguished name of the CA which created and signed this
certificate.

� Period of Validity: The first and last dates on which the certificate is valid.

� Subject X.500 Name: The X.500 distinguished name of the user to whom this certificate refers.

� Subject’s Public−Key Information: The public key of the subject, and an identifier of the
algorithm for which this key is to be used and its parameters.

� Issuer Unique Identifier: Optional bit string field used to uniquely identify the issuing CA in the
event the X.500 name has been reused for different entities.

� Subject Unique Identifier: Optional bit string field used to uniquely identify the subject in the
event the X.500 name has been reused for different entities.

� Extensions: Set of one or more extension fields, divided into three categories: Key and Policy
Information, Certificate Subject and Issuer Attributes, and Certification Path Constraints.

� Signature: Covers all the other fields of this certificate, and contains the hash of them, encrypted
with the CA’s private key. This field also include the signature algorithm identifier.

6.2.1 Chaining

When all the users are subscribed to the same CA, there is a common trust of that CA. But this
is not the case in today’s networks. The common situation is that the users are registered to
different CAs, since it is not practical for all users to subscribe to the same CA when there is a
large community of parties.

Since it is the CA that signs the certificates, each user must have a copy of the signing CA’s
public key in order to verify the certificate signatures. Now suppose thatA has obtained a
certificate from CAX, andB has obtain a certificate from a different CA, for exampleY. Acan
readB’s certificate, but cannot verify the signature, sinceA does not securely know the public
key of Y.Let us suppose in this case that both CAs have securely exchanged their public keys.
Therefore,A can obtain the certificate ofY signed by the "trusted"X and getY’s public key
verifying X’s signature. NowA can go back to the directory and get the certificate ofB, being
able to verify it by usingY’s public key. This process is known aschaining, and it is expressed
as:

X<<Y>>Y<>

In the same fashion, B can obtain A’s public key with the reverse chain:

Y<<X>>X<<A>>

This chaining can be expanded to N elements.

6.2.2 Revocation of Certificates and Certificate Revocation Lists (CRLs)

Typically, a new certificate is issued by the CA just before the expiration of the old one.
However, there are three main situations in which a certificate can be revoked before its

31

Secure Mobile Voice over IP

expiration:

� The user’s private key is assumed to be compromised.
� The CA’s certificate is assumed to be compromised.
� The user is no longer certified by this CA.

Each CA must maintain a list consisting of the revoked (but not expired) certificates, issued by
that CA, for a certain period of time. This list is the Certificate Revocation List (CRL) and
contains the users’, as well as the other CAs’ revoked certificates, and should be posted in the
directory. Other different ways to distribute and post the CRLs are viaWeb/fileor by using
CRL Distribution Points (CDPs).

Every CRL posted by a CA in the directory is signed by this CA. Figure 6.2 shows the format
of the CRL. This format includes the issuer’s name, the date the list was created, the day the
next CRL is scheduled to be issued, and an entry for each revoked certificate, which consists
of the serial number of the certificate and its revocation date.

32

Secure Mobile Voice over IP

Algorithm

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Parameters

Issuer Name

Update Date

Next Scheduled Date

Certificate 1 Serial Number

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Certificate 1 Revocation Date

·

·

·

·

·

Certificate N Serial Number

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Certificate N Revocation Date

Issuer Signature

 Figure 6.2 Certificate Revocation List (CRL) Format

The CA establishes the length of the period while a certain CRL is active, depending on the
CA’s policies. During this period, the revoked certificates, if any, are stored in the CRL, and
once the period expires (new scheduled CRL), the CRL is signed by the CA and posted in the
directory. A new CRL is then activated.

Every user must check the corresponding issuer’s CRL when a certificate is received.

6.3 Certification Infrastructure Models

There are several models of certification infrastructures, and they are summarized in the following list:

� Self−Signing Infrastructure: The CA itself signs its own certificate, such that the verification

33

Secure Mobile Voice over IP

cannot be trusted. The only conclusion a user can obtain is that one key matches the other.
However, this model is used byTop Level CAs(TCA), implicitly trusted, to sign their own
certificates in order to provide certification services to other lower−level CAs.

� Cross−Certification Model: This model is related to theChaining mechanism described in
section 6.2.1, which consists of the exchange of certificates among the CAs.

� Hierarchical Model: The Hierarchical Model is widely used nowadays to establish
infrastructures with multiple levels of CAs. Figure 6.3 depicts this model.

 Top−Level Certification Authority (TCA)
 (Self−signing)

 Policy Certification Authority (PCA)

 Hierarchical Certification Authority (HCA)

Hierarchical Certification Authority (HCA)
 (Big infrastructures)

CA

Users

Figure 6.3 Hierarchical Infrastructure of CAs

� Mesh Certification Infrastructure Model: This model is based on higher−level CAs, and it is
only considered a theoretical model. Figure 6.4 shows the structure of this model.

Figure 6.4 Mesh Infrastructure Model

� Privacy Enhanced Mail (PEM) Certification Infrastructure Model: The PEM Model is based

34

CA CA

CA CA

Secure Mobile Voice over IP

on the existence of anInternet Policy Registration Authority(IPRA). Figure 6.5 depicts the PEM
Certification Model.

Internet Policy Registration Authority (IPRA)

Policy Certification Authority (PCA)

Certification Authority (CA)

Figure 6.5 PEM Certification Infrastructure Model

The initiation of a common certification infrastructure is performed in three stages, described as follows:

1. The TCA issues its own certificate and signs it (self−signing).

2. Thus, the TCA is open to new certification requests by lower−level CAs. The TCA then issues
the certificates requested and signs them.

3. The CAs that obtained their certificates in the stage 2, are now in turn able to accept more other
lower−level CA’s certification requests.

Furthermore, TCA has his own certificate, second−level CAs have their own certificate and TCA’s
certificate, third−level CAs have their own certificate, second−level CA’s certificate, and TCA’s
certificate, and successively in the chain.

35

IPRA

CACA

PCAPCA

Secure Mobile Voice over IP

7 Introduction to Security Protocols and Related Protocols

A Security Protocol is a communications protocol that protects a message to be transmitted online,
providing at the same time authentication services in some cases. In this section, some security protocols,
such as Transport Layer Security (TLS)[17] and Internet Protocol Security (IPSec)[21], are briefly
described, as well as several Key−Management Protocols used to negotiate the encryption and
authentication schemes to be applied to the security protocol being used. Regarding the key−management
schemes, this document briefly deals with Internet Key Exchange (IKE)[26], Diffie−Hellman Key Exchange
as described in [41], Internet Security Association Key Management Protocol (ISAKMP) also as described
in [41], or the new (and still IETF draft) Multimedia Internet KEYing (MIKEY)[29], specifically oriented to
support the SRTP key management. All the protocols described in this section define a possible solution
(together with SRTP and MIKEY, described later in this document) for the problem presented in this project.
Hence , section 13 gives a more detailed description of the Secure Real−Time Protocol (SRTP), while
section 14 deals with MIKEY, since they both become more relevant for our work.

7.1 Internet Protocol Security (IPSec)

7.1.1 Introduction, Applications and Benefits of IPSec

IPSec is a security protocol which works at the network−level layer (IP layer), and provides
the capability to secure communications across a Local Area Network (LAN), across public
and private Wide Area Networks (WANs), and across the Internet.

Placing the security at lower−level layers provides the following advantages:

� The security is transparent to users and applications
� Multiple connections are protected
� There is an automatic initiation
� It is globally available and interoperable

Examples and applications of the IPSec use include the following:

� Secure branch open connectivity over the Internet: by buildingVirtual Private Networks
(VPNs) over the Internet or over a public WAN.

� Secure remote access over the Internet.
� Establishing extranet and intranet connectivity with partners.
� Enhancing electronic commerce security.
� Routing applications: IPSec plays a vital role in the routing architecture required for the

internetworking, for instance assuring that a router advertisement comes from an
authorized router.

Therefore, [41] lists the following benefits of IPSec:

� When IPSec is implemented in a firewall or a router, it provides strong security that can
be applied to all traffic crossing the perimeter. Thus, traffic within a company or
workgroup does not incur the overhead of security−related processing.

36

Secure Mobile Voice over IP

� IPSec in a firewall is resistant to bypass if all traffic from the outside must use IP, and the
firewall is the only means of entrance from the Internet into the organization.

� IPSec is below the transport layer (TCP, UDP), and thus, as said above, is transparent to
applications and users. This means that the applications must not change when IPSec is
implemented in a firewall or a router, and users are not needed of a specific train on
security mechanisms.

� IPSec can also provide security for individual users if needed.

7.1.2 IPSec Architecture

IPSec allows the involved parties to select the required security protocols includes in IPSec,
determine the algorithms to be used, and put in place the keys needed for the cryptographic
operations. The two protocols, included in IPSec, that provide security are theAuthentication
Header (AH) and the Encapsulating Security Payload (ESP).

The AH basically provides the data origin authentication of the packets, while the ESP
provides confidentiality and, optionally, also authentication of the packets.

Table 7.1 shows the different security services provided by IPSec and which of them are
specifically achieved with either the AH or the ESP, as described in [41].

Service / Protocol AH ESP (encryption only) ESP (encryption plus
authentication)

Access Control : : :

Connectionless
integrity

: :

Data origin
authentication

: :

Rejection of replayed
packets

: : :

Confidentiality : :

Limited traffic−flow
confidentiality

: :

 Table 7.1 Services Provided by the AH and ESP Protocols

7.1.2.1 IPSec Transport and Tunnel Modes

Both AH and ESP support two modes of use: transport and tunnel mode. Following
paragraphs briefly describe how each mode operates.

Transport mode provides protection for upper−layer protocols, and this protection extends

37

Secure Mobile Voice over IP

to the payload of the IP packet12, such as TCP or UDP segments, or ICMP packets. Note
that the payload is the data that normally follow the IP header. Transport mode is typically
used for end−to−end communication between two hosts. AH in transport mode
authenticates the IP payload and selected fields of the IP header, while ESP in transport
mode encrypts (and optionally authenticates) the IP payload, and not the IP header.

As far as the tunnel mode is concerned, it provides protection for the entire IP packet. This
is achieved by treating the entire packet plus security fields (AH or ESP fields) as the
payload of newouter packet with a new IP header. With this encapsulation, the entire IP
packet travels through atunnel from one point of the IP network to another. Note that the
intermediate points in this network, such as routers, are not able to inspect theinner packet.
Tunnel mode is typically used when one or both ends of the communication are a security
gateway (i.e. A firewall or a router implementing IPSec). AH in tunnel mode authenticates
the entire inner IP packet and selected fields of the outer packet header, while ESP encrypts
and optionally authenticates the entire inner IP packet. The use of IPSec in tunnel mode is
the base for building Virtual Private Networks (VPNs).

7.1.2.2 Authentication Header (AH)

AH protocol provides support for data integrity and authentication of IP packets. Therefore,
we can ensure that undetected modification of the packet content is not possible, as well as
enable an end point to authenticate the source application or user, and filter traffic
accordingly. We can also prevent spoofing attacks and provide replay protection.

AH is based on the use of MACs (described in section 5), which means that both
communicating parties must share a key.

Figure 7.1 shows the format of the Authentication Header.

0 8 16 31

Next Header Payload Length Reserved

Security Parameters Index (SPI)

Sequence Number

Authentication Data (variable)

 Figure 7.1 IPSec Authentication Header Format

The Sequence Number field is designed to counter replay attacks, and it is assumed that
when this number reaches to 232 −1, the sender terminates the association and another must
be negotiated. Regarding the Authentication Data, it holds an Integrity Check Value (ICV).
This is in turn a MAC or a truncated version of a MAC calculated over the payload, and IP
header fields that does not change in transit (or whose change is predictable), while the
other fields are set to zero for the calculation.

The AH is placed between the IP header and the payload in transport mode, and between

12. The term packet used in this section refers to either IPv4 or IPv6 packet.

38

Secure Mobile Voice over IP

the new outer−packet IP header and the entire inner packet in tunnel mode.

The authentication algorithm used in AH protocol is HMAC with either MD−5 or SHA−1
as the one−way hash function. See section 5.2.4 for further information about HMAC.

7.1.2.3 Encapsulating Security Payload (ESP)

ESP protocol provides two confidentiality services:

� Message contents confidentiality
� Limited traffic−flow confidentiality

Figure 7.2 shows the format of a ESP packet.

0 8 16 31

Security Parameters Index (SPI)

Sequence Number

Payload Data (variable)

Padding (0−255 bytes)

Pad length Next Header

Authentication Data (variable)

Figure 7.2 IPSec ESP Packet Format

In Figure 7.2, the light gray portion indicates the confidentiality coverage, while the
authentication coverage covers the entire packet except the Authentication Data field. As
occurred in AH protocol, the Sequence Number field provides anti−replay protection. The
Payload Data corresponds to the transport layer segment or the inner IP packet, depending
on the mode used, and the Authentication Data has the same purpose as for the AH protocol.
The Padding field assures 32−bit words alignment for the encryption algorithm, and also
provides partial flow−traffic confidentiality by concealing the actual length of the payload.

Algorithms, such as DES−CBC, 3DES, RC5, IDEA, 3IDEA, CAST, or Blowfish, are used
for providing encryption to the packet.

39

Secure Mobile Voice over IP

7.2 Transport Layer Security (TLS)

7.2.1 Introduction, Applications and Benefits

Transport Layer Security (TLS) is the IETF standard for theSecure Socket Layer version 3
(SSLv3), originated by Netscape mainly to protect World Wide Web traffic, so the protocol
may also be referred to as SSL/TLS.

TLS sits between the application layer and TCP within the Internet Protocol stack, and was
designed to provide a reliable end−to−end secure service, since as TCP, it is connection−
oriented and stateful.

TLS is intended to secure end−to−end security associations, and it is very related to the use of
Public Key Infrastructures (PKIs), mentioned in section 6 and thus, related to public−key
cryptography. Establishing a PKI to enable TLS gives us one important advantage of TLS over
IPSec: unlike IPSec, TLS may provide strong (mutual) peer authentication of the entities
securely associated by TLS, as well as key management, since TLS defines a handshake
protocol whereby entities agree on a cipher suite (for further data confidentiality and message
integrity), establish the necessary key material, and authenticate each other. Regarding the
applications, these should be slightly modified to support TLS service.

7.2.2 SSL/TLS Architecture

As said above, TLS is designed to make use of TCP to provide a reliable end−to−end secure
service, and it consists of two layers of protocols: Record Protocol and Handshake Protocol, as
illustrated in figure 7.3.

SSL/TLS Handshake Protocol

SSL/TLS Record Protocol

TCP

IP

 Figure 7.3 SSL/TLS Protocol Stack

The Record Protocol provides basic security services to higher−level protocols, such as the
Hypertext Transfer Protocol(HTTP), while the Handshake Protocol provides cipher
negotiation, key management, as well as mutual authentication between the entities involved.

7.2.2.1 SSL/TLS Record Protocol

The Record Protocol provides the TLS connections with two basic security services:

� Confidentiality: By using conventional encryption of the payloads, based on a
shared secret key defined by the Handshake Protocol.

40

Secure Mobile Voice over IP

� Message Integrity: By using a message authentication code (MAC) based on a
second shared secret key, also defined by the Handshake Protocol.

The overall operation of the SSL/TLS Record Protocol is shown in the figure 7.4 (based on
figure 7.3 from [41]).

 Figure 7.4 SSL/TLS Record Protocol Operation[41]

The Record Protocol takes the application data to be transmitted and fragments it into
manageable blocks (214 bytes), optionally compresses the block13, computes a MAC over
the compressed data (TLS standard defines the use of the HMAC, described in section 4, as
the algorithm to compute the MAC), and encrypts the message plus the computed MAC
using symmetric encryption (in light grey in Figure 7.5). The most important cipher
algorithms defined as permitted are DES and 3DES. Finally, the Record Protocol appends a
specific SSL/TLS Record Header to each block (in dark grey in Figure 7.5). This header
consists of the following fields:

� Content Type (8 bits)
� Major Version (8 bits)
� Minor Version (8 bits)
� Compressed Length (16 bits)

Figure 7.5 shows the format of the SSL/TLS Record Blocks.

13. In SSLv3 and current TLS version, no compression algorithm is defined, so null compression algorithm is applied by default.

41

Secure Mobile Voice over IP

Content Type Major Version Minor Version Compressed Length

Plaintext (Optionally Compressed)

MAC (0, 16, or 20 bits)

 Figure 7.5 SSL/TLS Record Block Format

7.2.2.2 SSL/TLS Handshake Protocol

The Handshake Protocol is the most complex part of SSL/TLS and is used before any
application data is transmitted. It allows the entities to authenticate each other, as well as
negotiate an encryption and MAC algorithm and the keys to be used.

The Handshake Protocol consists of a series of messages exchanged between the entities
involved. Each one of these messages has three fields:

� Type (1 byte): Identifies one of the 10 different types of messages, such as
hello_request, client_hello, certificate_request, certificate_verify, finished, etc.

� Length (3 bytes): Length of the message in bytes.
� Content (≥ 1 byte): The parameters associated with this message.

The handshake protocol action can be illustrated as a four−phase process, as shown in the
figure 7.6.

42

Secure Mobile Voice over IP

 Figure 7.6 SSL/TLS Handshake Protocol Action

In Figure 7.6, the messages between "[]" are considered optional. A brief description of
each phase is given in the following paragraphs.

� Phase 1. Establish Security Capabilities.This phase is used to initiated a
logical connection and to establish the security capabilities associated with it,
including protocol version, session identifier, cipher suite, compression method,
and initial random numbers. This phase is initiated with aclient_hellomessage
containing the necessary parameters for the negotiation, such as lists of cipher
suites or compression methods. The response is sent in aserver_hellomessage,
which selects the specific suites to be used.

� Phase 2. Server Authentication and Key Exchange.The entity acting as
"server" sends its certificate (for instance one or a chain of X.509 certificates) to
be verified by the entity acting as "client". Next, if it is required, a
server_key_exchangemessage may be sent, as well as acertificate_request
message if strong authentication is necessary. Finally, a server_hello_done is sent
to terminate this phase.

� Phase 3. Client Authentication and Key Exchange.Upon receipt of the

43

ClientHello

[ChangeCipherSpec]
Finished

[Cert if icate]
ClientKeyExchange

Cert if icateVerify
[ChangeCipherSpec]

Finished

Applicat ion Data

ServerHello
Cert if icate

ServerKeyExchange
[CertificateRequest]
ServerHelloDone

Applicat ion Data

Server Client

Secure Mobile Voice over IP

server_hello_donemessage, the entity acting as "client" should verify the
received certificate and check theserver_hello_donemessage parameters. If the
verification successes, the "client" entity is ready to send its certificate (if this
was requested by the "server" entity). Next, aclient_key_exchangeand/or a
certificate_verify message may be sent.

� Phase 4. Finish.This phase completes the establishment of a secure connection
between entities. The most significant message exchanged is thefinished
message, after which both entities may start exchanging application layer data.

7.3 Key Management Protocols

7.3.1 Introduction

A Key Management Protocol is intended to be in charge of the distribution (and sometimes
also the generation) of the necessary keys among the communicating entities, in order to
provide them with the elements needed to protect the the transactions with confidentiality
and/or message integrity.

There are several key management schemes, summarized in the following list:

� Distribution of Public−Key Certificates , with which we exchange the session keys
encrypted with the receiver’s public key. This method (based on RSA public encryption)
is one of the many supported by SSL/TLS for the key exchange.

� Diffie−Hellman Key Exchange, also based on public key cryptography and indeed
widely used. This method suffers the drawback that, in its simplest form, provides no
authentication of the two communicating parties. However, there are more complex types
of Diffie−Hellman based on the use of certificates, which are powerful alternatives.
Several types of Diffie−Hellman key exchange are supported by SSL/TLS. Other
protocols, such as theOakley Key Determination Protocolused by IPSec, are based on
this type of scheme.

� Manual Key Management, in which a system administrator manually configures each
system with its own keys and with the keys of other communicating systems. However
this method is deprecated, because of its obvious weakness.

� Automated Distribution of Secret Keys to be used by symmetric encryption, either by
themselves or to derive session keys or one−time keys from them, such asInternet Key
Exchange (IKE)[26], Internet Security Association and Key Management Protocol
(ISAKMP)[53], or the still draftMultimedia Internet KEYing(MIKEY)[29]. IKE and
ISAKMP are used together in IPSec, while MIKEY may be specifically used with SRTP
to provide a master key from which the different session keys will be derived.

The following sections shortly describe IKE and ISAKMP protocols, as well as the Diffie−
Hellman key exchange in its simplest form. The more relevant for our work MIKEY protocol
is described in section 14.

44

Secure Mobile Voice over IP

7.3.2 IKE / ISAKMP

As said above, IKE is the standard key exchange protocol used together with ISAKMP in
IPSec. ISAKMP provides a framework for authentication and key exchange without defining
them, and is used together with IKE to provide authenticated key material to use with the
IPSec protocols or to support other protocols such as SRTP.

Some benefits of IKE are:

� Avoids the manual specification of the secure session parameters
� Specifies a lifetime for the session security associations
� Provides anti−replay protection
� Assures confidentiality and authentication by different methods
� Allows the CA’s support

ISAKMP defines two main phases: the establishment of the secure channel (previous
agreement on methods to be used), and negotiation of security associations. Moreover,
ISAKMP defines five different types of exchanges:

� Base Exchange: Key exchange and authentication material are transmitted together.
� Identity Protection Exchange: Extends the Base Exchange with protection of the

identities of the communicating parties.
� Authentication Only Exchange: Performs mutual authentication without key exchange.
� Aggressive Exchange: Minimizes the number of exchanges by not providing identity

protection.
� Informational Exchange: Used for the security association management.

Regarding IKE, it defines four differentmodesthat can be used in either of the two ISAKMP
phases:

� Main Mode: Equivalent to ISAKMP Identity Protection Exchange.
� Aggressive Mode: Equivalent to ISAKMP Aggressive Mode.
� Quick Mode: Used in the ISAKMP’s second phase.
� New Group Mode: Used for define a new group for Diffie−Hellman key exchange.

7.3.3 Simple Diffie−Hellman Key Exchange

The purpose of the Diffie−Hellman Key Exchange algorithm is to enable two communicating
parties to exchange a secret key securely that can be used for subsequent encryption of
messages. The effectiveness of the algorithm depends on the difficulty of computing discrete
logarithms. Note that, as said above, the simplest form of this algorithm is limited to the
exchange of the keys, without providing authentication of the entities.

Next figure illustrates the Diffie−Hellman key exchange.

45

Secure Mobile Voice over IP

 Figure 7.7 Diffie−Hellman Key Exchange

46

 A B

Publicize prime p, generator g

Picks random secret x
a

Computes y
a
 = gxa mod p

Picks random secret x
b

Computes y
b
 = gxb mod p

KEY SYSTEM
public key: p, g, y

a

private key: x
a

KEY SYSTEM
public key: p, g, y

b

private key: x
b

Exchange of public keys

Computes y
b
xa = gxb xa mod p= K Computes y

a
xb = gxa xb mod p= K

Secure Mobile Voice over IP

8 Objective: Enabling a Secure Mobile VoIP call

This section is an overall presentation of the problem to be solved within this project. It briefly deals with
the different issues that the project consists of. Following sections will present a more detailed "picture" of
the project and its requirements.

This research deals with the whole process whereby a dialogue between two mobile devices can
communicate in a secure fashion, by using Voice over IP (VoIP), this is, by transporting voice (or any other
type of multimedia application) over data networks. In this project I consider speech as the primary content
to traverse the Internet. Basically, this process concerns a mobile phone call over IP−based networks
between two end users. It does not consider, at this stage, other possibilities, such as video transmission or
other multimedia applications. However, the protocol used to transport a multimedia stream between the
users is Real−Time Protocol (RTP), so that the basic solution is the same regardless of the type of the media.

Adding voice to packet networks requires an understanding of how to deal with some issues and challenges,
such as scalability, reliability, and of course, the two most important concerns of this project:

� Security during the whole process
� How this security affects the overall performance of the model

Voice over IP technology has become attractive, given the low−cost, flat−rate pricing of the public Internet.
Needless to say, this makes sense since the intention of VoIP is to enable the users to make phone calls or,
going further, to do everything they can do today with the PSTN over IP−based data networks, with a
suitable quality of service and a superior benefit/cost ratio. Furthermore, the project will focus on the use of
wireless technologies, particularly WLANs as the access network.

As already mentioned, the idea of a "dialogue" is similar to an ordinary mobile phone call using the PSTN.
Basically, the process is considered to have three phases:

1. Call establishment
2. Conversation
3. Call termination

The first and the third phases are related, since the protocol used by the different entities involved in the
communication, for both steps, is the Session Initiation Protocol (SIP). Regarding the conversation itself, as
said above, it uses RTP to transmit the voice data. Given these considerations and assumptions, how to
enhance security in the three different steps can be considered independently.

Other mobility aspects, such asroaming, or hand−overs,during the conversation are to be investigated
further by others, and out of the scope of this paper. Despite of this, a brief description of these issues and
aspects related to them is given in following sections in this paper, so as to facilitate future work.

By roaming we mean the ability to move from one access point’s coverage area to another one, without
interruption in the service or loss of connectivity. As said above, the most suitable way to perform this in a
secure fashion and with the best possible quality, has to be investigated further. However, I believe that the
right path to follow is to assume that the support for mobility will be provided byIPv6[5] and Mobile
IPv6[6]. Thus, as we will see later in this document, I have also assumed that the role of theforeign agentin

47

Secure Mobile Voice over IP

the remote domain will be performed by themobile nodeitself, by making use of aco−located care−of
address, as explained in [4].

The definitions ofroaming and mobility could lead to some confusion, since some texts and researchers
define mobility as "the ability of a terminal, while in motion, to access telecommunication services from
different locations; and the ability of the network to identify and locate that terminal". We could define
roaming as the ability toconnect,or to get access to the Internet, or domains different than the user’s home
domain or subnet.

48

Secure Mobile Voice over IP

9 Mobile Voice over IP: The Model and its Components

The scheme which this project is basically concerned with is called the Basic SIP Trapezoid, shown in the
Figure 9.1. This section provides a detailed presentation of the problem to be solved in this project and
describes its components.

9.1 Significant Components

The entities and components shown in Figure 9.1 are described in the following subsections.

 2. Look−up 3. Look−up response

 4. INVITE

1. INVITE 5. INVITE

6. RTP Media Stream

 Figure 9.1. SIP trapezoid

9.1.1 Mobile Nodes

We can define amobile nodeas a node that, as part of its normal use, changes its point of
attachment to the Internet. I will consider these mobile nodes as the devices (cell phones or
other wireless devices, such as laptops running the appropriate software) used by the final
users to perform the call. They act as clients requiring services. In the figure they are labeled
MNA and MNB, corresponding to users A and B. As said in the previous section, although
given the implicitmobility of these nodes, this paper will not focus on this aspect, in particular
it will not consider performing hand−overs during a conversation. Of course, these hand−
overs could occur from one domain to another, possibly implying new authentication and
access control policies handled by additional ISPs, different from the user’s home ISP. In the
case of this research paper, I will only consider the IP call from A to B, when both end−users
are in their respective home domains.

49

M N
A

SIP
A

SIP
B

M N
B

DN S
A

Secure Mobile Voice over IP

Sometimes within this paper I will refer to the mobile nodes in terms of theiruser agents.The
user agents are simply agent software running in the user’s device.

9.1.2 SIP Servers

These are the Session Initiation Protocol servers: SIPA in the user A’s home domain, and SIPB

in the user B’s domain. They are in charge of every SIP transaction, including those to
establish or terminate the session. Thus, SIP is used for finding users and setting up and/or
modifying multimedia sessions between them. The mobile nodes contact these SIP servers to
establish and tear down their communications, using SIP protocol messages.

These servers are often called Proxy severs, since one of their tasks is to act as a proxy. There
are four types of SIP servers, and they all (if necessary) can be located in the same machine in
our architecture. These types are:

� Location server: used by a Redirect server or a Proxy server to obtain information about
the called party’s possible location.

� Proxy server: basically an intermediary that acts as both a server and a client for the
purpose of making requests on behalf of other clients. These requests are served
internally or transferred to other servers.

� Redirect server: accepts SIP requests, maps the address into zero or more new addresses
and returns these to the client.

� Registrar server: accepts SIP REGISTER requests. Normally collocated with a Proxy or
Redirect server, may also offer location services. The Registrar records in the Location
server where the party can be found. Every user has to be registered with his/her own
Registrar server.

9.1.3 DNS Servers

The DNS servers, such as DNSA in Figure 9.1, are critical to finding the location of the user
being called. In a first approach, this paper considers that theNetwork Access Identifier
(NAI)[37] is going to be used to identify a client (e.g. bob@kth.se). In this case, a first search
for that user’s domain must be performed by the caller’s SIP server, in order to locate the
called party’s SIP server and thus the user. Of course, the best way to locate the user is to use a
DNS look−up in the caller domain’s DNS server. It seems at this stage that the use of SRV or
NAPTR records will be needed, as explained in [11].

9.2 The SIP Trapezoid

Let us consider the simple case of a mobile phone call from A to B (Figure 9.1) when both of them are
in their respective domains. In this scheme, MNA contacts its proxy (SIPA) in order to phone user B as
step 1. How SIPA finds SIPB is solved by a DNS look−up, in steps 2 and 3. Next, SIPA communicates
through proxy SIPB in step 4, which in turn locates MNB by using its Location server in step 5.

Finally, the media stream will be established between both users in the step 6. As said in previous
sections, the users "dialogue" will make use of an RTP session.

Firstly, it was assumed that both users are registered in their respective domains before trying to

50

Secure Mobile Voice over IP

establish the session. This registration is handled between the user and his or her SIP server, by using
a SIP REGISTER message.

Secondly, the way to initiate the session is by using a SIP INVITE message. This message, in the basic
trapezoid case, will go from MNA to SIPA, which in turn will send the INVITE to SIPB, and then to
MNB; as described above.

The termination of the call may be initiated by either of the users, regardless of who initiated the call.
Termination is initiated by using a SIP BYE message.

Basically, this is what occurs [7]:

� Each user registers: REGISTER.
� One user invites another user to join a session: INVITE.
� The terms and conditions of a session are exchanged viaSession Description Protocol(SDP)[8]

bodies carried in the INVITE messages.
� Each user establishes their media stream (which uses RTP).
� One user terminates the session: BYE.

There are some other messages such as ACK or responses such asTrying involved in the process and
not shown in the list above. For further information refer to section 3 in this document.

9.3 The SIP Registration

Every user must be previously registered with his or her SIP server. As described in [3], this
registration allows users to update their current locations for use by proxy servers. This is performed
by periodically sending REGISTER messages from the user’s device to his or her SIP server (where
the Registrar server is located). This action associates the user’s identifier with the device he or she is
currently using (this establishes abinding). This binding will be used by the Location server to locate
the user when needed, as explained in the previous section14.

9.4 The RTP Session

In voice calls, once the session is established, the media stream uses RTP as the transport protocol.
RTP works via two separate, one−way streams between the endpoints (see [7], chapter 7).

RTP "provides end−to−end network transport functions suitable for applications transmitting real−
time data, such as audio, video or simulation data, over multicast or unicast network services" (see
[2]). A detailed description of RTP is given in section 3 in this document.

Another protocol, Real−Time Control Protocol (RTCP) is used by RTP as a control protocol to
monitor data delivery, to provide minimal control, and identification functionality.

9.5 Other Components

Although out of the scope of the project, I would like to present, as briefly as possible, some studies
performed at TSLab regarding mobility aspects of the architecture, as well as briefly describe some
components related to this mobility (see [4]). This is done primarily to assure the reader of the
feasibility of this scheme.

14. If we use Mobile IP to handle mobility, the home address of the MN will be registered with the SIP server.

51

Secure Mobile Voice over IP

Mobility introduces some new issues to deal with, regarding both security and performance of the
model. This is mainly because new associations between new components appear. These new
components are theHome Agents(HAs); Authentication, Authorization, and Accounting servers
(AAA); and the Access Points (APs), as described in [9, 4].

9.5.1 Home Agents

Home Agents are nodes in the user’s home network, that enable the mobile node to be
reachable at its home address (which is registered with the SIP server), even when it is not
attached to its home network. This node is critical when registering users15 with their current
attachment point, since every Mobile IP registration should be handled by it, considering that
the first one of the registrations will be performed in coordination with the AAA server, and
subsequent re−registrations by itself, according to RFC 3344[10]. The way this will be achieve
is by providing the mobile node with a suitable IP address upon request.

9.5.2 AAA Servers

Authentication, Authorization, and Accounting servers are explained in [9]. If we assume
session mobility from one network to another, quickly getting authorization to access the new
network becomes very important. We have to ensure that the mobile node is authorized to
access the network it is about to be attached to. The domain should grant access to the user
only if he or she is actually authorized to use this network. This requires us to first perform an
authentication which, if verified, is followed by an authorization phase. If access is granted,
then the user can make use of the domain’s resources. A suitable way to control this use (such
as accounting) should also be provided. The AAA server in the user’s home domain is called
the home AAA server, while the one in a remote domain is called a local AAA server.

The local AAA servers have to contact the user’s home AAA server in order to get and verify
his or her credentials at the time of the first registration. Note that subsequent registrations in
the same remote domain should avoid this interaction and be handled without again involving
the user’s home AAA server. This authorization could use RADIUS[12] or Diameter[13, 14].
Currently, the use of RADIUS seems more suitable, since Diameter is still a draft and few
implementations are available. The AAA server should also be able to allocate a suitable
address for the customer, this sometimes coordinated with the HA (see [9]).

Besides authenticating, authorizing, and initiating a user’s accounting, AAA servers could also
provide some kind of key−distribution during the initial registration, in order to provide
security in subsequent transactions.

9.5.3 Access Points

Since we will use mobile technologies, such as WLAN, the access points (hardware devices or
software that act as a communication hub) enable the user’s wireless device to connect to a
wired LAN. APs are important for providing improved wireless security and for extending the
physical range of services a wireless user will have access to. APs could also act as
authenticatorsand thus would be permanently in contact with the local AAA servers to
enforce access control for mobile nodes within its coverage area.

15. Note here that this Mobile IP registration is different from the SIP Registration described in section 9.3.

52

Secure Mobile Voice over IP

Thus far the problem has been presented. The next sections will present the alternatives to solve it, giving
some possible solutions to secure the SIP environment (including the DNS look−up), as well as to secure the
RTP stream. Finally, the solution chosen is described in section 11.

53

Secure Mobile Voice over IP

10 Alternative Solutions for Secure Mobile Voice over IP

The services to be provided according to the requirements of the model are carefully defined, and there are
several solutions and alternatives that can be applied to secure Mobile Voice over IP in order to provide
those services.

10.1 Security Requirements of the Model

One of the main points when developing Mobile VoIP is its performance, with regard to latency,
delay, voice quality, and interoperability. However, we should not overlook security issues. VoIP
security needs to be handled in the overall context of data security, providing a suitably secure
infrastructure to support the whole process of making, using, and terminating a call.

We should try to provide an architecture with the needed security mechanisms in order to protect each
one of the phases of this communication. With these mechanisms we will try to avoid many different
kinds of attacks, such as DoS attacks, packet spoofing, reply attacks, or message integrity violations,
as well as eavesdropping of the media session.

As an initial approach, we believe that the most suitable mechanism for protecting the media stream
would be the use of an extension of RTP called Secure Real−Time Protocol (SRTP), to encrypt the
flow. For the rest of menaces, a trust hierarchy must be set up, in order to provide the process with
mutual authentication, data authentication, privacy, and integrity.

Many of the potential security mechanisms are already considered as standards, for instanceHTTP
Digest[16] or Transport Layer Security(TLS)[17], for SIP security. Providing a design of an
architecture with a complete secure infrastructure is the aim of this project. Using these mechanisms
and/or adding others depends on a thorough study of them in the context of this problem.

We must consider that a lot of security associations must be established to perform a single simple
call. These associations include securing all the different phases in the process, both the RTP stream
and the SIP interaction between various entities. Regarding SIP security associations, they must
include all the interactions between mobile nodes and servers, as well as between the servers
themselves. This means that we must secure the registration of the users, along with the establishment,
and the termination of every call. Thus, from a security point of view, all communication needs to be
secured, that is, authenticated and encrypted.

As to the requirements themselves, we can divide them into functional requirements, such as total
privacy of the exchanged data, and safe storage of the accounting information in the servers (call data
records for the purpose of billing should be physically secured); and technical requirements. The latter
are summarized in the list below:

� All the connections between elements of the architecture must be encrypted.

� Each one of the end−points of these intermediate connections must always authenticate each
other (strong authentication).

� End−to−end authentication between mobile nodes must also be provided.

54

Secure Mobile Voice over IP

For this purpose, as said in preceding paragraphs, the creation of a suitable infrastructure is needed.
This infrastructure could be aPublic Key Infrastructure(PKI)[19] or a Distributed Key scheme, such
as aKerberos[20] model, although the latter has not been deeply studied so far. As we will see later in
this paper, the PKI scheme seems to be the most suitable solution.

We will need to separately deal with each of the elements to be secured. This means that the security
of the media stream (by using SRTP or another means such as IPSec) must be treated independently.
Hence, the first challenge will be how to secure the SIP protocol.

10.2 Securing SIP

Securing Session Initiation Protocol is far from trivial. Furthermore, note that it is different the
interaction between users and servers and that between server themselves. The main network security
services required by SIP are the following:

� Preserving the confidentiality and integrity of the messages
� Preventing replay attacks or message spoofing
� Providing authentication of and privacy for the participants in a session
� Preventing DoS attacks

There are multiple alternatives to solve these problems. Of course, these alternatives may be used by
themselves or in conjunction to achieve our final goal. The following paragraphs present all these
alternatives. Some of them are security protocols, such as IPSec or SSL/TLS, probably combined with
other security mechanisms, such as HTTP Digest.

In order to negotiate the most suitable scheme, SIP entities could make use of a negotiation agreement
mechanism, as described in RFC 3329[22]. This process would perform a negotiation between a user
agent and its first hop destination (SIP server), where the client selects a security mechanism (TLS,
IPSec, TLS/HTTP Digest, etc.) from a list given by the server.

The SIP specification establishes HTTP Digest as the default authentication mechanism.Basic
authenticationwas deprecated because of its weakness. Both mechanisms are described in [16].
CHAP password authentication[23] could be another alternative to provide this mutual authentication.
These mechanisms may also be used in conjunction with IPSec to provide peer−to−peer mutual
authentication, if the use of TLS (described in the next subsection) were finally discarded.

On the other hand, the use of SSL/TLS in a PKI is the most powerful alternative to IPSec, even if the
client is not able to get a certificate when this TLS scheme was used. As a matter of fact, the usual
authentication in TLS is from the server to the user in the form of one−way authentication, rather than
mutual authentication16. The user might be authenticated to the server by utilizing some sort of
challenge (i.e introducing a username and a password), as commonly established in a usual TLS
connection nowadays.

As far as the security in the DNS look−up is concerned, this phase has not yet been thoroughly
studied, although the use ofDNSSEC[24] seems to be the right approach. The motivation for securing
the DNS look−ups is to avoid these look−ups return wrong or malicious SIP server addresses.

16. This occurs because few clients posses a certificate nowadays.

55

Secure Mobile Voice over IP

10.2.1 Using SSL/TLS in a PKI

The use of a PKI in this architecture would enable the use of TLS. Establishing TLS
connections between the involved entities (either mobile nodes or SIP servers) would provide
the SIP architecture with the necessary security services during the process. These services, as
[25] explains, would be:

� Strong authentication
� Cipher suite negotiation (for encryption and hashing)
� Dynamic key distribution
� Encapsulation format for the protected data stream

By using the TLS Handshake Protocol we can authenticate (with mutual authentication) each
entity involved in the call (mobile nodes or SIP servers), as well as establish the parameters for
the encryption and hashing mechanisms to ensure the protection of the exchanged data. We
would set, in this way, the basis for data authentication, privacy, and integrity (obtaining hop−
by−hop message protection between mobile nodes and SIP servers, as well as between SIP
servers themselves), as well as indirectly getting a non−repudiation service in those phases of
the process when the digital signature is used. Therefore, TLS could secure every security
association along the process, from the registration to the termination.

With this PKI, entities would utilize certificates (with their private and public keys). An initial
consideration of this approach shows us the fact that the use of the certificates for the servers
would be easily achieved, although this is probably not completely true considering the users
themselves, since they (the users) usually lack certificates. However, the most commonly used
TLS scheme assumes this lack, and authentication is considered a one−way authentication
from the server to the user. Hence, a challenge mechanism would be added to authenticate the
users. In this case, some sort of username−password authentication would be used to
authenticate the user to the server over the established TLS tunnel.

Computing or transmitting these certificates (given the typical constraints and limited
bandwidth in wireless environments), ends up decreasing the performance. However, the
ability to bypass the initial expensive public key authentication if the server has recently
authenticated the client and established a shared secret key (session resumption)is allowed by
SSL/TLS, whenever the server remembers the session secret.

By establishing a PKI, we would achieve:

� Message authentication and integrity (by generating and digitally signingMessage
Authentication Codes, MAC).

� Confidentiality (distributing previously negotiated session keys by using digital
envelopes).

� Non−repudiation service (via digitally signing).

� Peer−to−peer strong authentication (by using the handshake protocol within TLS or
adding a challenge authentication scheme for the client authentication).

� EnablingSecure Multipurpose Internet Mail Extensions(S/MIME)[28] (which can use
the certificates) to secure SDP bodies within SIP messages (and probably more), as we
will see in the following paragraphs.

56

Secure Mobile Voice over IP

10.2.2 Using IPSec

As described in section 7.1, IPSec is a protocol developed for transmission of sensitive
information (such as VoIP traffic) over unprotected or untrusted networks. It acts as a
network−layer security protocol that protects and authenticates IP packets exchanged between
IPSec devices or peers. These message authentication and encryption services are independent
of the key management protocol used to set up the security associations and session keys.
Indeed, there are two possible ways offered by IPSec for the key management:

� Manual keying
� Automatic keying

In the manual scheme, keys are manually installed and configured by the administrator. This
makes it vulnerable to attacks where an intruder gains control of the server, therefore we must
deprecate the use of this scheme in our model.

On the other hand, in the automatic scheme, keys are negotiated by the entities forming a
security association themselves. This negotiation may be performed by using the Internet Key
Exchange (IKE)[26] protocol. These security associations may also be (are supposed to be)
refreshed (re−keying) without requiring administrator intervention.

Some advantages of using IPSec would be:

� Provides security without changing the interface to IP.

� Within an organization, the use of IPSec in tunnel mode enables the creation ofVirtual
Private Networks (VPNs), protecting the communication between entities.

� Unlike TLS, upper layer protocols are not supposed to be changed to invoke security, and
need not even be aware that their traffic is protected at the IP level, this is, it is
completely transparent to the application. Thus, such application needs no changes17.

� Provides hop−by−hop security in a really simple fashion, which would be extremely
important in our architecture.

Unfortunately, there are some disadvantages as well:

� IPSec increases processing costs and communication latency, as sender and receiver
perform cryptographic operations. Furthermore, as studied in [27], if IKE were finally
used as a key−management protocol, it could affect in an important way the performance,
having an alarming effect on it (although this fact, and whether this latency is greater
than that due to a GPRS multiframe should be investigated further).

� IPSec may provide security for all upper layer protocols, but it also creates overhead for
all of them.

� As IPSec does not prescribe any particular key−management protocol, although this
allows different nodes to pick their favourite scheme, these have to be negotiated and
agreed upon before they can protect the traffic.

17. Section 11.3.1 in this document presents a possible refutation for such assumption.

57

Secure Mobile Voice over IP

� The lack of a handshake protocol (unlike in TLS) makes IPSec incapable of providing
peer−to−peer authentication by itself. This must be provided by, for instance, HTTP
Digest or CHAP authentication, or even by the key management protocol if this is
provided with the authentication service.

10.2.3 Securing SDP bodies and SIP headers

As the SIP messages need to be inspected in some intermediate steps of the communication,
we cannot end−to−end encrypt the SIP headers. The SIP specification recommends the
protection of this data by using TLS tunnels in a hop−by−hop way, although IPSec would be
another suitable alternative. Note here as well, that this data would be vulnerable in the
intermediate points.

Other alternatives considered in this paper assume that these intermediate points are trustful
(for simplicity of the model); or consider the use of cryptographic attributes in SDP, as
described in [38]. The latter has not yet been studied.

Given this, for headers needing protection, because the SDP body is of MIME type, they could
all be moved, if needed, to one SDP MIME body and protected by S/MIME in order to provide
header authentication and integrity. Thus, SDP MIME bodies can be protected end−to−end.

However, the problem faced is that to define what fields of the SIP header a proxy server
should be allowed to modify. Furthermore, we will see later along this document that this
protection is probably not needed if the key−management protocol (e.g. MIKEY) is
"encapsulated" into SIP, and protects itself.

Using S/MIME to secure the SIP headers, as well as the SDP body, would require a PKI as we
saw in the TLS description section, since end−points will need certificates.

However these aspects should be investigated further by others.

10.2.4 Securing the DNS Look−Up

Unfortunately, this issue has not yet been deeply studied. In spite of this, as said at the
beginning of this section, it seems reasonable to use DNSSEC to protect this phase of the
process. As said before, the motivation for securing the DNS look−ups is to avoid these look−
ups return wrong or malicious SIP server addresses.

10.2.5 Conclusions

The PKI option of using certificates seems to be the most suitable scheme to protect this part
of the architecture (registration, establishment, and termination), if used along with a
DNSSEC scheme to protect the look−ups. This would enable TLS connections to be
established, achieving all the security requirements as noted thus far. If the client does not
support the use of certificates (the most commonly used TLS scheme), providing the
architecture with a challenge mechanism in order to authenticate the client to the server, such
as HTTP Digest, would enable us to continue to consider this option.

For both cases, S/MIME protection of the SIP messages is, at this stage, probably needed in
order to ensure that the sensitive data is encrypted except while being processed in

58

Secure Mobile Voice over IP

intermediate points, such as untrusted proxies, although we must note that the support of
certificates would again be required. However, we will see in next sections that the use of
S/MIME for this purpose has been finally deprecated, since it may not be needed if we
consider the intermediate points trustful (simplicity for the model).

If a previous negotiation of the security mechanism were needed, we have seen that SIP
provides an agreement mechanism in order to negotiate which one of the different solutions
will be finally adopted. Fortunately, this negotiation could be performed during the first steps
of the SIP requests, such as the REGISTER or even the INVITE messages, as described in the
RFC 3329.

10.3 Securing the Media Stream

This section provides a brief introduction to the different alternatives we have considered to secure the
media stream. It is divided into two sections:Transport ProtocolandKey management. The former
briefly describes the possible solutions to secure the flow itself, while the latter presents the different
protocols which can be used to provide the model with the key management scheme needed to support
the media stream security (and may include mechanisms to authenticate the end users to each other).

10.3.1 Secure Transport Protocol

As said in preceding paragraphs, the media stream must somehow be protected. In this case,
the stream would be a voice flow between the end users, A and B, and it is transported using
RTP. This RTP flow must be encrypted and integrity protected, and the keys must be derived
as a result of an initial strong authentication between the users (see [25]).

In order to protect this media stream, one powerful alternative is the IETF draft for Secure
RTP (SRTP), which also specifies key derivation and data encapsulation. The SRTP draft
defines SRTP as "a profile of the Real−time Transport Protocol (RTP), which can provide
confidentiality, message authentication, and replay protection to the RTP/RTCP traffic"[15].

The use of IPSec is an alternative for protecting the data at the network−layer, and even to
protect, if needed, some aspects of the stream such as the RTP headers (which are not
protected by SRTP). This protection should be performed after considering users end−to−end
policies to determine if doing so is required.

However, the use of SRTP (more specifically oriented to RTP traffic) seems more efficient
when dealing with firewall andNetwork Address Translation(NAT) traversal (and other
issues), although the presence of such components has not yet been considered, and thus, this
is an assumption. Moreover, the cost of using SRTP to protect the media stream might be
considerably low, given its features (such as the low packet expansion). These features are
further described in section 13.

10.3.2 Key Management

As said above, the keys for protecting the traffic must be derived as a result of an initial strong
authentication between the users. Negotiating a suitable key−management scheme (MIKEY,
IKE, or other) or extensions to SDP are available and described in [30].

Regarding the key management protocol needed to support SRTP, a powerful alternative is the
use ofMultimedia Internet KEYing(MIKEY)[29] , since it is close to both SIP and SRTP.

59

Secure Mobile Voice over IP

What MIKEY would provide is described in more detail in sections 11, 12, and 14.

There are several other alternatives, such as for example IKE, although MIKEY seems to be
more specifically oriented to supporting SRTP.

The cryptographic SDP attributes (see [38]) seem to be (thus far) an additional feature, rather
than an alternative to the chosen key management protocol.

60

Secure Mobile Voice over IP

11 A secure Model for Mobile VoIP

The previous section showed us all the different solutions that can be applied to the architecture in order to
provide the model with the required security services. However, there are many factors involved in the
problem. The most important of these factors is the process performance. This section provides a solution
for Secure Mobile VoIP. The solution presented here does not, of course, overlook the security requirements,
nor the performance aspects. A rationale for the selection of each security component is also given in this
section.

11.1 Overview of the Model

The model proposed in this section in intended to be an efficient solution to the problem exposed in
section 9. This model is the result of a thorough investigation performed at TSLab, IMIT, KTH,
Stockholm, in order to provide a single Mobile VoIP call with the necessary requirements regarding
security, as well as evaluating the performance of the process.

The ideas concerning the protocols and mechanisms to use that my colleagues and I have come up
with are summarized in the following list:

� The use ofSRTP to protect the media stream between end users. Our own implementation of

SRTP (MINIsrtp) is available and described in section 13. MINIsrtp utilizes the AES algorithm
for encryption. This implementation is based on the libsrtp libraries[33].

� The use ofMIKEY as the key−management protocol to support SRTP session establishment, as
well as to protect the negotiation scheme. This would also provide the desired end−to−end mutual
authentication.

� The use ofTLS to protect the SIP transactions (providing the necessary hop−by−hop security).
At this time, the use of S/MIME which would only be suitable to protect certain SIP payloads
(hence, it is out of the current scope of our testbed) is deprecated.

� The use of DNSSEC (as an initial approach) to secure the correspondent look−up.

� The use ofSIP Express Router (SER)[31] as the software to perform the whole process in the
SIP servers. The use ofVOCAL[7] has also been considered, although the support for DNS look−
ups of SER is of special interest for us, considering that none of them supports a TLS scheme.

� The use ofMINISIP [32], developed at TSLab by Erik Eliasson, as the user agent software,
enhanced with the necessary security aspects (SRTP, MIKEY, etc.).

Figure 11.1 depicts the overall picture of the model, while the rationale for these choices are described
in the following subsections.

61

Secure Mobile Voice over IP

 2. Look−up 3. Look−up response

 4. INVITE

1. INVITE 5.INVITE

 6. SRTP Media Stream

 Figure 11.1 Security−Enhanced SIP Trapezoid Model18

11.2 Interoperation of the Components

How these components interoperate is described as follows:

� Firstly, we must set up a PKI. This allows us to protect the different security associations by
using TLS. As said before, HTTP Digest challenge mechanism (or other password−based
authentication mechanism) would help if the client does not support the use of certificates (the
most common situation). However, I have assumed at this stage the ability of the clients to
support certificates.

� We will utilize DNSSEC in order to provide the DNS look−ups with the necessary security.

� We will use our own implementation of SRTP to secure the RTP stream. This implementation,
described in section 13, is based on the IETF SRTP draft, the MINISIP RTP implementation, and
some C libraries from [33], called libsrtp19, among others.

SRTP provides session key derivation for the encryption and authentication of the exchanged data.
Hence, a master secret key is needed, and thus, a key−management mechanism is needed to provide
it and to initialize the cryptographic context for using SRTP. The key−management protocol
proposed would be MIKEY, which provides:

� Mutual authentication of the end users, which in turn can be set up in three different
ways. These arepre−shared key, public key, or signed Diffie−Hellman.The latter seems
to be a priori the most suitable for our purpose, and it would be supported by the presence

18. Although not shown in the figure, the INVITE SIP messages carry the MIKEY message used for the key scheme negotiation
19. libsrtp is copyright protected: Copyright (c) 2001, 2002 Cisco Systems, Inc. All rights reserved.

62

M N
A

SIP
A

SIP
B

M N
B

DN S
A

TLSTLS

TLS

DNSSEC

Secure Mobile Voice over IP

of the PKI.

� Negotiation of the cipher−suite which will be used to secure the RTP flow, and
initialization of the cryptographic context.

� Establishment of a master secret key, which in turn would be used to derive the SRTP
session keys.

Regarding the implementation and given all these premises we decided to follow a "bottom−up"
approach. In this way, we established a simple RTP session between two MINISIP user agents. Once
this simple goal was achieved, the next step consisted of establishing the same flow, but using in this
case an SRTP session instead. Next steps would comprise the MIKEY addition to this scheme and
finally we would consider the SIP and DNS security. As said earlier, the introduction of mobility is
out of this project’s scope.

A final analysis of the model and some measurements are described in section 15.

11.3 Rationale

In this section the rationale for the choices and decisions of the model is given. Furthermore, the
answers to the following questions are given:

� Why use TLS to protect SIP?
� Why use DNSSEC to protect the DNS look−ups?
� Why use MINISIP as the user agent?
� Why use SRTP to protect the media stream, instead of IPSec over VPNs?
� Why use MIKEY as the key−management protocol to support SRTP sessions?

11.3.1 TLS supported by a PKI

The use of TLS supported by a PKI provides the model with the necessary security
requirements, such as peer−to−peer mutual authentication of the entities (by using the
SSL/TLS Handshake Protocol), hop−by−hop confidentiality and message authentication, and a
dynamic negotiation of the cipher suites and key distribution. The use of certificates and
public−key cryptography to establish the connections and distribute the keys is the most
efficient solution for our purpose.

In our case, the placing of the security mechanisms at higher−layers of the stack, rather than at
lower−layers (IPSec) is preferred since the use of IPSec implies greater protocol processing
costs and higher communications latency, besides not providing a handshake protocol for
authenticating the entities. The limited bandwidth and other constraints existing in wireless
environments enforces this decision. Furthermore, despite the common belief, applications
must change to takefull advantage of IPSec (see Section 16.1 in [54]). Moreover, the IPSec
security associations identify (trust) devices rather than sessions or applications.

11.3.2 DNSSEC

This point has not yet been deeply studied and compared to other alternatives. Hence, the
reasons for choosing DNSSEC to protect the DNS look−ups is based on a straight−forward
decision, rather than on a detailed study.

63

Secure Mobile Voice over IP

11.3.3 The User Agent: MINISIP

MINISIP is an implementation of a SIP user agent to be used in Mobile VoIP scenarios. It was
developed at TSLab, IMIT, KTH, by Erik Eliasson. The decision of enhancing MINISIP with
security mechanisms, such as SRTP and MIKEY, was based on the simplicity and good
performance of the implementation.

11.3.4 SRTP vs. IPSec and VPNs

The functionality provided by SRTP and IPSec is very similar as far as our security
requirements are concerned. However, the relatively high bandwidth consumption of IPSec
forced us to search for other alternative. SRTP provides a suitable security functionality, but a
lower bandwidth cost. Its low packet expansion (unlike VPNs over IPSec), its high throughput,
and its specific orientation of SRTP to protect RTP as a profile of this, together with the use of
the low−cost, high−speed AES as the SRTP encryption algorithm, made us expect a very good
performance of the model when using this solution, rather than IPSec and VPNs. Besides, the
use of SRTP (more specifically oriented to RTP traffic) seems more efficient when dealing
with firewalls andNetwork Address Translation(NAT) traversal, although the presence of
these two components must be investigated further by others. Moreover, as for the SIP
security, the IPSec security associations identify (i.e.trust)devices rather than
sessions/applications. This would be a disadvantage when having several sessions/applications
running in the same device, some of which may be trusted and some others not.

A complete description of SRTP and its implementation is given in section 13, while the
source code is given in Appendix A. Note that SRTP is still an IETF draft, and it has not been
yet thoroughly analyzed.

11.3.5 MIKEY

MIKEY is a key−management protocol specifically oriented to support security protocols for
real−time applications, such as SRTP. MIKEY provides the key needed to derive the SRTP
session keys, and is compatible with SIP message transactions (it may be integrated in SIP).

MIKEY provides the following features[29]:

� End−to−end security
� Simplicity
� Efficiency: low bandwidth consumption, low computational workload, small code size,

and minimal number of roundtrips
� Tunnelling: Possibility to "tunnel"/integrate MIKEY in session establishment protocols

(e.g. SIP)
� Independent of any specific security functionality of the underlying transport

A complete description of MIKEY is given in section 14, along with a framework for its use in
this project. As for SRTP, MIKEY is still an IETF draft, and it has not been yet thoroughly
analyzed.

64

Secure Mobile Voice over IP

12 SIP Security

This model for Secure Mobile VoIP needs the establishment of a PKI which supports the SSL/TLS security
associations in order to secure the SIP protocol. This section provides some hints on how to start working
with a PKI supporting TLS to secure SIP. Further investigation on this issue must still be performed by
others in future work. More information beyond this document can be found in the SIP RFC[3].

12.1 Background

Section 10.2.1 presented the different aspects regarding the use of a PKI supporting TLS for providing
the SIP protocol with the necessary security. Moreover, section 11.3.1 gave a rationale for the
selection of TLS supported by a PKI. The following list briefly summarizes those sections:

� TLS supported by a PKI provides: Strong Authentication, Dynamic Key Distribution, Cipher
Suite Negotiation, Message Authentication, and Confidentiality.

� Suitable Security Associations along the process, from the establishment to the termination, by
securing hop−by−hop the SIP messages, such as INVITE or REGISTER.

� Session resumption.

Furthermore, the PKI may be used to support MIKEY (providing end−to−end authentication) when
the basic exchange method selected is Signed Diffie−Hellman (see section 14.2.8).

12.2 TLS within SIP

TLS can be specified as the desired transport protocol within a Via header field value or a SIP−URI.
The identifier in this case will be tls.

The use of a SIPS−URI scheme, that signifies that each hop over which the request is forwarded, until
the request reaches the SIP entity responsible for the domain portion of the Request−URI, must be
secured with TLS, is described in detail in the SIP RFC.

Using TLS for the REGISTER messages should be simple: the user and its SIP provider could have
certificates signed by a common CA at the time of the user signing up. The user could store the
necessary certificate information in a smart card or in a file (PKCS#12), which he/she inserts or
installs respectively in the SIP device.

For other SIP messages (such as the INVITE message) the situation becomes more complex, and we
should distinguish between two different cases (Figure 12.1 depicts such distinction in the case user A
calls user B):

1. On the hop between the sender user agent (UA) and its outgoing SIP proxy server, the already
established TLStunnel could be reused. The same goes for the (last) hop between other SIP
proxy server and the receiver UA.

2. On the other hand, for the hop between the SIP proxy servers a PKI is needed for large scale
deployment. Establishing such a PKI will take some effort.

65

Secure Mobile Voice over IP

Figure 12.1 Distinction between the SIP INVITE messages regarding the establishment of a PKI

12.3 A First Approach

Although a PKI used in large scale would be needed, a good way to get started is by installing only
certain certificates, since the most of your calls are usually made to a few persons. As said above, this
simple PKI will support the Signed Diffie−Hellman exchange in MIKEY, providing the needed end−
to−end security.

66

SIP
A

UA
A UA

B

SIP
B

REGISTER /
INVITE (case 1)

 INVITE (case 2)

 INVITE (case 1)

Secure Mobile Voice over IP

13 Secure Real−Time Protocol (SRTP)

The Secure Real−Time Protocol is still a IETF draft. The previous section gave us the rationale for using
SRTP in our model. This section describes the protocol and presents a first version of an implementation for
it, called MINIsrtp.

13.1 SRTP Description

SRTP provides message authentication, integrity, confidentiality, and replay−protection for unicast
and multicast RTP applications, by previously using the appropriate key−management protocol[15]. In
our case, we have chosen to use MIKEY as the key−management protocol. MIKEY provides the
SRTP with a master key, which is used to derive the session keys needed to encrypt and authenticate
the messages. MIKEY would also be in charge of the cryptographic context initialization.

SRTP has ahigh throughput while at the same time havinglow packet expansion(unlike IPSec in
tunnel mode over VPNs, which expands considerably the size of the packet), and offers asuitable
protection by using transforms based on an additive stream cipher for encryption and a keyed−hash
function for message authentication. It also provides an implicit index for sequencing and
synchronizing. This will be based on the RTP sequence number for SRTP and on the index number for
Secure RTCP. Regarding the encryption cipher and the keyed−hash, the first implementation of SRTP
will include the mandatory−to−implement algorithms (AES in Counter Mode and Null Cipher). The
strong point as far as the ciphers are concerned is the use of AES, since its computing cost is very low
(see section 5.2.1).

All these features seem to make the use of SRTP along with AES the most powerful alternative to
protect the media stream.

SRTP resides between the RTP application and transport layer. For a better clarity, we distinguish the
SRTP sender and receiver sides. On the sender’s side, SRTP intercepts an RTP packet, builds the
corresponding SRTP packet and sends it to the receiver. On the receiver’s side SRTP intercepts the
incoming packet (SRTP packet), extracts from it the RTP packet, and passes it up the stack.

13.1.1 SRTP Packet

The SRTP packet format is nearly the same as the RTP packet format. The SRTP packet
header is identical to the RTP one, but with two new optional fields :MKI andAuthentication
tag. Figure 13.1 depicts the SRTP packet format. A description of the RTP/SRTP header fields
has been given in section 3.2.3 in this document.

67

Secure Mobile Voice over IP

0 8 16 31

V P X CC M PT Sequence Number

Timestamp

Synchronization Source (SSRC) Identifier

Contributing Source (CSRC) Identifier

...

RTP Extension (optional)

Payload Data (variable)

Padding

RTP Padding RTP Pad

MKI (optional)

Authentication Tag (optional)

 Figure 13.1 SRTP Packet Format

In the figure, the dark grey field at the top of the packet corresponds to the SRTP header
(identical to the RTP header). The light gray portion of the packet is the payload, which is the
part covered by the encryption operation (this portion is also referred to as theencrypted
portion). The message authentication operation computes the MAC over these two portions
and places this MAC in the Authentication Tag.

The new optional fields are placed at the end of the packet. First, the MKI field, is used by the
key−management protocol. It identifies the master key from which the session keys were
derived. It may be used when re−keying for identifying a particular master−key within the
cryptographic context. Initially, we will not implement this field, since the master key will be
shared by both SRTP and SRTCP, and because I will only consider a single unicast session
between two users. Both users share the master key, which has an unspecified lifetime.

Second, the Authentication Tag carries authentication data, if it is to be provided. As explained
in section 9.5 in [15], the use of this feature could affect the bandwidth consumption in
cellular and wireless environments (given the bandwidth constraints for such environments),
so it has been analyzed whether this aspect was strongly necessary for our architecture.
Perhaps the use of it, but reducing its size via key−management protocol (by default
established as 32 bits) as much as possible without affecting the security would be another
alternative. The use of a truncated size of the Authentication Tag must be evaluated with
respect to the reduction of security it implies. However, considering the tests shown in section
15, the effect of this additional length of the packet (4 bytes)on the performance of the
protocol is negligible.

The Authentication tag is computed in the sender and verified in the receiver, with the
algorithm proposed in the cryptographic context (in our case HMAC−SHA1, described in
section 5). This feature provides authentication for the RTP header and payload (called the

68

Secure Mobile Voice over IP

Authenticated Portion), as well as indirectly providing replay−protection by authenticating the
packet sequence number. Note also that integrity protection is mandatory in SRTCP, so this
field must appear in the SRTCP packet.

As said before, only the RTP payload will be encrypted (called the Encrypted Portion), along
with possible padding, if needed, of this payload. To provide RTP header confidentiality, end−
to−end policies should be considered.

13.1.2 SRTCP Packet

SRTCP adds four new fields to the RTCP packet. These are theSRTCP index, anencrypt flag
(referred to as the E−flag), theauthentication tag, and theMKI. Only the latter is optional. As
we saw in previous paragraphs, since RTCP is a control protocol, the authentication of its
messages must be ensured, and that is why the authentication tag field is mandatory.

As said in the SRTP draft, the Encrypted Portion of the SRTCP packet consists of the
encrypted payload of the equivalent compound RTCP packet. The Authenticated Portion
consists of the entire equivalent RTCP packet, the E−flag, and the SRTCP index,after any
encryption has been applied to the payload. Figure 13.2 shows the SRTCP packet format. The
SRTCP header is identical to that in RTCP packet. Section 3.2.4 in this document briefly
described the different fields in the RTCP header.

 0 8 16 31

V P RC PT=SR or RR Length

SSRC of sender

Sender Info

Report Block 1

Report Block 2

...

SSRC / CCRC_1

SDES Items

...

E SRTCP Index

SRTCP MKI (optional)

Authentication Tag

 Figure 13.2 SRTCP Packet Format

The dark grey portion at the beginning of the packet corresponds to the SRTCP header. The
Encrypted Portion corresponds to the light grey portion of the packet, while the authentication
coverage comprises the whole packet except the SRTCP MKI and, of course the
Authentication Tag itself, where the MAC is stored.

The SRTCP index is a 31−bit counter explicitly included in the SRTCP packet (note that the
SRTP index was implicitly carried in the SRTP packet). Its value has to be zero before the first

69

Secure Mobile Voice over IP

packet is sent and increased by 1 modulo 231 after each packet is sent. We should keep in mind
that, if there would be re−keying, this index must not be reset to zero.

The E−flag indicates whether the current SRTCP packet is encrypted or not.

The Authentication Tag, now mandatory, is identical to the one present in the SRTP packet. Its
length is variable (although set by default to be 32 bits), and carries the message
authentication data, as in the SRTP packet.

As far as the MKI field is concerned, its functionality is the same as in an SRTP packet.
Remember that this is the only optional new field added to the SRTCP packet, thus it will be
avoided in the first implementation for the same reasons indicated in section 13.1.1.

13.1.3 Message Authentication and Integrity

Message Authentication and Integrity are ensured by the computation and verification of the
Authentication tag, optional for SRTP traffic, but mandatory for SRTCP packets.

For SRTP data, the sender computes the MAC of the Authenticated Portion concatenated with
theROC(roll−over counter) parameter, and appends it to the packet. The receiver verifies this
tag by performing a new Message Authentication and Integrity computation over the same
parameters, and using the same algorithm, and compares this to the one associated with the
received packet. If both are equal, the message is valid, and if not, then the receiver must
discard this packet, record the event, and an audit "AUTHENTICATION FAILURE" message
is returned in the receiver’s side.

This procedure is almost identical for SRTCP traffic, with one only difference: since the ROC
parameter is not present for the control protocol, the tag will be computed only over the
Authenticated Portion.

13.1.4 Key Derivation

As stated in the SRTP draft, the implementation will use the SRTP key derivation scheme to
generate the session keys (from a master key provided by MIKEY), regardless of the
authentication or encryption algorithms to be used. It is important to keep in mind that, once
the key derivation rate is properly signalled at the start of the session, there is no need for
extra communication between the parties that use the SRTP key derivation scheme.

Section 7.1 in [15] states that the key derivation process reduces the burden of key
establishment. As many as six different keys are needed to protect the RTP/RTCP session
(SRTP and SRTCP encryption keys and salts, SRTP and SRTCP authentication keys), but
these are all derived from a single master key in a cryptographically secure way. Thus, the key
management protocol needs to exchange only one master key (plus master salt when required),
SRTP then derives all the necessary session keys.

SRTP will need, at least, one initial key derivation. Refreshment of these keys during the
session is, at this stage, not considered, and the key derivation rate, and thus, the associated
master key lifetime, will be fixed. Thus, I will consider an undefined lifetime in the simplest
case.

By default, the SRTCP key derivation scheme will share the master key generated for the
SRTP derivation. Again, details of this sharing are out of the scope of this paper. Note,

70

Secure Mobile Voice over IP

however, that the session keys must never be shared.

Further details about this derivation scheme can be found in [15].

13.1.5 Cryptographic Context

Obviously, each SRTP stream requires the sender and receiver to keep cryptographic state
information, called cryptographic context. In every cryptographic context there are several
common parameters (such as ROC, replay list, key derivation rate, key lifetime, etc.),
independent of the encryption and authentication algorithm used; and some others (such as the
block size of ciphers, the session keys, etc.) related to the specific security mechanism being
used. Further details of these parameters can be found in [15].

13.1.6 Packet Processing

In this section I present an overview procedure used to create SRTP packets at the sender’s
side and to extract from them the corresponding RTP packet at receiver’s. It is based on the
RTP implementation present in the MINISIP user agent, the SRTP draft, and thelibsrtp C
libraries from [33]. At this stage, I have not considered the SRTCP case for reasons regarding
the limited time, but I believe it will be similar. I assume the initialization of the cryptographic
context is performed by the key management protocol (MIKEY in our case).

� Sender behavior:

1. Determine the cryptographic context to be used.
2. Derive the session keys from the master key from the key management protocol

(MIKEY).
3. Encrypt the RTP payload.
4. If message authentication is required, compute the corresponding authentication tag

and append it to the packet.
5. Send the SRTP packet to the socket.

� Receiver behavior:

6. Read the SRTP packet from the socket.
7. Determine the cryptographic context to be used.
8. Determine the session keys from the master key from the key management protocol

(MIKEY).
9. If message authentication and replay protection are provided, check for possible

replay and, next, verify the authentication tag.
10.Decrypt the Encrypted Portion of the packet.
11.If present, remove the authentication tag from the packet, passing the RTP packet up

the stack.

13.1.7 Predefined Algorithms

A wide set of different algorithms for encrypting and authenticating the RTP messages could
be used. Despite this, there are some default mechanisms, also calledmandatory−to−
implement in [15], described here in this section.

71

Secure Mobile Voice over IP

13.1.7.1 Encryption

The default cipher for encrypting the RTP payload is the Advanced Encryption Standard
(AES), and two different modes to use it are specified: Segment Integer Counter Mode
(AES−CM) and f8 mode (AES−f8). I will deal only with the first mode, which is
mandatory−to−implement.

We should also consider the NULL−cipher algorithm, since it is also mandatory−to−
implement. This will be used when no privacy for RTP or RTCP is required. A more
detailed description of these algorithms is given in section 5.2.

13.1.7.2 Message Authentication and Integrity

The predefined algorithm to use and to implement will be HMAC−SHA1, which is based
on a keyed−hash function. We must also consider theNULL Authenticator in the
implementation.

A more detailed description of this algorithm is given in section 5.2.

13.2 SRTP Implementation: MINIsrtp

13.2.1 Introduction

Our implementation of SRTP is called MINIsrtp for two reasons. First, as explained later in
this section, it is not intended to be a full−functionality implementation. In addition, it is
designed to be integrated into the existing MINISIP user agent. MINIsrtp is free software (see
License in section 13.2.4.6) and must still be considered as work−in−progress .

MINIsrtp is based on the following:

� The IETF Secure Real−Time Protocol (SRTP) draft, which defines this protocol as a
profile of RTP that provides confidentiality, message authentication, and replay
protection to the RTP traffic, as well as support for packet loss and misordered packets
without loosing the synchronization between sender and receiver.

� The libsrtp library[33], which is a work−in−progress, open−source, C implementation
from David McGrew, Cisco Systems, Inc. More information aboutlibsrtp can be found at
http://srtp.sourceforge.net/srtp.html.

� The HMAC−SHA1 algorithm C implementation written by Aaron Gifford20.

� The MINISIP implementation[32], developed by Erik Eliasson at TSLab, IMIT, KTH.
MINISIP is the implementation of a user agent to be used in Mobile VoIP scenarios.

The idea of the MINIsrtp is to add this security profile to the MINISIP implementation. In the
IETF SRTP draft, SRTP is intended to be an additional feature of RTP, rather than a
substitute. MINIsrtp agrees with and respects that definition. Thus, SRTP functionality
consists of intercepting RTP packets and creates from them on the sender’s side the
corresponding secure SRTP packets; as well as receiving SRTP packets on the receiver’s side
and extracting from them the corresponding RTP packet. Hence, this implementation of SRTP

20. This implementation is open code protected by the following Copyright: © by Aaron Gifford, 1998, 2000.

72

Secure Mobile Voice over IP

has been added to the RTP functionality into MINISIP, rather to substitute for it.

Note that MINIsrtp (in version 1.0) is not intended to be afull implementation, but an initial
approach for testing the performance of the SRTP protocol in our testbed. Furthermore, the
implementation has been developed to provide simplicity for its use, as well as for its easy
integration into MINISIP. The MINIsrtp source code (see Appendix A) might have some bugs,
some inefficient code, and even useless declarations. This is due to the limited time to
implement it. Future work on this project will also include the improvement of MINIsrtp.

13.2.2 Tools

The MINIsrtp has been developed in C++ under the SuSE Linux 7.1 operating system, with
the help of the KDevelop 1.3 IDE. The cryptographic engine, as well as some API functions
used for providing replay protection have been taken from thelibsrtp library (see footnote 16)
and A. Gifford’s HMAC−SHA1 implementation (see footnote 17).

13.2.3 Features

As said before, this MINIsrtp is designed to be integrated into MINISIP, and to provide its
RTP traffic with confidentiality , message authentication, andreplay protection. Regarding
the decryption operations at the receiver’s side, MINIsrtp should be able to handle up to 215

misordered or lost packets without losing the synchronization between the sender and the
receiver (the implementation of this feature is based on the libsrtp implementation).

SRTCP is not yet implemented in MINIsrtp version 1. This aspect will be included in future
work on MINIsrtp.

The cryptographic engine used for the implementation makes use of the mandatory−to−
implement algorithms defined in [15]:

� AES−CM (Rijndael) and, alternatively, Null−Cipher for encryption.
� HMAC−SHA1 and, alternatively, Null−authenticator for message authentication.

13.2.4 Description

This section provides a short description of the classes involved in MINIsrtp, as well as the
algorithm it performs to protect the RTP packets.

Figure 13.3 depicts the MINIsrtp initial class diagram.

73

Secure Mobile Voice over IP

Figure 13.3 MINIsrtp Initial Class Diagram

The source code of MINIsrtp can be found in this document inAppendix A: MINIsrtp
Source Code.

13.2.4.1 Classes

MINIsrtp adds three more classes into the MINISIP RTP implementation:

� SRtpPacket:The SRtpPacket class defines an SRTP packet. This class is similar
to the RtpPacket class already included in MINISIP. It defines the SRTP packet
attributes, such as the content, the header, the authentication tag, and the length;
as well as some related methods for creating an SRTP packet from an RTP packet
(protect), creating an SRTP packet from the bytes received in a socket,
unprotecting a received SRTP packet to extract the corresponding RTP packet, or
sending and receiving an SRTP packet through the net. These methods are
described in the section 13.2.4.3.

� SRtpHeader: It is identical to the RtpHeader class implemented in MINISIP, so

74

RtpPack et Sr tpPack et CryptoCon text

RtpHeader

Sr tpHeader

1 1 * 1

1

11

1

Secure Mobile Voice over IP

the SRtpHeader class is inherited from RtpHeader class21.

� CryptoContext: The CryptoContext class defines a cryptographic context as
described in section 13.1.5. This class stores the state and attributes of the
cryptographic operations associated with each SRTP flow, such as the ROC, the
replay lists, the type and parameters of the cipher or authenticator to be used, the
master key provided by the key−management protocol (MIKEY), etc.

MINIsrtp associates one instance of the CryptoContext class with each SRTP
flow. Thus, the creation of the a cryptographic context in the sender and receiver
would be required and the negotiation of this context should be performed by the
key−management protocol (MIKEY)22. Section 13.2.4.4 describes in more detail
the methods used in the CryptoContext class.

13.2.4.2 Algorithm

The algorithm used by MINIsrtp to protect a RTP packet is based on the SRTP draft. The
sender performs the following actions (the cryptographic context is assumed to be
initialized by MIKEY):

1. Get the RTP packet to be protected
2. Estimate packet index and add it to the sender’s replay list if the estimation was

successful, otherwise, discard and log the error.
3. Encrypt the RTP payload (by invoking the libsrtp cryptographic engine).
4. If message authentication service is to be provided, compute the MAC over the

message concatenated with the ROC (by invoking thelibsrtp cryptographic engine in
the case of the Null Authenticator is to be used, or by invoking the HMAC−SHA1
APIs in the case this algorithm is to be used), append it to the packet, and modify its
length.

5. Ready to send the SRTP packet created in steps 3 and 4.

The behavior of the receiver is the following (the cryptographic context is assumed to be
initialized by MIKEY):

1. Receive the bytes from the socket and build the SRTP packet according to the
cryptographic context used by the sender.

2. Estimate the packet index and check the replay list to avoid replay attacks. If
successful continue; otherwise discard and log the event.

3. If message authentication service is to be provided, compute the MAC of the
received packet (by invoking thelibsrtp cryptographic engine in the case of the Null
Authenticator is to be used, or by invoking the HMAC−SHA1 APIs in the case this
algorithm is to be used) and store it in the cryptographic context. Otherwise, go to 5.

4. Compare the computed MAC (stored in the cryptographic context) with the received
in the authentication tag. If the comparison is successful, remove the authentication
tag of the packet and continue, otherwise discard the packet and record the event.

5. Decrypt the encrypted portion of the packet (by invoking thelibsrtp cryptographic
engine) to get the RTP original payload.

6. Add the index of the received packet to the receiver’s replay list.

21. As SRtpHeader uses RtpHeader methods,and thus the former inherits the latter’s functionality, no description of this class will be
provided. See Appendix A: MINIsrtp Source Code for further information.
22. Note that the cryptographic context negotiation and its initialization (establishment of the parameters and master key), both
hardcoded into this implementation, should be provided by the key−management protocol (MIKEY) in future work.

75

Secure Mobile Voice over IP

13.2.4.3 SRtpPacket Class Methods

� SRtpPacket::SRtpPacket() : This constructor creates an empty SRTP packet.

� SRtpPacket::SRtpPacket(CryptoContext *scontext, RtpPacket
*rtppacket) : This constructor is used by the sender to create a SRTP packet from a
given RTP packet and a cryptographic context (viaprotect , described below). This
method is also in charge of adding an authentication tag to the SRTP packet in the case
the message authentication service were provided.

� SRtpPacket::SRtpPacket(SRtpHeader hdr, void *content, int
content_length): This constructor is used by the recipient (in the case that message
authentication werenot provided) to build a SRTP packet given its header, its content
and its content length.

� SRtpPacket::SRtpPacket(SRtpHeader hdr, void *content, unsigned
char *tag, int content_length): This constructor is used by the recipient (in
the case that message authentication were provided) to build a SRTP packet given its
header, its content, its authentication tag, and its content length.

� SRtpPacket:: ~SRtpPacket() : Class destructor.

� RtpPacket *SRtpPacket::get_rtp_packet(CryptoContext *scontext,
SRtpPacket *pkt) : This method is used by the receiver to convert a received SRTP
packet into a RTP packet by unprotecting (viaunprotect , described below) the
former.

� void SrtpPacket::send_to(CryptoContext *scontext, UDPSocket
&socket, IPAddress &to_addr) : This method is used to send a packet to a given
IP address through a given UDP socket. The length of the SRTP packet to be sent
depends on the security services provided.

� Static SRtpPacket *SRtpPacket::receive_from(UDPSocket
&srtp_socket, CryptoContext *scontext, int timeout=−1) : This method
is used to receive a stream of bytes from a given socket, and build a SRTP packet from
those bytes, given the cryptographic context associated with the flow.

� char *SrtpPacket::get_bytes(CryptoContext *sctx) : This method returns a
pointer to an array of bytes containing this SRTP packet. The length of the array
depends on which services the cryptographic context is providing.

� SRtpHeader &SrtpPacket::get_header() : This method returns the SRTP header
of this SRTP packet.

� void *SRtpPacket::get_content() : This method returns a pointer to the payload
of this SRTP packet.

� unsigned char *SRtpPacket::get_tag() : This method returns a pointer to the
authentication tag of this SRTP packet. It is used in the case that message authentication
were provided.

� void SRtpPacket::remove_tag() : This method removes the authentication tag of
a SRTP packet provided with message authentication service

76

Secure Mobile Voice over IP

� int SRtpPacket::get_content_length() : This method returns the length of the
payload of this SRTP packet.

� int SRtpPacket::size(CryptoContext *sctx) : This method returns the total
size of a SRTP packet. Note that the size of the packet depends on which services the
cryptographic context is providing.

� int protect (CryptoContext *scontext, RtpPacket *srtppacket, int
*len, int content_len) : This auxiliar function is used by the sender to provide
the RTP packet with confidentiality (by encrypting the RTP payload) and message
authentication (by computing a MAC over the RTP packet concatenated with the ROC).
Moreover, this function deals with the estimation of the index used by the cryptographic
engine, and also with the replay protection (by invokinglibsrtp functionality for this
purpose).

� int unprotect (CryptoContext *scontext, SRtpPacket *srtppacket,
int *len, int content_len) : This auxiliar function is used by the receiver to
extract the original RTP packet from the received SRTP packet (by decrypting the
SRTP payload, verifying the MAC received in the SRTP packet, and removing the
authentication tag if this were present). Moreover, this function deals with the
estimation of the index used by the cryptographic engine, and also with the replay
protection (by invoking libsrtp functionality for this purpose).

13.2.4.4 CryptoContext Class Methods

� CryptoContext::CryptoContext(string key, string salt, string
service, string cipher_type, string auth_type) : This constructor defines
a cryptographic context associated to one messages flow. By invoking it, all the
cryptographic attributes, such as the master key, the type of cipher, the key length, etc.,
are initialized. Note that is this MINIsrtp first version, this attributes are obtained form
MINISIP configuration file,minisip.conf. This constructor also invokes the function
init_aes_128_prf() after allocating the cipher and the authenticator (vialibsrtp
cryptographic engine) to initialize the cryptographic context and derive the SRTP keys.

� CryptoContext::~CryptoContext() : The class destructor.

� void CryptoContext::set_key_deriv_rate(int r) : This method may be used
to set the key derivation rate in the case re−keying were applied.

� unsigned int CryptoContext::get_roc() : This method may be used to return
the rollover counter associated to this cryptographic context.

� void CryptoContext::update_roc() : This method may be used to update the
rollover counter associated to this cryptographic context.

� Void CryptoContext::reset_roc() : This method may be used to reset the
rollover counter associated to this cryptographic context.

� unsigned int CryptoContext::get_tag_len() : This method returns the length
of the authentication tag associated to this cryptographic context.

� int CryptoContext::get_serv() : This method returns an integer which identifies

77

Secure Mobile Voice over IP

the type of service provided by this cryptographic context.

� short CryptoContext::get_s_l() : This method may be used to get thes_l
attribute associated to this cryptographic context (see [15] for further information about
this attribute).

� cipher_t *CryptoContext::get_cipher_t() : This method returns the cipher
used by this cryptographic context. Remember that in this version it is hardcoded to use
AES−CM or the Null Cipher.

� auth_t *CryptoContext::get_auth_t() : This method returns the authenticator
used by this cryptographic context. Remember that in this version it is hardcoded to use
the HMAC−SHA1 algorithm or the Null Authenticator.

� err_status_t CryptoContext::init_aes_128_prf() : This method (based on
the libsrtp implementation) is used in the constructor to initialize the cipher, the
authenticator, and to derive the encryption key and the authentication key to be used by
the libsrtp cryptographic engine.

13.2.4.5 Bug Information

MINIsrtp uses two different interfaces to invoke either the HMAC−SHA1 algorithm or
another algorithm (in our case Null Authenticator) when message authentication is to be
provided. This feature seems to cause some incompatibility when allocating the message
authentication algorithm context. In fact, when providingonly confidentiality service, the
message authentication algorithm selectedmust be an algorithm other than HMAC−
SHA1.

The first version of MINIsrtp "patches" this problem in the SRTP cryptographic context by
"hardcoding" the use of the NULL Authenticator when only confidentiality is desired.
Obviously, this does not effect the process at all, but the code might be confusing for the
reader.

Moreover, several tests on the implementation have shown that thefirst packet received
returns a message authentication failure when using HMAC−SHA1. Thus far, this problem
has not yet been solved. However, considering that we are going to send fifty packets each
second, this bug has been considered negligible.

13.2.4.6 License

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

Copyright © by Israel Abad Caballero. IMIT, KTH, Stockholm, 2003.

78

Secure Mobile Voice over IP

14 Multimedia Internet KEYing (MIKEY)

MIKEY is still an IETF draft[29]. This section provides a brief description of the protocol, as well as a
framework to be used within our model. Future work in this area would provide a suitable implementation of
the protocol in order to integrate it with the MINISIP and MINIsrtp implementations.

14.1 Overview

Although there is work done in IETF to develop key−management schemes, there is still a need for a
scheme with low latency, suitable for demanding cases such as for the real−time data. Moreover, when
dealing with wireless networks, this demand is further impacted by the bandwidth constraints present
in such environments. MIKEY suits this demand well, since it is designed to have the following
features[29]:

� End−to end security
� Simplicity
� Efficiency: low bandwidth consumption, low computational workload, small code size, and a

minimal number of roundtrips
� Tunneling
� Independent of any specific security functionality of the underlying transport

In our case we consider a simple peer−to−peer (unicast) scenario, where a SIP−based call between two
parties is to be provided with the necessary security mechanisms, and where these mechanisms and
their parameters (cryptographic context) must be set up by mutual agreement.

The following concepts are interesting for a better clarity[29]:

� Crypto Session: data stream protected by a single instance of a security protocol (i.e. SRTP
stream).

� TEK Generation Key (TGK): a bit−string agreed upon by two parties associated with a
CryptoContext. From the TGK, Traffic Encrypting Keys (TEK) can be generated without need of
further communication.

The procedure followed by MIKEY is the following:

1. Agreement of the security parameters and TGK(s) for a Crypto Sessions group.
2. TEK derivation from the TGK for a Crypto Session.
3. The TEK and the security protocol parameters are the input to the Security Protocol (i.e. SRTP).

The TEK may be used either directly by the Security Protocol, or to derive further session keys from
it. The latter is the option followed by SRTP. Figure 14.1(based on figure from[29])depicts this
procedure.

79

Secure Mobile Voice over IP

Figure 14.1 MIKEY: Overview of the Key Management Procedure[29]

Regarding the basic key transport and exchange methods, MIKEY offers three alternatives (for further
information, refer to MIKEY draft[29]:

� Pre−shared Key
� Public Key Cryptography
� Signed Diffie−Hellman

The predefined (mandatory to implement) transforms in MIKEY are the same used for SRTP:

� Key data transport encryption: AES−CM
� Hash functions: SHA−1
� Pseudo random number generator: SHA−1
� MAC and verification Message function: HMAC−SHA1

80

Cr ypto Sess ion
Bu n dle

Key
tr a n spor t/exch a n ge

TEK
Derivation

Crypto
Sess ion
Identifier

TEK

Da ta Secu r ity
Associa tion

Secu r ity Pr otocol
Pa r a m eter s (SRTP)

Cr ypto Sess ion
(Secu r ity Pr otocol:

SRTP)

TGK

Secure Mobile Voice over IP

Figure 14.2 shows the structure of a MIKEY message:

 0 8 16 31

Version Data type Next Payload

Common Header

Next Payload

Payload 1

...

Next Payload

Payload n

MAC / Signature

Figure 14.2 Structure of a MIKEY message

How a message is created and parsed by MIKEY is summarized below:

1. Creation of initial message starting with the Common header payload
2. Concatenation of the necessary payloads
3. Creation and concatenation of the MAC / signature payload. The MAC is calculated over the

entire message except the MAC signature field

For parsing the message:

1. Extraction and verification of the Timestamp to check possible replay
2. Extraction ID and authentication algorithm
3. Verification of the MAC / signature
4. Processing of the message
5. Sending of a verification response message to the initiator

The following list summarizes the different types of MIKEY payloads:

� Key Data Transport Payload (KEMAC)
� Envelope Data Payload (PKE)
� Diffie−Hellman Data Payload (DH)
� Signature Payload (SIGN)
� Timestamp Payload (T)
� ID Payload (ID)
� Certificate Payload (CERT)
� Cert Hash Payload (CHASH)
� Message Verification Payload (V)
� Security Policy Payload (SP)
� RAND Payload (RAND)
� Error Payload (ERR)
� Key Data Sub−Payload
� General Extension Payload

81

Secure Mobile Voice over IP

14.2 MIKEY Framework for Secure Mobile VoIP

14.2.1 Terminology Relationship

We must establish a relationship between terminology in MIKEY and SRTP, since the former
needs to be more general[29]. Thus, the SRTP stream is calledCrypto Sessionin MIKEY, the
input to the SRTP’s cryptographic context is called Data Security Association (Data SA) in
MIKEY, and the SRTP master key from which the session keys will be derived is referred to
in MIKEY as the Traffic Encrypting Key (TEK).

Furthermore, another relationship may be established between theofferer/answerermodel
used in SIP and SDP and theinitiator/ respondermodel used in MIKEY. However, this
section will use both terms to refer to the end users.

14.2.2 MIKEY within SIP

MIKEY may work "within" SIP (i.e. MIKEY messages may be carried in SDP bodies inside
the SIP messages). As a matter of fact, MIKEY is suitable in the SIP Trapezoid model (figures
9.1 and 11.1). The SIP offerer (User A) will be the MIKEY Initiator, and the SIP answerer
(User B) will be the MIKEY Responder (see Figure 14.4). Thus, this implies that the MIKEY
Initiator’s message is included in the SIP INVITE message (in the SDP body), while the
answerer’s response to this INVITE will contain the MIKEY Responder’s message. Section
14.2.3 describes the integration of MIKEY into SDP. Figure 14.3 illustrates the situation:

Figure 14.3 SIP−Based call example using MIKEY over SIP

If the MIKEY part of the offer is not accepted by the answerer, a MIKEY error message is
included in the answer (see section 14.2.4 for MIKEY Error Handling information).

As described in the MIKEY draft, "it may be assumed that the offerer knows the identity of the
answerer. However, unless the Initiator’s identity can be derived from SIP, the Initiator must
provide its identity to the Responder. It isrecommendedto use the same identity for both SIP
and MIKEY"[29].

82

SRTP

SI P /
MI KEY SI P /

MI KEY

SI P /
MI KEY

User A User B

A’s SI P
ser ver

B’s SI P
ser ver

61

5

2

34

Secure Mobile Voice over IP

14.2.3 MIKEY Integration into SDP

SIP makes use of SDP descriptions to carry information about the session. Therefore, it is also
convenient to integrate the key management procedure into the session description it is going
to protect. This provides low latency, since the number of roundtrips for setup may be reduced.

The SDP key management attribute (key−mgmt)takes two arguments: the keying scheme to be
used (mikey) and the attributes of this scheme (MIKEY packet encoded in base64). Further
information can be found in section 7.1 in [29].

The following example obtained from [30] illustrates this situation:

 v=0
 o=alice 2891092738 2891092738 IN IP4 lost.somewhere.com
 s=Cool stuff
 e=alice@w−land.org
 t=0 0
 c=IN IP4 lost.somewhere.com
 a=key−mgmt:mikey uiSDF9sdhs727ghsd/dhsoKkdOokdo7eWsnDSJD...
 m=audio 49000 RTP/SAVP 98
 a=rtpmap:98 AMR/8000
 m=video 52230 RTP/SAVP 31
 a=rtpmap:31 H261/90000

14.2.4 Error Handling

Any error regarding the key−management protocol should be reported to the peers by a
MIKEY error message. The error messages are formed by a MIKEY header, a timestamp, the
error payload(s) (ERR), and the signed MAC computed over the entire message.

If the answerer (Responder) does not support the set of parameters offered by the offerer
(Initiator), the returned error message will include the supported parameters.

Further security considerations related to the implementation and the local policy are
described in [29].

14.2.5 MIKEY Over an Unreliable Transport Protocol

As described in section 15.1.3 in this document, the first implementation of this model will be
built on UDP, rather than TCP. If we are going to use MIKEY over an unreliable transport
protocol, such as UDP, a basic process must be performed to ensure MIKEY reliability[29]:

� The entities must set a timer and initialize a retry counter
� If the timer expires, the message will be resent and the retry counter will be decreased
� If the retry counter reaches zero, the event will be logged

14.2.6 MIKEY Payloads

All the different MIKEY payloads are described in detail in the MIKEY draft . However, a
first approach to a suitable C++ implementation of MIKEY massages and payloads was made
by Erik Eliasson at TSLab, IMIT, KTH. This source code is included in this document in

83

Secure Mobile Voice over IP

Appendix E: A First Approach to MIKEY Messages Implementation23.

14.2.7 MIKEY Interface

If the MIKEY implementation is separate from the SIP and SRTP implementation, a suitable
API between those protocols must be defined by the programmer. Some hints and advices
regarding this interface for the implementers of MIKEY are given in section 7.4 in the
MIKEY draft[29].

14.2.8 MIKEY Exchange Method: Signed Diffie−Hellman

Regarding the basic key transport and exchange methods, of special interest for us is the
Signed Diffie−Hellman method. If supported by the use of certificates and a PKI, we can
ensure peer−to−peer mutual authentication and it is a good option in the special peer−to−peer
case[2]. Furthermore, although the resource consumption is higher than in the other
alternatives, this method providesPerfect Forward Secrecy(PFS) and it does not require the
possession of the responder’s certificate by the initiator before the setup. It would be sufficient
that the responder includes its signing certificate in the response. Figure 14.4 illustrates this
exchange.

Figure 14.4 Signed Diffie−Hellman exchange in MIKEY

23. This first approach to the MIKEY messages implementation (© by E. Eliasson, 2003) is intended to be a start reference
implementation, and it may be used for future work on the final implementation.

84

R_ MESSAGE = HDR, T, [I Dr |
CERTr], I Di, DHr , DHi, SI GNr

I _ MESSAGE = HDR, T, RAND, [I Di |
CERTi], {SP}, DHi, SI GNi

OF F ER ER /
I N I T I AT OR

AN S WER ER /
R ES P ON D ER

Secure Mobile Voice over IP

15 Description of the Implementation of the Model and its Analysis

This section provides a detailed description of the practical work related to the Secure Mobile VoIP model
described in section 11. Some tests and measurements regarding security and performance for this model
are described and analyzed here. Since this project has been concerned with the media stream security,
rather than the establishment and termination security, the tests performed are mostly related to this aspect.
Section 16 presents several considerations regarding future work to be performed within the SIP security.

15.1 Implementation

As said in the previous sections, the implementation of the model was performed in a "bottom−up"
way. With "bottom−up" we mean that the process was performed as follows:

� A simple RTP conversation between two end users was tested.
� Our SRTP implementation (MINIsrtp) was developed.
� MINIsrtp was integrated and tested into MINISIP user agent.
� The setting up of the SIP servers using the SER software[31] was performed at TSLab by Jon−

Olov Vatn.
� MINISIP user agent was tested together with the SER SIP servers.
� SRTP performance was tested.

15.1.1 MINIsrtp Development

The first version of MINIsrtp was finished by the beginning of June. In this first version,
MINIsrtp provided confidentiality, message authentication, replay protection, and handled
misordered and lost packets without breaking the synchronization between sender and receiver
down. SRTCP support was not yet implemented.

MINIsrtp was designed and developed, following the SRTP draft guidelines, to be a RTP
profile, rather than a substitute for it; and to be integrated into MINISIP as easily as possible.
Therefore, the intended behaviour builds up MINISIP RTP implementation and
transformations the RTP packets into SRTP (by using security mechanisms) packets and
viceversa in the receiver.

Before its integration into MINISIP, MINIsrtp was tested by a simple application which used
text strings instead of audio code. The test worked without problems.

15.1.2 Integration of MINIsrtp into MINISIP User Agent

MINIsrtp files were added to MINISIPCode Versioning System(CVS) by the beginning of
June. The first test consisted on a simple call between two MINISIP user agents running on the
same machine. This call was performed in such a way that the initialization of the
cryptographic context was hardcoded. This means that, assuming there was no previous key
management, the security services MINIsrtp provided, the type of cryptographic algorithms to
be used, and the master keys from which SRTP session keys are derived in advance before the

85

Secure Mobile Voice over IP

SRTP session started24.

A second simple test of the implementation assumed the cryptographic parameters were
located in the MINISIP configuration file (minisip.conf). This file includes all the MINISIP
parameters and part of the cryptographic configuration. Thus far, the parameters set into this
file are:

� Security services provided by SRTP: Into MINIsrtpNONE (just replay protection),
CONF (replay protection and confidentiality),AUTH (replay protection and message
authentication), or BOTH (replay protection, confidentiality, and message
authentication).

� The type of algorithm to be used: Into MINIsrtpAESCM(AES in Counter Mode) or
NULLCIPHER (the null cipher algorithm) for providing confidentiality;HMACSHA1
(HMAC−SHA1 algorithm) or NULLAUTH (the null authenticator algorithm) for
providing message authentication.

� The master key (16−byte length) from which session keys will be derived (for message
authentication and encryption). This is supposed to be provided by MIKEY in future
work (see section 14).

� The master salting key (14−byte length). This is supposed to be provided by MIKEY in
future work (see [15], section 7.2 for a rationale).

MINISIP source code uses aflag to distinguish with type of media transport is to be used
(either RTP or SRTP).

15.1.3 Setting up of the SIP Servers

At the same time MINIsrtp was being integrated into MINISIP and tested, Jon−Olov Vatn set
the SIP servers25 up at TSLab. Unfortunately, SER does not provide support for TCP nor TLS,
and it only supports the exchange of UDP datagrams. This makes us unable to test the selected
TLS scheme to protect the SIP protocol. Thus, future work on this project must add this TLS
support to SER. The peer authentication of the SIP REGISTER is provided in our case through
the HTTP Digest mechanism. The HTTP Digest mechanism to be used together with SIP is
described in section 22 in [3]. The main reason for using SER is that, unlike VOCAL, it
provides support for the DNS look−ups in the SIP Redirect Server, thus enabling call setups
between IP−hosts in different domains.

15.2 Analysis and Validation of the Model

The validation of the model has been performed using MINIsrtpto implement media stream
security (i.e. Extending MINISIP to use SRTP). We must consider several points when our evaluating
SRTP implementation:

� We must explicitly state what our solution does with respect to SRTP
� It should be functionally correct: i.e. it emits the messages it should and nothing more
� Performance: measure the transition times for each significant interaction

24.This was made by hardcoding those values into the cryptographic context constructor, invoked just before the packets exchange
started.
25. By using the SIP Express Router software (SER)[31]. Refer to www.iptel.com/ser for further information.

86

Secure Mobile Voice over IP

� Demonstrate correctness, i.e., proper behavior despite improper packets

First of all, our solution for securing the media stream is intended to provide the following additional
security services beyond the existing RTP functionality of MINISIP without significantly effecting the
performance (as perceived by the user):

� Confidentiality: by using encryption/decryption operations through AES algorithm.
� Message Authentication: by using a hash−based Message Authentication Code (HMAC), such as

HMAC−SHA1.
� Protection against replay attacks.
� Support for packet loss and misordered packets without loosing the synchronization between

sender and receiver.

15.2.1Correctness of MINIsrtp

Given these requirements, we can start by describing the correctness of MINIsrtp:

� MINIsrtp into MINISIP sends and receives SRTP packets created from RTP packets. The
SRTP packets are formatted according to the definition given in[15] and they are sent and
received using the usual MINISIP mechanisms which were used for the RTP packets.

� MINIsrtp sets up a cryptographic context in the sender and receiver, as described in [15],
before exchanging any packet. The initialization of this context, although supposed to be
performed by the key−management mechanism , is hardcoded into our implementation. As
noted earlier, the addition of key management is left as future work.

� Confidentiality service is provided by encrypting and decrypting the payload of the packets
in the sender and receiver respectively, as defined in [15]. The algorithms used for this
purpose are those established as mandatory−to−implement in [15]: AES in Counter Mode
and the Null Cipher.

� Message Authentication service is provided by using message authentication codes, as
described in [15], with one exception: [15] defines the message (M) over which to apply the
MAC computation as the authenticated portion concatenated with the ROC (see section
13.1.3), while MINIsrtp when using the Null Authenticator, computes this MAC only over
the authenticated portion. In the case HMAC−SHA1 is to be used, MINIsrtp properly
computes this MAC as described in [15]. As to libsrtp, it seems that the MAC calculation is
done only over the authenticated portion as well. In order to verify this, I posted a question
on the libsrtp Mailing List, but I have not received an answer yet.

� The algorithms used to provide message authentication are those established as mandatory−
to−implement in [15]: HMAC−SHA1 and Null Authenticator. The use of the latter is not
recommended (see [15]).

� Protection against replay attacks is also provided by storing the indices of the received
packets in a list, and checking this list every time a packet is received. Several tests were
performed to verify the correctness of this feature (although not in detail).

� MINIsrtp should support up to 215 misordered or lost packets without loosing the
synchronization between sender and receiver. This feature has not been tested in detail.
However, the loss of one of every ten packets has been tested and it is supported, and thus

87

Secure Mobile Voice over IP

there is no reason to think that this feature is not provided in other cases.

The following list summarizes the behaviour of MINIsrtp when faced with erroneous packets
during processing:

� If a replay is detected by the receiver, the event is logged by sending a message tosyslog,
the replayed packet is dropped, and the execution continues.

� If an error occurs when computing the MAC in the sender using the Null Authenticator, the
event is logged by a message sent tosyslog, the authentication tag is established as empty,
and the execution continues26. Note that although considered by MINIsrtp, this situation
will never occur, since the Null Authenticator algorithm always returns a value indicating
that the computation was properly performed (libsrtp feature).

� If an error occurs when computing the MAC in the receiver using the Null Authenticator,
the event is logged by a message sent tosyslog, the packet is dropped for security reasons,
and the execution continues.

� The same error as above when using HMAC−SHA1 is not yet considered and it depends on
the HMAC−SHA1 implementation.

� Different errors due to encryption and decryption of the data (i.e. internal cryptographic
engine failures) are handled by the libsrtp cryptographic engine.

� If the MAC computed over a received packet does not match with that received in the
authentication tag (possible violation of integrity), the event is logged by a message sent to
syslog, the packet is dropped, and the execution continues.

� If the cipher or the authenticator’s state can not be allocated before starting the session, the
event is logged by sending a message tosyslog, but the execution continues. Future work
on MINIsrtp will include a mechanism to abort the execution if necessary.

� If the cipher or the authenticator context can not be initialized, the event is logged by
sending a message tosyslog, but the execution continues. Future work on MINIsrtp will
include a mechanism to abort the execution if necessary.

15.2.2 Performance Measurements on MINIsrtp

Regarding the performance of MINIsrtp, some measurements have been made. These
measurements are based on the processing time of an SRTP packet and are compared to the
processing time of an ordinary RTP packet. Note that the performance depends on the
specifics of the implementation itself, in the sense that the code effects the efficiency of the
process. These measurements were taken when executing a simple SRTP and RTP packet
exchange between two entities in the same machine. The intention of this test is not to analyze
in detail the measured times themselves, but rather to show the relationship between RTP
processing time and SRTP processing time. The method used to perform these measurements
utilized the function gettimeofday().

The features of the machine in which the measurements were performed are the following:

26. Note that the tag is empty in either case when using the Null Authenticator, and this could lead to misinterpretation in the
receiver’s side.

88

Secure Mobile Voice over IP

� Laptop ASUS 1300B with Pentium III © processor, 700 MHz.
� 112 MB RAM (having enough free memory, so that there is no swapping)
� Operating System: SuSE Linux 7.1 Personal Edition

The following list summarizes the features of MINIsrtp in the tests:

� Security Services: confidentiality and message authentication 27

� Cryptographic Algorithms: AES in Counter Mode for the confidentiality and HMAC−
SHA1 for the message authentication

� Length of the master key: 16 bytes
� Length of the salting key: 14 bytes
� Length of the encryption key: 16 bytes
� Length of the authentication key: 16 bytes
� Length of the block: 128 bytes

The code of the example application we are running for the tests on is the following:

* srtptest.cxx
*
* Purpose:
* Demonstrates how the SRTP implementation can be used to transmit
* information. This application implements both a sending and
* receiving part and which one will be started depends on the
* arguments to the application. Developed for MINIsrtp tests.
*
* @author Israel Abad & Erik Eliasson israel@kth.se eliasson@it.kth.se
/

*
* Here you specify to which host and port the SRTP traffic will be sent.
*/
define TO_HOST "localhost"
define TO_PORT 20000

include"RtpPacket.h"
include"SRtpPacket.h"
include"CryptoContext.h"
include<unistd.h>
include"../ipv6util/IP4Address.h"
include<string.h>
include"../util/ConfigFile.h"
include <sys/time.h>

* SENDER
*
* Purpose: Sends one string of 160 bytes (payload) in an SRTP packet: 50
* packets
* to localhost:20000
*
* Alg.
* 1. Create socket that will be used for srtp traffic.
* 2. Specify receiver
* 3. Do 50 times

 3.1 Define content of packet to transmit
 3.2 Create RTP packet.

 3.2 Create SRTP packet.
* 3.3 Send SRTP packet.
*/
void sender(ConfigFile config){
 struct timeval *Tps, *Tpf;
 struct timezone *Tzp;

 Tps = (struct timeval*) malloc(sizeof(struct timeval));

 Tpf = (struct timeval*) malloc(sizeof(struct timeval));

27. The Replay Protection service is always provided by MINIsrtp.

89

Secure Mobile Voice over IP

 Tzp = 0;
 cout << "−[SRTP sender started]−"<< endl;

 string messages[1] =
{"00
00
00000\0"};

cout << "−[Creating socket]−"<< endl;
UDPSocket *udpsock = new UDPSocket(false, 10000); //false means do not

//use IPv6, 10000 is the port
IP4Address ipaddr(TO_HOST);
ipaddr.set_port(TO_PORT);
cout << "−[Opening Crypto Context]−"<< endl;

 CryptoContext *scontext_s = new
CryptoContext(config.get_string("master_key"),
 config.get_string("salt_key"),
 config.get_string ("sec_services"),
 config.get_string ("cipher_type"),
 config.get_string ("auth_type"));

 cout << "−[Crypto Context created!]−"<< endl;
for (int i=0; i<50; i++){

 char sbuf[2048];
 for (unsigned int e=0;e<messages[0].length();e++)
 sbuf[e]=messages[0][e], sbuf[e+1]=0;
 string rtpcontent = string(sbuf);

 gettimeofday (Tps, Tzp);

 RtpPacket *rtppacket = new RtpPacket((void *)rtpcontent.c_str(),
 rtpcontent.length()+1, i, i*1000);

 SRtpPacket *srtppkt = new SRtpPacket(scontext_s, rtppacket);

 gettimeofday (Tpf, Tzp);
 printf("Total Time creating SRTP pkt(usec): %ld\n",
 (Tpf−>tv_sec−Tps−>tv_sec)*1000000
 + Tpf−>tv_usec−Tps−>tv_usec);

 srtppkt−>send_to(scontext_s, *udpsock, ipaddr);

 delete srtppkt;
 delete rtppacket;
}

* RECEIVER
*
* Purpose: Receives SRTP packets, gets RTP packets and prints the content of
* them to standard output.
* Alg.
* 1. Create socket
* 2. Forever do
* 2.1 Read SRTP packet from socet
* 2.2 Extract RTP packet
* 2.2 Print content of RTP packet.
*/
void receiver(ConfigFile config){
 int i=1;
 struct timeval *Tps, *Tpf;
 struct timezone *Tzp;

 Tps = (struct timeval*) malloc(sizeof(struct timeval));
 Tpf = (struct timeval*) malloc(sizeof(struct timeval));
 Tzp = 0;

cout << "−[SRTP receiver started]−"<< endl;

 UDPSocket udpsock(false, 20000);
 cout << "−[Opening Crypto Context]−"<< endl;
 CryptoContext *scontext_r = new CryptoContext

(config.get_string("master_key"),
 config.get_string("salt_key"),
 config.get_string ("sec_services"),
 config.get_string ("cipher_type"),
 config.get_string ("auth_type"));

90

Secure Mobile Voice over IP

 cout << "−[Crypto Context created!]−"<< endl;
 while (1){
 gettimeofday (Tps, Tzp);
 SRtpPacket *packet = packet−>receive_from(udpsock, scontext_r);
 RtpPacket *rtppkt = packet−>get_rtp_packet(scontext_r, packet);
 gettimeofday (Tpf, Tzp);
 printf("Total Time creating RTP pkt(usec): %ld\n",
 (Tpf−>tv_sec−Tps−>tv_sec)*1000000
 + Tpf−>tv_usec−Tps−>tv_usec);
 cout << "Received packet: " << (char*)rtppkt−>get_content()<<endl;
 delete rtppkt;
 delete packet;
}

void usage(){
cerr << "Usage srtptest {s|r}"<< endl;
exit(1);

/*
* Alg.
* o if argument is ’s’ then "sender()"
* o if argument is ’r’ then "receiver()"
* o (else) usagemessage
*/
int main(int argc, char **argv){
 string configfile = "../minisip/minisip.conf";
 if (argc!=2 || strlen(argv[1])!=1)

usage();
 ConfigFile config(configfile);
 switch (argv[1][0]){

case ’s’:
case ’S’:

 sender(config);
break;

case ’r’:
case ’R’:

 receiver(config);
break;

default:
usage();

}
return 0;

}

MINISIP sends 50 packets of 160−byte RTP payload length per second (i.e. 64 Kbps). This
means that the RTP packet has a size of 172 bytes, and the SRTP packet has a size of 176
bytes (172 + 4 for the authentication tag if message authentication is to be provided).
Assuming this, we have 20 milliseconds between packets, and the SRTP performance has been
compared to this aspect.

After several measurements, the results I have obtained are shown in table 15.1:

Action / Transport RTP RTP + SRTP

Packet Creation 3−5 µs. 76−80 µs.

 Table 15.1 Time taken by RTP and SRTP to Create a Packet in MINIsrtp

The time needed to transmit/receive a packet is about 55−60µs. Considering that our
application continuously sends a bidirectional SRTP flow, this results show that the processing
requires about 1% of the time between packets, i.e., it adds an additional delay corresponding
to about 1% of the inter−packet delay:

91

Secure Mobile Voice over IP

We have measured some SRTP packets with a peak delay of 240 microseconds. According to
our tests, this additional delay (about 2.5% of the time between packets) happens less than 1%
of the time, so we consider the performance impact to be negligible. In addition, these delay
variations are far smaller than the expected delay variance due to the packets flowing over the
network and will in any case be imperceptible to the human listener.

The time for the transmission of the SRTP packets on each link (assumingstore−and−forward
entities)will be slightly longer than that for RTP packets, since when message authentication
tag is present, 4 bytes are added. However, this additional time is negligible.

MINIsrtp’s cryptographic throughput when protecting and unprotecting packets using AES
and HMAC−SHA1 is about 20 Mbps. packets using AES and HMAC SHA1 is about 20 Mbps.
In comparison to our software implementation, currently available high performance hardware
devices performing these same operations have a throughput of about 600 Mbps[55].

92

pa ck et_cr ea t ion + pa ck et_t r a n s m is s ion / r ecept ion

 t im e_betw een _pa ck ets

X 100

Secure Mobile Voice over IP

16 Conclusions and Future Work

This section summarizes the main conclusions regarding the proposed Secure Mobile VoIP model. Some
future work to be performed on the model is also detailed here. Note that, regarding the implementation, this
document only examined to security for the media stream, rather than the SIP security. However, the
document is intended to be a base for work in this area, and the proposed solution, even though not
completely tested, has been thoroughly investigated.

16.1 Conclusions

We have faced the security in Mobile VoIP as a chain where no link should fail to maintain the model
secure. Through this document, I have presented the problem to be solved, as well as the different
alternatives to achieve this goal. Some of these alternatives are already in use (IPSec and VPNs to
protect the media stream) and some others are still being investigated (SRTP and MIKEY). Thus, this
document presents a solution to secure every link of this chain, from the establishment to the
termination, giving the model the necessary security services and minimizing the effect of this security
services and their mechanisms on the performance.

Regarding the practical work and tests on this proposed solution, this document is focused on the
security of the media stream. However, a thorough investigation work has also been performed
concerning the SIP security and the key management. Given this, we can state some conclusions on
this work:

� Regarding SIP and the Basic SIP Trapezoid, we believe that the most suitable scheme to protect
the message exchange with the needed security services (confidentiality, message authentication,
and replay protection), as well as to provide a peer authentication scheme for the entities
involved, and a dynamic session key distribution is the establishment of a PKI to support
SSL/TLS.

� MIKEY seems to be the appropriate candidate to handle the key management, since it suits well
the demands we have for real time applications.

� The features provided by SRTP (such as confidentiality, message authentication, replay
protection, support for packet loss, high−throughput, fast crypto operations, and low packet
expansion) make of it a suitable solution to protect the media stream. Besides, the low bandwidth
consumption of SRTP (unlike IPSec) makes us expect a good performance of the model.

16.2 Future Work in this Area

To establish the suitable PKI to support a TLS scheme to secure the SIP protocol is still to be
provided. This document only theoretically describes this PKI and TLS scheme, but no practical work
regarding this aspect of the proposed solution has yet been performed.

This project provides a brief description of a possible framework which is intended to be the base to
start working with MIKEY. Future work will include a suitable implementation of MIKEY to work
together with SRTP and SIP. The start reference implementation written by E. Eliasson at TSLab,
IMIT, KTH, and shown in Appendix B may be used as a base to start working on a final MIKEY

93

Secure Mobile Voice over IP

implementation.

Regarding MINIsrtp, the time to design and develop it was very limited. Thus, future work will
include its overall improvement concerning inefficient code and possible bugs, as well as the
addition of new and/or enhanced features (either to work together with MINISIP or other user agent),
such as SRTCP or the use of other cryptographic algorithms (AES in f8 Mode). Its integration with a
suitable MIKEY implementation must also be performed. Another improvements, such as handling
the bugs reported in section 13.2.4.5 must also be considered. The concatenation of the ROC with the
authenticated portion of the packet, as described in 13.1.3 to compute the MAC, is only considered in
the case of HMAC−SHA1 algorithm is to be used, and is still to be done in the case of the Null
Authenticator is used (although this is not explicitly necessary since the use of the Null Authenticator
implies no computation at all).

This project does notexplicitly deals with mobility aspects, such as roaming or hand−overs, but it
may be useful as one of the reference documents for future work with such aspects.

94

Secure Mobile Voice over IP

Appendix A. MINIsrtp Source Code

/***
 CryptoContext.h − description
 −−−−−−−−−−−−−−−−−−−
 begin : Fri Apr 4 2003
 copyright : (C) 2003 by Israel Abad

TSLab, IMIT, KTH, Stockhlom, Sweden
 email : israel@kth.se
 : i_abad@terra.es
 ***/
// This class defines a cryptographic context associated to one SRTP
// flow. This class belongs to the MINIsrtp implementation, developed
// at TSLab IMIT KTH, Stockholm.
// This implementation makes use of the libsrtp cryptoengine.
// Version: 1.0

// libsrtp and its APIs is © by Cisco Systems, 2001, 2002.
// HMAC−SHA1 implementation is © by Aaron Gifford, 1998, 2000.
/***
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 ***/

#ifndef CRYPTOCONTEXT_H
#define CRYPTOCONTEXT_H

#include <string.h>
#include <stdio.h>
#include <syslog.h>

extern "C" {
 #include"crypto/include/cipher.h"
}
extern "C" {
 #include"crypto/include/auth.h"
}
extern "C" {
 #include"crypto/include/rdbx.h"
}
extern "C" {
 #include"crypto/include/datatypes.h"
}
extern "C" {
 #include"crypto/include/integers.h"
}
extern "C" {
 #include"crypto/include/err.h"
}
extern "C" {
 #include"crypto/include/rijndael.h"
}
extern "C" {
 #include"crypto/include/rijndael−icm.h"
}

extern "C" {
 #include "hmac_sha1.h"
}

enum srtp_serv{
 NONE, // No security services provides
 CONF, // Confidentiality
 AUTH, // Message Authentication
 BOTH // Both Services
};

95

Secure Mobile Voice over IP

enum cipher_id{
 NULLCIPHER,
 AESCM
};

enum auth_id{
 NULLAUTH,
 HMACSHA1
};

class CryptoContext {
public:
 CryptoContext(string key, string salt, string service, string cipher_type,

 string auth_type);
 ~CryptoContext();
 void set_key_deriv_rate(int r); // For re−keying
 unsigned int get_roc(); // NOT USED, handled by libsrtp cryptoengine
 void update_roc(); // NOT USED, handled by libsrtp cryptoengine
 void reset_roc(); // NOT USED, handled by libsrtp cryptoengine
 unsigned int get_tag_len(); // Length of the authentication tag
 int get_serv(); // Securty services provided
 cipher_t *get_cipher_t(); // Type of cipher
 auth_t *get_auth_t(); // Type of authentication algorithm
 short get_s_l();
 err_status_t init_aes_128_prf(const unsigned char key[16],

 const unsigned char salt[14]);
 // Initializes the context and derives the keys

 rdbx_t *rl_snd; // Sender‘s replay list
 rdbx_t *rl_rcv; // Receiver’s replay list
 cipher_t *encryptor;
 auth_t *authenticator;
 HMAC_SHA1_CTX hmac_ctx; // HMAC−SHA1 context
 unsigned char *auth_tag; // Holds temporary storage for authentication tag

 // (used in comparison)

private:
 auth_id auth_name;
 cipher_id cipher_name;
 unsigned int MKI_ind; // 0 if MKI is not present; otherwise 1
 unsigned int MKI_len; //if MKI_ind=1 fixed for the context lifetime
 unsigned int MKI_value; //if MKI_ind=1 fixed for the context lifetime
 unsigned char masterkey[16]; // Hardcoded
 unsigned char mastersalt[14]; // Hardcoded
 int key_pkt_ctr_srtp; // SRTP packet counter
 int key_pkt_ctr_srtcp; // SRTCP packet counter
 unsigned int n_e; // Encryption key length
 unsigned int n_a; // Authentication key length
 unsigned int n_s; // Session salt key length
 unsigned int n_b; // Bit size of the block for the block cipher
 unsigned int tag_len; // Authentication tag length (by default 32 bits)
 unsigned int key_deriv_rate;
 unsigned int roc; // ROC (32 bits) Each time the session starts, the

 //sender sets it to zero! Only for SRTP
 short s_l; // Highest received RTP seq number. For SRTCP

 //(instead of ROC)
 srtp_serv services;
 // From & To fields not specified
};

#endif

96

Secure Mobile Voice over IP

/***
 CryptoContext.cxx − description
 −−−−−−−−−−−−−−−−−−−
 begin : Fri Apr 4 2003
 copyright : (C) 2003 by Israel Abad
 email : israel@kth.se
 : i_abad@terra.es
 ***/
// This class defines a cryptographic context associated to one SRTP
// flow. This class belongs to the MINIsrtp implementation, developed
// at TSLab IMIT KTH, Stockholm.

// Version: 1.0
/***
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 ***/

#include "CryptoContext.h"
#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include <string>
#include <syslog.h>
#include <iostream>
#include"../util/ConfigFile.h"

extern "C" {
 #include"crypto/include/cipher.h"
}
extern "C" {
 #include"crypto/include/auth.h"
}
extern "C" {
 #include"crypto/include/rdbx.h"
}
extern "C" {
 #include"crypto/include/datatypes.h"
}
extern "C" {
 #include"crypto/include/integers.h"
}
extern "C" {
 #include"crypto/include/err.h"
}
extern "C" {
 #include"crypto/include/rijndael.h"
}
extern "C" {
 #include"crypto/include/rijndael−icm.h"
}
extern "C" {
 #include"hmac_sha1.h"
}
extern "C" auth_type_t hmac_sha1;
extern "C" cipher_type_t rijndael_icm;
extern "C" auth_type_t null_auth;
extern "C" cipher_type_t null_cipher;

typedef enum { // Used for key
derivation
 label_encryption = 0x00,
 label_message_authentication = 0x01,
 label_salt = 0x02
} srtp_prf_label;

CryptoContext::CryptoContext(string key, string salt, string service, string cipher_type,
 string auth_type){ // Uses AES and HMAC−SHA1 (BOTH services) by default

 if (service == "none")
 this−>services = NONE; // No Confidentiality and No Message Authentication
 else if (service == "confidentiality")
 this−>services = CONF; // Confidentiality and No Message Authentication
 else if (service == "msg_authentication")

97

Secure Mobile Voice over IP

 this−>services = AUTH; // No Confidentiality and Message Authentication
 else if (service == "both")
 this−>services = BOTH; // Confidentiality and Message Authentication
 else{
 syslog(LOG_ERR,"No service or invalid service specified. Assuming none");
 this−>services = NONE;// No Confidentiality and No Message Authentication
 }

 encryptor = new cipher_t;
 authenticator = new auth_t;

 if (cipher_type == "aes"){
 this−>cipher_name = AESCM; // AES Counter Mode
 this−>encryptor−>type = &rijndael_icm; // rijndael_icm

//(rijndael_icm is AES in Counter Mode)
 }
 else if (cipher_type == "null"){
 this−>cipher_name = NULLCIPHER;
 this−>encryptor−>type = &null_cipher; // null_cipher
 }
 else{
 syslog(LOG_ERR,"No cipher type or invalid cipher type specified specified.

Assuming AES");
 this−>cipher_name = AESCM;
 this−>encryptor−>type = &rijndael_icm; // rijndael_icm (rijndael_icm is

//AES in Counter Mode)
 }

 if (auth_type == "hmac"){
 this−>auth_name = HMACSHA1;
 this−>authenticator−>type = &hmac_sha1;
 }
 else if (auth_type == "null"){
 this−>auth_name = NULLAUTH;
 this−>authenticator−>type = &null_auth; // null authenticator: NOT RECOMMENDED
 }
 else{
 syslog(LOG_ERR,"No authenticator type or invalid authenticator type specified

specified. Assuming HMAC−SHA1");
 this−>auth_name = HMACSHA1;
 this−>authenticator−>type = &hmac_sha1;
 }

 if (services == CONF) // Avoids interaction with HMAC−SHA1 (BUG)
 this−>auth_name = NULLAUTH;
 this−>MKI_ind = 0; // MKI not present
 rl_snd = new rdbx_t; // Init replay list = set to zero
 rl_snd−>index.roc = 0;
 rl_snd−>index.seq = 0;
 rl_rcv = new rdbx_t; // not used
 this−>roc = 0; // ROC initialized to zero. Handled by libsrtp cryptoengine
 this−>s_l = 0; // Only for SRTCP
 this−>key_pkt_ctr_srtp = 0;
 this−>key_pkt_ctr_srtcp = 0;
 this−>key_deriv_rate = 0; // No re−keying needed
 this−>encryptor−>key_len = 16;
 this−>encryptor−>salt_len = 14;
 this−>authenticator−>key_len = 16;
 if (services == CONF) // Avoids interaction with HMAC−SHA1 (BUG)
 this−>authenticator−>type = &null_auth;
 if (services == BOTH || services == AUTH){ // If message authentication is

//provided, set length of the tag to 4 bytes (default), otherwise, no tag needed
 this−>authenticator−>out_len = 4;
 this−>auth_tag = new unsigned char;
 }
 else{
 this−>authenticator−>out_len = 0;
 this−>auth_tag = NULL;
 }
 this−>n_e = this−>encryptor−>key_len;
 this−>n_a = this−>authenticator−>key_len;
 this−>n_s = this−>encryptor−>salt_len;
 this−>n_b = 128;
 this−>tag_len = this−>authenticator−>out_len;
 // Generation of master keys (Harcoded) <−−−−− Now in config file
 //for (unsigned int i=0; i<this−>n_e; i++)
 // this−>masterkey[i]=’M’;
 //for (unsigned int i=0; i<this−>n_s; i++)
 // this−>mastersalt[i]=’S’;

98

Secure Mobile Voice over IP

 //string key = config.get_string("master_key");

 for (unsigned int i=0; i<this−>n_e; i++)
 this−>masterkey[i]=key[i];

 for (unsigned int i=0; i<this−>n_s; i++)
 this−>mastersalt[i]=salt[i];

 // Cipher and Authenticator Allocation
 err_status_t status;
 status = cipher_type_alloc(this−>encryptor−>type, &this−>encryptor, this−>n_e);
 if (status)
 syslog(LOG_ERR,"ERROR: CIPHER NOT ALLOCATED!");

 if (this−>authenticator−>type != &hmac_sha1){
 status = auth_type_alloc(this−>authenticator−>type, &this−>authenticator,

 this−>n_a, this−>tag_len);
 if (status){
 syslog(LOG_ERR,"ERROR: AUTHENTICATOR NOT ALLOCATED!");
 cipher_dealloc(this−>encryptor);
 }
 }

 status = init_aes_128_prf(this−>masterkey, this−>mastersalt);
 if (status)
 cout << "ERROR: INIT PRF!" <<endl;
}

CryptoContext::~CryptoContext(){
}

void CryptoContext::set_key_deriv_rate(int r){
 key_deriv_rate = r;
}

unsigned int CryptoContext::get_roc(){
 return roc;
}

void CryptoContext::update_roc(){
 this−>roc += 1; //Wrapping not considered: handled by libsrtp engine
}

void CryptoContext::reset_roc(){
 this−>roc = 0;
}

unsigned int CryptoContext::get_tag_len(){
 return tag_len;
}

int CryptoContext::get_serv(){
 switch (services){
 case NONE:
 return 1;
 case CONF:
 return 2;
 case AUTH:
 return 3;
 case BOTH:
 return 4;
 default:
 return 0;
 }
}

cipher_t *CryptoContext::get_cipher_t(){
 return encryptor;
}

auth_t *CryptoContext::get_auth_t(){
 return authenticator;
}

short CryptoContext::get_s_l(){
 return s_l;
}

99

Secure Mobile Voice over IP

// Key derivation for SRTP session and Cipher and Authenticator Initialization (function
// based on libsrtp, from David McGrew)

err_status_t CryptoContext::init_aes_128_prf(const unsigned char key[16],
 const unsigned char salt[14]) {

 err_status_t stat;
 rijndael_icm_context c;
 xtd_seq_num_t idx = { 0, 0 };
// For setting icm to zero−index
 unsigned char *buffer = new unsigned char[this−>n_e + this−>n_s + this−>n_a];
// Temporary storage for keystream
 unsigned char *enc_key_buf, *enc_salt_buf, *auth_key_buf;
 unsigned char initial_counter[16];
 // Set intitial_counter
 initial_counter[0] = salt[0];
 initial_counter[1] = salt[1];
 initial_counter[2] = salt[2];
 initial_counter[3] = salt[3];
 initial_counter[4] = salt[4];
 initial_counter[5] = salt[5];
 initial_counter[6] = salt[6];
 initial_counter[7] = salt[7];
 initial_counter[8] = salt[8];
 initial_counter[9] = salt[9];
 initial_counter[10] = salt[10];
 initial_counter[11] = salt[11];
 initial_counter[12] = salt[12];
 initial_counter[13] = salt[13];
 initial_counter[14] = 0x00;
 initial_counter[15] = 0x00;
 // Set pointers
 enc_key_buf = buffer;
 enc_salt_buf = buffer + this−>n_e;
 auth_key_buf = enc_salt_buf + this−>n_s;
 // Generate encryption key, putting it into enc_key_buf
 // Note that we assume that index DIV t == 0 in this implementation
 initial_counter[7] = salt[7] ^ label_encryption;
 rijndael_icm_context_init(&c, key, initial_counter);
 rijndael_icm_set_segment(&c, idx);
 rijndael_icm_encrypt(&c, enc_key_buf, this−>n_e);
 // Generate encryption salt, putting it into enc_salt_buf
 initial_counter[7] = salt[7] ^ label_salt;
 rijndael_icm_context_init(&c, key, initial_counter);
 rijndael_icm_set_segment(&c, idx);
 rijndael_icm_encrypt(&c, enc_salt_buf, this−>n_s);
 // We don’t yet know the ssrc of the sender, so we don’t exor the
 // ssrc value into the enc_salt_buf
 // Initialize cipher
 stat = cipher_init(encryptor, enc_key_buf, enc_salt_buf);
 if (stat) {
 delete [] buffer;
 return err_status_alloc_fail;
 syslog(LOG_ERR,"ERROR: CIPHER INIT!");
 }
 // Generate authentication key, putting it into auth_key_buf
 initial_counter[7] = salt[7] ^ label_message_authentication;
 rijndael_icm_context_init(&c, key, initial_counter);
 rijndael_icm_set_segment(&c, idx);
 rijndael_icm_encrypt(&c, auth_key_buf, this−>n_a);
 // Initialize authenticator

 if (authenticator−>type != &hmac_sha1){
 auth_init(authenticator, auth_key_buf, this−>n_a);
 if (stat) {
 delete [] buffer;
 syslog(LOG_ERR,"ERROR: AUTHENTICATOR INIT!");
 return err_status_init_fail;
 }
 }
 else{
 HMAC_SHA1_Init(&hmac_ctx);
 HMAC_SHA1_UpdateKey(&hmac_ctx, auth_key_buf, this−>n_a);
 HMAC_SHA1_EndKey(&hmac_ctx);
 }

 // Free memory then return
 delete [] buffer;
 return err_status_ok;
}

100

Secure Mobile Voice over IP

/***
 SRtpHeader.h − description
 −−−−−−−−−−−−−−−−−−−
 begin : Wed Mar 26 2003
 copyright : (C) 2003 by Israel Abad

TSLab, IMIT, KTH, Stockhlom, Sweden
 email : israel@kth.se
 : i_abad@terra.es
 ***/
// This class defines a SRTP Header associated to one SRTP
// packet. This class belongs to the MINIsrtp implementation, developed
// at TSLab IMIT KTH, Stockholm.
// This implementation makes use of the libsrtp cryptoengine.
// Version: 1.0

// libsrtp and its APIs is © by Cisco Systems, 2001, 2002.
// HMAC−SHA1 implementation is © by Aaron Gifford, 1998, 2000.
/***
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 ***/
#ifndef SRTPHEADER_H
#define SRTPHEADER_H

#include"vector"

#include"RtpHeader.h"

class SRtpHeader : public RtpHeader{
 public:
 SRtpHeader();
 void operator=(RtpHeader &rtph);
 // private:
};

#endif

101

Secure Mobile Voice over IP

/***
 SRtpHeader.cxx − description
 −−−−−−−−−−−−−−−−−−−
 begin : Wed Mar 26 2003
 copyright : (C) 2003 by Israel Abad

TSLab, IMIT, KTH, Stockhlom, Sweden
 email : israel@kth.se

 : i_abad@terra.es

 ***/
// This class defines a SRTP Header associated to one SRTP
// packet. This class belongs to the MINIsrtp implementation, developed
// at TSLab IMIT KTH, Stockholm.
// This implementation makes use of the libsrtp cryptoengine.
// Version: 1.0

// libsrtp and its APIs is © by Cisco Systems, 2001, 2002.
// HMAC−SHA1 implementation is © by Aaron Gifford, 1998, 2000.
/***
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 ***/

#include"SRtpHeader.h"
#include<netinet/in.h>
#include"SRtpPacket.h"

SRtpHeader::SRtpHeader(): RtpHeader(){
}

void SRtpHeader::operator=(RtpHeader &h){
 this−> version =h.version;
 this−>extension = h.extension;
 this−>marker = h.marker;
 this−>payload_type = h.payload_type;
 this−>sequence_number = h.sequence_number;
 this−>timestamp = h.timestamp;
 this−>SSRC = h.SSRC;
 this−>CSRC = h.CSRC;
}

102

Secure Mobile Voice over IP

/*
**
RTP Header declaration
Author: Erik Eliasson. TSLab, IMIT KTH Stockhlom

 eliasson@it.kth.se
copyright: (C) 2003 by Erik Eliasson
NOTE: This is not the original Erik Eliasson’s

header file. This has been modified for this
MINIsrtp version.

*/

#ifndef RTPHEADER_H
#define RTPHEADER_H

#include"vector"

class RtpHeader{

public:
RtpHeader();
void set_version(int v);
void set_extension(int x);
void set_CSRC_count(int cc);

 int get_CSRC_count();
void set_marker(int m);
void set_payload_type(int pt);
int get_payload_type();
void set_seq_no(int seq_no);
int get_seq_no();
void set_timestamp(int timestamp);
void set_SSRC(int ssrc);
void add_CSRC(int csrc);
void print_debug();
int size();
char *get_bytes();

 int CSRC_count;
int version;
int extension;
int marker;
int payload_type;
int sequence_number;
int timestamp;
int SSRC;
vector<int> CSRC;

};

#endif

103

Secure Mobile Voice over IP

/*
**
RTP Header definition
Author: Erik Eliasson. TSLab, IMIT KTH Stockhlom.

 eliasson@it.kth.se
Copyright: (C) 2003 by Erik Eliasson

*/

#include"RtpHeader.h"
#include<netinet/in.h>
#include"RtpPacket.h"

RtpHeader::RtpHeader(){
version=0;
extension=0;
CSRC_count=0;
marker=0;
payload_type=0;
sequence_number=0;
timestamp=0;
SSRC=0;

}

void RtpHeader::set_version(int v){
this−>version = v;

}

void RtpHeader::set_extension(int x){
this−>extension = x;

}

void RtpHeader::set_CSRC_count(int cc){
this−>CSRC_count = cc;

}

int RtpHeader::get_CSRC_count(){
 return this−>CSRC_count;
}

void RtpHeader::set_marker(int m){
this−>marker = m;

}

void RtpHeader::set_payload_type(int pt){
this−>payload_type=pt;

}

int RtpHeader::get_payload_type(){
return payload_type;

}

void RtpHeader::set_seq_no(int seq_no){
this−>sequence_number=seq_no;

}

int RtpHeader::get_seq_no(){
return sequence_number;

}

void RtpHeader::set_timestamp(int timestamp){
this−>timestamp = timestamp;

}

void RtpHeader::set_SSRC(int s){
this−>SSRC = s;

}

void RtpHeader::add_CSRC(int c){
CSRC.push_back(c);

}

int RtpHeader::size(){
return 12+4*CSRC.size();

}

char *RtpHeader::get_bytes(){
char *ret = new char[size()+4*CSRC.size()];

104

Secure Mobile Voice over IP

struct rtpheader *hdrptr = (struct rtpheader *)ret;
hdrptr−>v=version;
hdrptr−>x=extension;
hdrptr−>cc=CSRC_count;
hdrptr−>m=marker;
hdrptr−>pt=payload_type;
hdrptr−>seq_no=htons(sequence_number);
hdrptr−>timestamp=htonl(timestamp);
hdrptr−>ssrc=htonl(SSRC);

for (unsigned i=0; i<CSRC.size(); i++)
((int *)ret)[3+i]=htonl(CSRC[i]);

return ret;
}

void RtpHeader::print_debug(){
cerr << "\tversion: "<< version<<"\n\textension: "<< extension <<
"\n\tCSRC count: "<< CSRC_count << "\n\tmarker: "<< marker <<
"\n\tpayload type: "<<payload_type <<"\n\tsequence number: "<<sequence_number <<
"\n\ttimestamp: "<<timestamp <<"\n\tSSRC: "<< SSRC << "\n"<< endl;

for (int i=0; i< CSRC_count; i++)
cerr << "\tCSRC "<<i+1 << ": "<<CSRC[i]<< endl;

}

105

Secure Mobile Voice over IP

/***
 SRtpPacket.h − description
 −−−−−−−−−−−−−−−−−−−
 begin : Wed Mar 26 2003
 copyright : (C) 2003 by Israel Abad

TSLab, IMIT, KTH, Stockhlom, Sweden
 email : israel@kth.se
 : i_abad@terra.es
 ***/
// This class defines a SRTP packet SRTP packet.
// This class belongs to the MINIsrtp implementation, developed
// at TSLab IMIT KTH, Stockholm.
// This implementation makes use of the libsrtp cryptoengine.
// Version: 1.0

// libsrtp and its APIs is © by Cisco Systems, 2001, 2002.
// HMAC−SHA1 implementation is © by Aaron Gifford, 1998, 2000.
 /***
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 ***/

#ifndef SRTPPACKET_H
#define SRTPPACKET_H

#include "RtpPacket.h"
#include "SRtpHeader.h"
#include "../../minisip/ipv6util/UDPSocket.h"
#include "../../minisip/ipv6util/IPAddress.h"
#include "CryptoContext.h"
#include <syslog.h>

extern "C" {
 #include "crypto/include/cipher.h"
 #include "crypto/include/auth.h"
 #include "crypto/include/rdbx.h"
 #include "crypto/include/datatypes.h"
 #include "crypto/include/integers.h"
 #include "crypto/include/err.h"
 #include "crypto/include/rijndael.h"
 #include "crypto/include/rijndael−icm.h"
}
struct srtpheader{
 unsigned cc:4;
 unsigned x:1;
 unsigned p:1;
 unsigned v:2;
 unsigned pt:7;
 unsigned m:1;
 unsigned seq_no:16;
 unsigned timestamp:32;
 unsigned ssrc:32;
};

class SRtpPacket{
 public:
 SRtpPacket();
 SRtpPacket(CryptoContext *scontext, RtpPacket *rtppacket);

// Used by the sender

 SRtpPacket(SRtpHeader hdr, void *content, int content_length);
// Used by the receiver

 SRtpPacket(SRtpHeader hdr, void *content, unsigned char *tag,
 int content_length);

// Used in the case message auth were provided

 ~SRtpPacket();

 void send_to(CryptoContext *scontext, UDPSocket &udp_sock, IPAddress &to_addr);
 // Sends a packet via socket

 static SRtpPacket *receive_from(UDPSocket &udp_sock, CryptoContext *scontext,
 int timeout=−1);

106

Secure Mobile Voice over IP

// Receives a packet via socket

 RtpPacket *get_rtp_packet(CryptoContext *scontext, SRtpPacket *pkt);
// Gets a RTP packet from a SRTP packet via "unprotect"

 SRtpHeader &get_header(); // returns de header

 void *get_content(); // returns a pointer to the content

 unsigned char *get_tag(); // returns a pointer to the authentication tag

 void remove_tag(); // removes the authentication tag

 void set_tag(unsigned char *tag); // sets an authentication tag

 int get_content_length(); // returns the length of the payload

 char *get_bytes(CryptoContext *sctx);

// returns a pointer to an array containing the SRTP packet

 int size(CryptoContext *sctx); // returns the size of the packet

 SRtpHeader header; // public for simplicity

 private:
 int content_length;
 void *content;
 unsigned char *tag;
 CryptoContext *scontext;
};

#endif

107

Secure Mobile Voice over IP

/***
 SRtpPacket.cxx − description
 −−−−−−−−−−−−−−−−−−−
 begin : Wed Mar 26 2003
 copyright : (C) 2003 by Israel Abad

TSLab, IMIT, KTH, Stockhlom, Sweden
 email : israel@kth.se
 : i_abad@terra.es
 ***/
// This class defines a cryptographic context associated to one SRTP
// flow. This class belongs to the MINIsrtp implementation, developed
// at TSLab IMIT KTH, Stockholm.
// This implementation makes use of the libsrtp cryptoengine.
// Version: 1.0

// libsrtp and its APIs is © by Cisco Systems, 2001, 2002.
// HMAC−SHA1 implementation is © by Aaron Gifford, 1998, 2000.
 /***
 * *
 * This program is free software; you can redistribute it and/or modify *
 * it under the terms of the GNU General Public License as published by *
 * the Free Software Foundation; either version 2 of the License, or *
 * (at your option) any later version. *
 * *
 ***/

#include<sys/poll.h>
#include<errno.h>
#include<netinet/in.h>
#include<sys/socket.h>
#include<stdio.h>
#include<unistd.h>
#include<string.h>
#include"SRtpPacket.h"
#include"SRtpHeader.h"
#include"CryptoContext.h"
#include <err.h>
#include <syslog.h>

extern "C" {
 #include "crypto/include/cipher.h"
 #include "crypto/include/auth.h"
 #include "crypto/include/rdbx.h"
 #include "crypto/include/rdb.h"
 #include "crypto/include/datatypes.h"
 #include "crypto/include/integers.h"
 #include "crypto/include/err.h"
 #include "crypto/include/rijndael.h"
 #include "crypto/include/rijndael−icm.h"
 #include "hmac_sha1.h"
}
extern "C" cipher_type_t rijndael_icm;
extern "C" auth_type_t hmac_sha1;

// Some auxiliar functions to protect and unprotect the data

unsigned char *protect (CryptoContext *scontext, RtpPacket *srtppacket, int *len, int
content_len){
 xtd_seq_num_t index;
 int status;
 int delta;
 void *encr_port = srtppacket−>get_content();
 unsigned char *ptr_empty = new unsigned char;

 cout << "Displaying SRTP payload before protection: " << (char *)encr_port <<endl;

 scontext−>set_key_deriv_rate(0); // No re−keying provided

 // Index estimation and index addition

 delta = rdbx_estimate_index(scontext−>rl_snd, &index,
 ntohs(srtppacket−>header.get_seq_no()));

 if (delta > 0)
 rdbx_add_index(scontext−>rl_snd, delta);
 else {

 syslog(LOG_ERR,"Something unexpected occurred when estimating the index.
MAC not calculated. Packet might be corrupted!");

108

Secure Mobile Voice over IP

 return ptr_empty; //NULL
 }

 // dealing with packet loss: set the cipher to the proper keystream segment

 status = cipher_set_segment(scontext−>encryptor, index);
 if (status);

 // Providing encryption

if (scontext−>get_serv() == 2 || scontext−>get_serv() == 4)
 status = cipher_encrypt(scontext−>get_cipher_t(),

 (unsigned char*)encr_port, content_len);

 cout << "Proving encrypted portion: " << (char *)encr_port <<endl;
 cout << "Displaying SRTP payload after encryption: " <<

 (char*)srtppacket−>get_content() <<endl;

 // Providing message authentication

 if (scontext−>get_serv() == 3 || scontext−>get_serv() == 4){
 unsigned char *auth_tag = new unsigned char[scontext−>get_tag_len()];

for (unsigned int i=0; i<scontext−>get_tag_len(); i++)
 auth_tag[i]=0;
 unsigned char *aux_tag;
 // NO HMAC−SHA1 (Harcoded NULL Authenticator
 if (scontext−>authenticator−>type != &hmac_sha1){
 cout <<"Using NULL Authenticator" <<endl;
 status = auth_compute(scontext−>get_auth_t(),

 (octet_t*)srtppacket, *len, auth_tag);
 if (status){
 syslog(LOG_ERR,"ERROR:Null Authentication computation failed!");
 return ptr_empty; //NULL
 }
 }

 //HMAC−SHA1
 else{
 cout <<"Using HMAC−SHA1" <<endl;
 aux_tag = new unsigned char[srtppacket−>header.size()+content_len+4];

//auxiliar storage

for (int i=0; i<srtppacket−>header.size()+content_len+4; i++)
 aux_tag[i]=0;
 memcpy(aux_tag, srtppacket, srtppacket−>header.size() +

content_len);
 memcpy(&aux_tag[srtppacket−>header.size()+content_len],

&index.roc,4)
 // Computation
 HMAC_SHA1_StartMessage(&(scontext−>hmac_ctx));
 HMAC_SHA1_UpdateMessage(&(scontext−>hmac_ctx), aux_tag,

srtppacket−>header.size()+content_len+4);
 HMAC_SHA1_EndMessage(aux_tag, &(scontext−>hmac_ctx));
 cout << "Displaying Auxiliar tag code: " << aux_tag << endl;
 // Storing the authentication tag
 memcpy(auth_tag, aux_tag, scontext−>get_tag_len());// Truncated
 cout << "Displaying Auth tag code: " << auth_tag << endl;
 delete [] aux_tag;
 }
 *len += scontext−>get_tag_len(); // Modify length of the packet
 return auth_tag;
 }
 else
 return NULL; // No Authentication tag needed

}

int unprotect (CryptoContext *scontext, SRtpPacket *srtppacket, int *len,
 int content_len){
 xtd_seq_num_t index;
 void *encr_port = srtppacket−>get_content();
 unsigned char *aux_tag;
 int status;
 int delta;

 scontext−>set_key_deriv_rate(0); // No re−keying provided

 // Determination of the index and replay check

109

Secure Mobile Voice over IP

 delta = rdbx_estimate_index(scontext−>rl_snd, &index,
 ntohs(srtppacket−>header.get_seq_no()));

 if (rdbx_check(scontext−>rl_snd, delta) != replay_check_ok){
 syslog(LOG_ERR,"ERROR: Replay detected!!!");
 return err_status_replay_fail;
 }

 // dealing with packet loss: set the cipher to the proper keystream segment */
 status = cipher_set_segment(scontext−>encryptor, index);
 if (status);

 // Message authetication verification

 if (scontext−>get_serv() == 3 || scontext−>get_serv() == 4){
 if (scontext−>authenticator−>type != &hmac_sha1){
 // NO HMAC−SHA1 (Harcoded NULL Authenticator)
 cout <<"Using NULL Authenticator, verifying..." <<endl;
 status = auth_compute(scontext−>get_auth_t(),

(octet_t*)srtppacket, *len − scontext−>get_tag_len(),
 scontext−>auth_tag); // Store into CryptoContext

 if (status){
 syslog(LOG_ERR,"Authentication computation fail");
 return err_status_auth_fail;
 }
 }

 // HMAC−SHA1
 else{
 cout <<"Using HMAC−SHA1, verifying..." <<endl;
 aux_tag = new unsigned char[srtppacket−>header.size() +

content_len+4]; // Auxiliar storage for computation
for (int i=0; i<srtppacket−>header.size()+content_len+4; i++)
 aux_tag[i]=0;

 memcpy(aux_tag, srtppacket, srtppacket−>header.size()+content_len);
 memcpy(&aux_tag[srtppacket−>header.size()+content_len],

&index.roc,4)
// Computation. A. Gifford implementation of HMAC−SHA1

 HMAC_SHA1_StartMessage(&(scontext−>hmac_ctx));
 HMAC_SHA1_UpdateMessage(&(scontext−>hmac_ctx), aux_tag,

srtppacket−>header.size() + content_len + 4);
 HMAC_SHA1_EndMessage(aux_tag, &(scontext−>hmac_ctx));
 memcpy(scontext−>auth_tag, aux_tag, scontext−>get_tag_len());

// Truncated: Only 32 out of 160 stored into CryptoContext
 delete [] aux_tag;
 }
 Verifying message authentication
 unsigned char *pkt_tag = srtppacket−>get_tag();

 // Compare computed auth tag with that in the packet
 if (octet_string_is_eq(scontext−>auth_tag, pkt_tag,

scontext−>get_tag_len())){

syslog(LOG_ERR,"ERROR: Message Authentication, verification
failed!!!!");

 delete [] scontext−>auth_tag;
 srtppacket−>remove_tag();
 *len −= scontext−>get_tag_len();
 return err_status_auth_fail;
 }
 //cout << "Message Authentication successful" << endl;
 // Modify the length of the packet and removing tag
 *len −= scontext−>get_tag_len();
 delete [] scontext−>auth_tag;
 srtppacket−>remove_tag();
 }

 // Decryption

 if (scontext−>get_serv() == 2 || scontext−>get_serv() == 4)
 status = cipher_encrypt(scontext−>get_cipher_t(),

 (unsigned char*)encr_port, content_len);

 rdbx_add_index(scontext−>rl_snd, delta); // Add index to the list
 return 0;
}

110

Secure Mobile Voice over IP

// End of auxiliar functions

SRtpPacket::SRtpPacket(){
 content_length=0;
 content=NULL;
}

SRtpPacket::SRtpPacket(CryptoContext *scontext, RtpPacket *rtppacket):scontext(scontext){
 int len = rtppacket−>size();
 int content_len = rtppacket−>get_content_length();

 tag = new unsigned char;
 content_length = rtppacket−>get_content_length();
 header = rtppacket−>get_header();
 content = rtppacket−>get_content();

 // Packet protection

 cout << "Protecting RTP packet...: "<< endl;
 this−>tag = protect(scontext, rtppacket, &len, content_len);

 content = rtppacket−>get_content();

 // Payload Length
 if (scontext−>get_serv() == 1 || scontext−>get_serv() == 2)
 this−>content_length = len − header.size();
 else
 this−>content_length = len − header.size() − scontext−>get_tag_len();
}

SRtpPacket::SRtpPacket(SRtpHeader hdr, void *content, int content_length): header(hdr),
 content(content){

 this−>content_length = content_length;
 header.set_version(2);
}

SRtpPacket::SRtpPacket(SRtpHeader hdr, void *content, unsigned char * tag, int
 content_length): header(hdr), content(content), tag(tag){

 this−>content_length = content_length;
 header.set_version(2);
}

SRtpPacket::~SRtpPacket(){
}

RtpPacket *SRtpPacket::get_rtp_packet(CryptoContext *scontext, SRtpPacket *pkt){
 int len;
 RtpPacket *rtppacket;

 if (scontext−>get_serv() == 1 || scontext−>get_serv() == 2)
 len = 12 + pkt−>get_content_length() + 4*pkt−>header.CSRC_count;
 else
 len = 12 + pkt−>get_content_length() + 4*pkt−>header.CSRC_count +

 scontext−>get_tag_len();

 // Unprotecting SRTP packet

if (unprotect (scontext, pkt, &len, pkt−>get_content_length()) !=
 err_status_auth_fail){

 // RTP packet creation

 rtppacket = new RtpPacket((RtpHeader &)pkt−>header, pkt−>get_content(),

 pkt−>get_content_length());
 }
 else
 rtppacket = new RtpPacket(); // Empty packet to be dropped
 return rtppacket;
}

void SRtpPacket::send_to(CryptoContext *scontext, UDPSocket &socket, IPAddress &to_addr){
 char *bytes = get_bytes(scontext);
 socket.sendto(to_addr, to_addr.get_port(), bytes, size(scontext));

 // The packet size depends on the services provided
 delete [] bytes;
}

SRtpPacket *SRtpPacket::receive_from(UDPSocket &srtp_socket, CryptoContext *scontext, int
 timeout=−1){

111

Secure Mobile Voice over IP

 int i;
 char buf[2048];
 for (i=0; i<2048; i++)
 buf[i]=0;

 struct pollfd p;
 p.fd = srtp_socket.get_fd();
 p.events = POLLIN;
 int avail;

 do{
 avail = poll(&p,1,timeout);
 if (avail==0){
 return NULL;
 }
 if (avail<0){
 if (errno!=EINTR){
 syslog(LOG_ERR,"Error when using poll");
 exit(1);
 }
 else{
 syslog(LOG_WARNING,"Signal occured in wait_packet");
 }
 }
 }while(avail < 0);

 i = recvfrom(srtp_socket.get_fd(), buf, 2048, 0, /*(struct sockaddr *)
 &from*/NULL, /*(socklen_t *)fromlen*/NULL);

 if (i<0){
 syslog(LOG_ERR,"recvfrom");
 }

 // Creating SRTP packet...

 srtpheader *hdrptr=(srtpheader *)&buf[0];
 SRtpHeader hdr;
 hdr.set_version(hdrptr−>v);
 hdr.set_extension(hdrptr−>x);
 hdr.set_CSRC_count(hdrptr−>cc);
 hdr.set_marker(hdrptr−>m);
 hdr.set_payload_type(hdrptr−>pt);
 hdr.set_seq_no(ntohs(hdrptr−>seq_no));
 hdr.set_timestamp(ntohl(hdrptr−>timestamp));
 hdr.set_SSRC(ntohl(hdrptr−>ssrc));
 for (unsigned j=0; j<hdrptr−>cc; j++)
 hdr.add_CSRC(ntohl(((int *)&buf[12])[j]));
 int datalen = i − 12 − hdrptr−>cc*4−scontext−>get_tag_len();
 int hdrctr = 12;
 void *data=new char[datalen];
 memcpy(data,&buf[hdrctr+4*hdrptr−>cc],datalen);

 // If message authentication is provided
 if (scontext−>get_serv() == 3 || scontext−>get_serv() == 4){
 unsigned char *tag=new unsigned char[scontext−>get_tag_len()];

//Creating auth tag
 memcpy(tag,&buf[hdrctr+4*hdrptr−>cc+datalen],scontext−>get_tag_len());
 SRtpPacket *srtp = new SRtpPacket(hdr, data, tag, datalen);
 return srtp;
 }

 // If no message authentication is provided
 SRtpPacket *srtp = new SRtpPacket(hdr, data, datalen);
 return srtp;
}

char *SRtpPacket::get_bytes(CryptoContext *sctx){
 char *ret = new char[header.size()+content_length+sctx−>get_tag_len()];
 char *hdr = header.get_bytes();

 memcpy(ret, hdr, header.size());
 delete [] hdr;

 memcpy(&ret[header.size()], content, content_length);

 // If message authentication is provided
 if (sctx−>get_serv() == 3 || sctx−>get_serv() == 4)
 memcpy(&ret[header.size()+content_length], tag, sctx−>get_tag_len());
 return ret;
}

112

Secure Mobile Voice over IP

SRtpHeader &SRtpPacket::get_header(){
 return header;
}

void *SRtpPacket::get_content(){
 return content;
}

unsigned char *SRtpPacket::get_tag(){
 return tag;
}

void SRtpPacket::remove_tag(){
 this−>tag=NULL;

delete [] tag;
}

void SRtpPacket::set_tag(unsigned char *tag){
 this−>tag=tag;
}

int SRtpPacket::get_content_length(){
 return content_length;
}

int SRtpPacket::size(CryptoContext *sctx){
 if (sctx−>get_serv() == 3 || sctx−>get_serv() == 4) // Message auth provided
 return 12 + 4*header.CSRC_count + content_length + sctx−>get_tag_len();
 else
 return 12 + 4*header.CSRC_count + content_length;
}

113

Secure Mobile Voice over IP

Appendix B. A First Approach to a MIKEY Messages Implementation

/*
**
MIKEY Message declaration (Start reference)
Author: Erik Eliasson. TSLab, IMIT KTH Stockhlom.

 eliasson@it.kth.se
Copyright: (C) 2003 by Erik Eliasson
version: 0.01

*/

#ifndef MIKEYMESSAGE_H
#define MIKEYMESSAGE_H

#include<list>
#include"MikeyPayload.h"

class MikeyMessage{
public:

MikeyMessage(unsigned char *message, int length_limit);
~MikeyMessage();

private:
list<MikeyPayload *> payloads;

};

#endif

114

Secure Mobile Voice over IP

/*
**
MIKEY Message definition (Start reference)
Author: Erik Eliasson. TSLab, IMIT KTH Stockhlom.

 eliasson@it.kth.se
Copyright: (C) 2003 by Erik Eliasson
version: 0.01

*/

#include"MikeyMessage.h"
#include"MikeyPayload.h"
#include"MikeyPayloadHDR.h"
#include"MikeyPayloadKEMAC.h"
#include"MikeyPayloadPKE.h"
#include"MikeyPayloadDH.h"
#include"MikeyPayloadSIGN.h"
#include"MikeyPayloadT.h"
#include"MikeyPayloadID.h"
#include"MikeyPayloadCERT.h"
#include"MikeyPayloadCHASH.h"
#include"MikeyPayloadV.h"
#include"MikeyPayloadSP.h"
#include"MikeyPayloadRAND.h"
#include"MikeyPayloadERR.h"
#include"MikeyPayloadKeyData.h"
#include"MikeyPayloadGeneralExtension.h"
#include"MikeyException.h"

/*
 * Alg.
 * 1. Parse HDR payload
 * 2. While not end of packet
 * 2.1 Parse payload (choose right class) and store next payload type.
 * 2.2 Add payload to list of all payloads in message.
*/
MikeyMessage::MikeyMessage(unsigned char *message, int length_limit){

unsigned char *msgpos = message;
int limit = length_limit;

MikeyPayloadHDR *hdr = new MikeyPayloadHDR(message, limit); // 1.

limit−= (hdr−>get_end()−msgpos);
msgpos = hdr−>get_end();

int next_payload_type = hdr−>get_next_payload_type();

while (!(msgpos >= message+length_limit) &&
next_payload_type==MikeyPayload::LastPayload){
MikeyPayload *payload;
switch (next_payload_type){

case MIKEYPAYLOAD_KEMAC_PAYLOAD_TYPE:
payload = new MikeyPayloadKEMAC(msgpos, limit);
break;

case MIKEYPAYLOAD_PKE_PAYLOAD_TYPE:
payload = new MikeyPayloadPKE(msgpos, limit);
break;

case MIKEYPAYLOAD_DH_PAYLOAD_TYPE:
payload = new MikeyPayloadDH(msgpos, limit);
break;

case MIKEYPAYLOAD_SIGN_PAYLOAD_TYPE:
payload = new MikeyPayloadSIGN(msgpos, limit);
break;

case MIKEYPAYLOAD_T_PAYLOAD_TYPE:
payload = new MikeyPayloadT(msgpos, limit);
break;

case MIKEYPAYLOAD_ID_PAYLOAD_TYPE:
payload = new MikeyPayloadID(msgpos, limit);
break;

case MIKEYPAYLOAD_CERT_PAYLOAD_TYPE:
payload = new MikeyPayloadCERT(msgpos, limit);
break;

case MIKEYPAYLOAD_CHASH_PAYLOAD_TYPE:
payload = new MikeyPayloadCHASH(msgpos, limit);
break;

case MIKEYPAYLOAD_V_PAYLOAD_TYPE:
payload = new MikeyPayloadV(msgpos, limit);
break;

case MIKEYPAYLOAD_SP_PAYLOAD_TYPE:

115

Secure Mobile Voice over IP

payload = new MikeyPayloadSP(msgpos, limit);
break;

case MIKEYPAYLOAD_RAND_PAYLOAD_TYPE:
payload = new MikeyPayloadRAND(msgpos, limit);
break;

case MIKEYPAYLOAD_ERR_PAYLOAD_TYPE:
payload = new MikeyPayloadERR(msgpos, limit);
break;

case MIKEYPAYLOAD_KEYDATA_PAYLOAD_TYPE:
payload = new MikeyPayloadKeyData(msgpos, limit);
break;

case MIKEYPAYLOAD_GENERALEXTENSIONS_PAYLOAD_TYPE:
payload = new MikeyPayloadGeneralExtensions(msgpos, limit);
break;

case MIKEYPAYLOAD_LAST_PAYLOAD:
break;

default:
throw new MikeyExceptionMessageContent("Payload of unrecognized

type.");
}

next_payload_type = payload−>get_next_payload_type();

payloads.push_back(payload); // 2.2
limit−= (payload−>get_end()−msgpos);
msgpos = payload−>get_end();

}

if (! (msgpos==message+length_limit && next_payload_type ==
MIKEYPAYLOAD_LAST_PAYLOAD))

throw new MikeyExceptionMessageLengthException("The length of the message
did not match the total length of payloads.");

}

116

Secure Mobile Voice over IP

/*
**
Base class for all payloads in a MIKEY message
(Start reference)
Author: Erik Eliasson. TSLab, IMIT KTH Stockhlom.

 eliasson@it.kth.se
Copyright: (C) 2003 by Erik Eliasson
version: 0.01

*/

#ifndef MIKEYPAYLOAD_H
#define MIKEYPAYLOAD_H

#define MIKEYPAYLOAD_LAST_PAYLOAD 0

class MikeyPayload{
public:

static const int LastPayload;

MikeyPayload(unsigned char *start_of_message);
virtual ~MikeyPayload();

/**
 *
 * @returns The type of the payload that is starting
 * at get_end().
 */
int get_next_payload_type();

/**
 *
 * @returns Pointer to the first memory location after
 * this payload
 */
unsigned char *get_end();

virtual int get_length()=0;

protected:
void set_next_payload_type(int t);

unsigned char *start; //Points to the first memory position
//within this payload.

unsigned char *end; //Points to the first memory position
//after this payload

int next_payload_type;

private:
};

#endif

117

Secure Mobile Voice over IP

Appendix C. Acronyms

3DES Triple DES
AAA Authentication, Authorization, and Accounting
AES Advanced Encryption Standard
AH Authentication Header
ANSI American National Standards Institute
AP Access Point
CA Certification Authority
CBC Cipher Block Chaining
CDP CRL Distribution Point
CHAP Challenge Handshake Authentication Protocol
CM See CTR
CRL Certification Revocation List
CSRC Contributing Source
CTR Counter Mode
DEA Data Encryption Algorithm
DES Data Encryption Standard
DH Diffie−Hellman
DNS Domain Name Service
DNSSEC DNS Security Architecture
DNS SRV DNS Service
DoS Denial of Service
DSS Digital Signature Standard
EFF Electronic Frontier Foundation
ESP Encapsulating Security Payload
FIPS Federal Information Processing Standards
FIPS PUBS FIPS Publications
GPRS General Packet Radio Service
HA Home Agent
HCA Hierarchical CA
HMAC Hash−Based Message Authentication Code
HMAC−SHA1 HMAC based on SHA1
HTTP Hyper−Text Transfer Protocol
ICV Integrity Check Value
IDEA International Data Encryption Algorithm
IEEE Institute of Electrical and Electronics Engineers, Inc
IETF Internet Engineering Task Force
IKE Internet Key Exchange
IMIT Department of Microelectronics and Information Technology
IP Internet Protocol
IPRA Internet Policy Registration Authority
IPSec IP Security Architecture
ISAKMP Internet Security Association and Key Management Protocol
ISO International Organization for Standardization
ISP Internet Service Provider
ITU International Telecommunications Union
ITU−T ITU Telecommunication Standardization
KTH Kungl Tekniska Högskolan (Royal Institute of Technology)
LAN Local Area Network

118

Secure Mobile Voice over IP

libsrtp Library implementing SRTP (by David McGrew,Copyright © 2001, 2002 Cisco Systems,
Inc. All rights reserved.)

MAC Message Authentication Code
MD Message Digest
MD5 Message Digest Algorithm 5
MDC Message Description Code
MGCP Media Gateway Control Protocol
MIKEY Multimedia Internet KEYing
MINISIP SIP User Agent Implementation (by Erik Eliasson)
MINIsrtp SRTP implementation for integrating into MINISIP (by Israel Abad)
MKI Mater Key Identifier
MN Mobile Node
NAI Network Access Identifier
NAPTR Naming Authority Pointer
NIST National Institute for Standards and Technology
OSI Open System Interconnection
PC Personal Computer
PCA Policy CA
PEM Privacy Enhanced Mail
PKI Public Key Infrastructure
PSTN Public Switched Telephone Network
QoS Quality of Service
RADIUS Remote Authentication Dial In User Service
RC5 Rivest Cipher 5
RFC Request for Comments
ROC Roll−Over Counter
RSA Rivest, Shamir, and Adleman
RTCP RTP Control Protocol
RTP Real−Time Protocol
S/MIME Secure Multipurpose Internet Mail Exchange
SDP Session Description Protocol
SER SIP Express Router
SHA1 Secure Hash Algorithm 1
SIP Session Initiation Protocol
SRTCP Secure RTCP
SRTP Secure RTP
SSL Secure Socket Layer
SSRC Synchronization Source
TCA Top CA
TCP Transmission Control Protocol
TEK Traffic Encrypting Key
TGK TEK Generation Key
TLS Transport Layer Security
TSLab Telecommunication Systems Laboratory
TTP Trusted Third Party. Also known as CA
UDP User Datagram Protocol
URI Uniform Resource Identifier
VOCAL Vovida Open Communication Application Library
VoIP Voice over Internet Protocol
VPN Virtual Private Network
WAN Wide Area Network
WLAN Wireless LAN
XOR Exclusive−or operation

119

Secure Mobile Voice over IP

Appendix D. Notation

EK(P) Encryption of the plaintext with the key K

DK(C) Decryption of the ciphertext with the key K

H(x) Hash of the message x

MAC M = F(KAB, M) MAC computation of the message M, by applying the function F
with the key KAB, to the message M

HMAC K(M) = H[(K+ ⊕ opad) || H[(K+ ⊕ ipad) || M]]
HMAC computation of the message M, by applying the hash
function H with the key K to the message M

X<<A>> Certification. A’s certificate is signed by the CA X

X<<Y>>Y<> Chaining certification. B’s certificate is signed by the CA Y, whose
certificate is in turn signed by the trusted CA X

I_MESSAGE = HDR, T, RAND, [IDi | CERTi], {SP}, DHi, SIGNi
Initiator’s message in MIKEY’s DH exchange method. The message consists of a
MIKEY header (HDR), timestamp (T), a random value, the identity of the initiator
and its certificate , the DH value of the initiator, the policies of the security protocol,
and the signature of the initiator covering the entire message.

R_MESSAGE = HDR, T, [IDr | CERTr], IDi, DHr, DHi, SIGNr
Responder’s message in MIKEY’s DH exchange method. The message consists of a
MIKEY header (HDR), timestamp (T), the identity of the responder and its
certificate , the identity of the initiator, the DH value of the responder and the
initiator, and the signature of the initiator covering the entire message.

120

Secure Mobile Voice over IP

Appendix E. Glossary

Authenticator device which provides authentication services.

Bug In programming, an error or unexpected behaviour of the
code.

Certificate structure for binding a user’s identity to his/her public key.
Issued and digitally signed by a Certification Authority.

Cracker Machine device used to break the security provided by a
cryptographic algorithm.

Cryptographic Engine set of cryptographic operations, algorithms, and processes
contained and performed in a encryption device.

Denial of Service Attack security attack where an attacker floods the server with
bogus requests, or tamper with legitimate requests. The
attacker does nor benefit, but service is denied to legitimate
users.

Digital Signature method for verifying that a message was originated from
an entity, and that is has not changed during the network
traversing.

Encryption Device device (hardware or software) which performs
cryptographic operations.

Hand−off see hand−over.

Hand−over for a mobile device, the change from one access point
coverage area to another. Also referred to as hand−off.

Hardcode In programming, the fact of forcing some value or result.

Internet Service Provider organization which provides internet services (World Wide
Web, e−mail, etc.) to the users.

Message Digest fixed−length output of a one−way hash function.

Patch Piece of code added (not always in an elegant fashion) to
an implementation in order to fix a bug.

Pre−shared Key key shared by communicating entities which has been
previously distributed to those entities by other trusted
entity.

Re−keying periodic refreshment or substitution of the key performed
by the key−management protocol.

121

Secure Mobile Voice over IP

Replay Attack security attack where an attacker captures a message and
communicates later that message to an entity.

Strong Authentication peer−to−peer authentication of both users to each other.
Also referred to as Mutual Authentication.

122

Secure Mobile Voice over IP

Figures and Tables Index

FIGURES

Figure 2.1 VoIP Infrastructure pg. 4

Figure 3.1 SIP Setup pg. 7

Figure 3.2 RTP Header Format pg. 11

Figure 3.3 SR RTCP Packet Format pg. 12

Figure 5.1 Simplified Model of Symmetric Encryption pg. 16

Figure 5.2 Simplified Model of Asymmetric Encryption
 providing Confidentiality pg. 19

Figure 5.3 Time (clock cycles) taken by some AES candidates pg. 23

Figure 5.4 Encryption and Decryption Process in
 CTR Mode pg. 24

Figure 5.5 AES Encryption Round pg. 24

Figure 5.6 Message Digest Generation Using SHA−1 pg. 26

Figure 5.7 SHA−1 Processing of a Single 512−Bit Block
 (SHA−1 Compression Function) pg. 27

Figure 6.1 X.509 version 3 certificate format pg. 30

Figure 6.2 Certificate Revocation List (CRL) Format pg. 33

Figure 6.3 Hierarchical Infrastructure of CAs pg. 34

Figure 6.4 Mesh Infrastructure Model pg. 34

Figure 6.5 PEM Certification Infrastructure Model pg. 35

Figure 7.1 IPSec Authentication Header Format pg. 38

Figure 7.2 IPSec ESP Packet Format pg. 39

Figure 7.3 TLS/SSL Protocol Stack pg. 40

Figure 7.4 SSL/TLS Record Protocol Operation pg. 41

Figure 7.5 SSL/TLS Record Block Format pg. 42

Figure 7.6 SSL/TLS Handshake Protocol Action pg. 43

123

Secure Mobile Voice over IP

Figure 7.7 Diffie−Hellman Key Exchange pg. 46

Figure 9.1. SIP trapezoid pg. 49

Figure 11.1 Security−Enhanced SIP Trapezoid Model pg. 62

Figure 12.1 Distinction between the SIP INVITE messages
 regarding the establishment of a PKI pg. 66

Figure 13.1 SRTP Packet Format pg. 68

Figure 13.2 SRTCP Packet Format pg. 69

Figure 13.3 MINIsrtp Initial Class Diagram pg. 74

Figure 14.1 MIKEY: Overview of the Key Management Procedure pg. 80

Figure 14.2 Structure of a MIKEY message pg. 81

Figure 14.3 SIP−Based call example using MIKEY over SIP pg. 82

Figure 14.4 Signed Diffie−Hellman exchange in MIKEY pg. 84

124

Secure Mobile Voice over IP

TABLES

Table 5.1 Average Time Required for
 Exhaustive Key Search pg. 20

Table 7.1 Services Provided by the AH and ESP Protocols pg. 37

Table 15.1 Time taken by RTP and SRTP to Create a Packet in MINIsrtp pg. 91

125

Secure Mobile Voice over IP

References

[1] J. Ryan. Voice over IP (VoIP). The Applied Technologies Group white paper. 1998.

[2] H. Schulzrinne, S. Casner, R. Frederick, and V.Jacobson. RTP: A Transport Protocol for
Real−Time Applications. RFC 1889, Internet Engineering Task Force, January 1996.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley,
and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, Internet Engineering Task Force,
June 2002.

[4] J−O. Vatn. A roaming Architecture for IP based Mobile Telephony in WLAN environments.
Proceedings of Mobility Roundtable 2003. http://www.hhs.se/cic/roundtable2003/papers/S13−
Vatn.pdf. Stockholm, 2003.

[5] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460,
Internet Engineering Task Force, December 1998.

[6] P. McCann. Mobile IPv6 Fast Handovers for 802.11 Networks. IETF draft <draft−mccann−
mobileip−80211fh−01.txt>. October 2002.

[7] L. Dang, C. Jennings, and D. Kelly. Practical VoIP using VOCAL. O’Reilly & Associates Inc.
ISBN 0−596−00078−2. July 2002.

[8] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327, Internet Engineering
Task Force, April 1998.

[9] S. Glass, T. Hiller, S. Jacobs, and C.Perkins. Mobile IP Authentication, Authorization and
Accounting Requirements. RFC 2977, Internet Engineering Task Force, October 2000.

[10] C. Perkins. IP Mobility Support for IPv4. RFC 3344, Internet Engineering Task Force, August 2002.

[11] J. Rosenberg and H. Schulzrinne. Session Initiation Protocol (SIP): Locating SIP Servers. RFC
3263, Internet Engineering Task Force, June 2002.

[12] C. Rigney, A. Rubens, W. Simpson, and S. Willens. Remote Authentication Dial In User
Service (RADIUS). RFC 2138, Internet Engineering Task Force, April 1997.

[13] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter Base Protocol. IETF draft
<draft−ietf−aaa−diameter−16.txt>. December 2002. Work in progress.

[14] P. Calhoun, T. Johansson, C. Perkins. Diameter Mobile IPv4 Application. IETF draft <draft−ietf−
aaa−diameter−mobileip−13.txt>. October 2002. Work in progress.

[15] M. Baugher, R. Blom, E. Carrara, D. McGrew, M. Naslund, K. Norrman, and D. Oran. The
Secure Real Time Transport Protocol. IETF draft <draft−ietf−avt−srtp−05.txt>. June 2002. Work in
progress.

[16] J. Franks, P. Hallan−Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart.
HTTP Authentication: Basic and Digest Access Authentication. RFC 2617 Internet Engineering
Task Force, June 1999.

126

Secure Mobile Voice over IP

[17] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2617 Internet Engineering
Task Force, January 1999.

[18] S. Farrell. Outlining Wireless Public Key Infrastructure. Baltimore Technologies.
www.baltimore.com. February 2003.

[19] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 2617 Internet Engineering Task
Force, April 2002.

[20] J. Kohl and C. Neuman. The Kerberos Network Authentication Service (V5). RFC 1510
Internet Engineering Task Force, September 1993.

[21] S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. RFC 1510 Internet
Engineering Task Force, November 1998.

[22] J. Arkko, V. Torvinen, G. Camarillo, A, Niemi, and T. Haukka. Security Mechanism Agreement
for the Session Initiation Protocol (SIP). RFC 3329 Internet Engineering Task Force, January 2003.

[23] W. Simpson. PPP Challenge Handshake Authentication Protocol (CHAP). RFC 3329 Internet
Engineering Task Force, August 1996.

[24] D. Eastlake. Domain Name System Security Extensions. RFC 3329 Internet Engineering Task
Force, March 1999.

[25] J−O. Vatn. Establishing a Secure Mobile VoIP phone call. TSLab IMIT KTH, Stockholm.
February 2003. Work in progress.

[26] D. Harkins and D. Carrel. The Internet Key Exchange (IKE). RFC 2409 Internet Engineering Task
Force, November 1998.

[27] M. K. Ranganathan and L. Kilmartin. Investigations into the Impact of Key Exchange Mechanisms
for Security Protocols in VoIP Networks. Communication and Signal Processing Research Unit,
Department of Electronic Engineering, National University of Ireland.Consulted February
2003.

[28] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka. S/MIME Version 2 Message
Specification. RFC 2311 Internet Engineering Task Force, March 1998.

[29] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman. MIKEY: Multimedia Internet
KEYing. IETF draft <draft−ietf−msec−mikey−06.txt>. February 2003. Work in progress.

[30] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman. Key Management Extensions
for SDP and RTSP. IETF draft <draft−ietf−mmusic−kmgmt−ext−07.txt>. February 2003.
Work in Progress.

[31] SER: iptel.org SIP Express Router. www.iptel.org/ser. Consulted February 2003.

[32] E. Eliasson. MINISIP: SIP user agent software. TSLab IMIT KTH, Stockholm. February 2003.
Work in progress.

[33] D. McGrew. A library for Secure RTP. http://srtp.sourceforge.net/srtp.html. July 2002. Consulted
February 2003. Work in progress.

127

Secure Mobile Voice over IP

[34] Advanced Encryption Standard (AES), Federal Information Processing Standard Publications
(FIPS PUBS) 197, November 2001.

[35] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed−Hashing for Message
Authentication. RFC 2104 Internet Engineering Task Force, February 1997.

[36] Security in SIP−Based Networks. Cisco Systems Inc. white paper. Consulted February 2003.

[37] B. Aboba and M. Beadles. The Network Access Identifier. RFC 2486 Internet Engineering
Task Force, January 1999.

[38] M. Baugher. SDP Security Descriptions for Media Streams. IETF draft <draft− baugher−mmusic−
sdpmediasec−00.txt>. September 2002. Work in progress.

[39] T. Kanter, C. Olrog, and G. Maguire. VoIP over Wireless for Mobile Multimedia
Applications. http://psi.verkstad.net/Publications/pcc99/VWMMA_PCC.PDF.Consulted
February 2003.

[40] L. Blunk and J. Vollbrecht. PPP Extensible Authentication Protocol (EAP). RFC 2284 Internet
Engineering Task Force, March 1998.

[41] W. Stallings. Network Security Essentials, Applications and Standards. Second Edition.
Prentice Hall. ISBN 0−13−120271−5. 2003.

[42] H. M. Deitel and P. J. Deitel. C++, How to Program. Second Edition. Prentice Hall. ISBN 0−
13−528910−6. 1998.

[43] D. Gollmann. Computer Security. First Edition. John Wiley & Sons Ltd. ISBN 0−471− 97844−2.
1999.

[44] A. Mishra and W. A. Arbaugh. An Initial Security Analysis of the IEEE 802.1X Standard.
Department of Computer Science, University of Maryland. February 2002.

[45] A. James. Using IEEE 802.1X to Enhance Network Security. Foundry Networks white paper.
October 2002.

[46] J. Savard. The Advanced Encryption Standard (Rijndael).
http://home.ecn.ab.ca/~jsavard/crypto/co040401.htm. Consulted April 2003.

[47] H. Lipmaa, P. Rogaway, and D. Wagner. Comments to NIST concerning AES Modes of
Operations: CTR−Mode Encryption. Helsinki University of Technology.
www.tcs.hut.fi/~helger/ papers/lrw00/html/. Consulted April 2003.

[48] Microelectronics Laboratory − Crypto Group, Université Catholique de Louvain (UCL), Louvain,
Belgium. Some Figures about AES Candidates Performances.
www.dice.ucl.ac.be/crypto/CAESAR/performances.html. Consulted April 2003.

[49] ANSI X3.106. American National Standard for Information Systems−Data Link Encryption.
American National Standards Institute.

[50] B−J. Koops. Public−Key Infrastructures. http://rechten.kub.nl/koops/pki.htm. Consulted May 2003.

[51] U. Maurer. Modelling a Public−Key Infrastructure. Department of Computer Science. Swiss

128

Secure Mobile Voice over IP

Federal Institute of Technology (ETH), Zurich. 1996.

[52] D. Newman. PKI: Build, Buy or Bust? Network World. http://www.nwfusion.com/research/
2001/1210feat.html. October 2001. Consulted May 2003.

[53] D. Maughan, M. Schertler, M. Schneider, and J. Turner. Internet Security Association and Key
Management Protocol. RFC 2408 Internet Engineering Task Force, January 1999.

[54] C. Kaufman, R.Perlman, and M. Speciner. Network Security, Private Communication in a Public
World. Second Edition. Prentice Hall PTR. ISBN 0−13−046019−2.

[55] Hifn HIPP Security Processor 7815/7855. Hifn. http://www.hifn.com/docs/HIPP−7815−7855.pdf.
Consulted June 2003.

129

