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Abstract. We tentatively propose two guiding principles for the constion of theories of physics,
which should be satisfied by a possible future theory of quangravity. These principles are
inspired by those that led Einstein to his theory of geneghitivity, viz. his principle of general
covariance and his equivalence principle, as well as by we rhysterious dogmas of Bohr’s
interpretation of quantum mechanics, i.e. his doctrinelagsical concepts and his principle of
complementarity. An appropriate mathematical languagedmbining these ideas is topos theory,
a framework earlier proposed for physics by Isham and cotlatiors.

Our principle of general tovariancstates that any mathematical structure appearing in the law
of physics must be definable in an arbitrary topos (with rataumbers object) and must be
preserved under so-called geometric morphisms. This iplenadentifies geometric logic as the
mathematical language of physics and restricts the cartigins and theorems to those valid in
intuitionism: neither Aristotle’s principle of the exclad third nor Zermelo’s Axiom of Choice may
be invoked. Subsequently, oequivalence principlstates that any algebra of observables (initially
defined in the topoSets) is empirically equivalent to a commutative one in some otbpos.
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M otto

‘At a certain point in its history, the fundamental probleaiphysics have to
do with the way in which fundamental concepts are definedadse circum-
stances, the pursuit of physics in accord with those cosa@ptlently has not
resolved the underlying problems. These are the times athwgtiilosophical
analysis has become an unavoidable task of physics itself’

(R. DiSalle [9])



OLD PRINCIPLES

After decades of stagnation [28, 30], the possibility sggetself that the present
difficulties in constructing a satisfactory quantum theofygravity reflect insufficient
understanding of the foundations of quantum mechanicstarrélationship to general
relativity. In fact, our knowledge of the foundationshafththeories is questionable and
one can hardly expect a successful merge before these ficmamglhave been clarified.
Thus instead of taking quantum theory at face value andviahlg the “shut up and
calculate” philosophy common in string theory and (lessrs@op quantum gravity, we
believe that the road to progress lies in entering a prodesisuafying the foundations
of quantum theory and general relativity, preferably iremaction with each other. This
process might eventually suggest modifications to bothrtegeven at the level at which
they are currently defined (i.e. quantum theory without dgyaand classical general
relativity).

Even without the desire to incorporate general relatiuitgjuantum theory the emer-
gence of classicality is a major concern [21]. In our opinitbris issue will have to be
understood in conjunction with the question of (in)deterism in quantum mechanics;
these are two sides of the same coin. Without this joint matsge, the relationship
between the logical and the probabilistic structure of quanmechanics is obscute.
The present paper, which was partly inspired by the papelshaim and collaborators
[15, 10] and partly by thoughts on general relativity (asgegied above), is meant as a
first step towards the clarification of the relationship irsgion. It seems inconceivable
that a successful theory of quantum gravity can be foundrbefaos has been done.

To start with general relativity, it is well known that Eiegt, despite being single-
handedly responsible for one of the high points in humanghoin formulating the
theory of general relativity, was actually somewhat coatuabout the foundations of
his own theory (see [16] for most of the original papers and2&] for a survey of both
the primary and the secondary literature). On his road teggmelativity, Einstein was
guided by three principles: th@inciple of general covariangegheequivalence princi-
ple andMach'’s principle All three are controversial, but the latter seems paridyl
ill-founded and Einstein eventually abandoned it himsklfvill play no role in our
considerations.

The principle of general covariance was originally meanEbystein as an expression
of the idea of the general relativity of motion, but this idedlawed. In fact, general
relativity singles out geodesics as preferred carriers ofion, much like the inertial
frames in Newtonian mechanics and special relativity. Meeg, general covariance
has been claimed to be vacuous. This, however, is an exdggergeneral covariance
delineates the mathematical framework of Einstein’s thexw differential geometry.

1 The quantum logic of Birkhoff and von Neumann [5, 8] has altyuelarified neither the logical
foundation of quantum theory nor its probabilistic struetundeed, its lack of distributivity and of a
satisfactory implication, as well as its inherent proposil (as opposed to predicate) form has defied a
reasonable interpretation and application of quantuntlagiese difficulties reflect the lack of integration
of quantum logic with modern logic, especially with catdégatlogic and topos theory [17, 22]. Also, the
goal of deriving quantum theory from quantum-logical axginas not been achieved, despite impressive
attempts [26].



Ironically, this framework applies to classical mecharaosl special relativity as well;
the essence of general relativity lies in the dynamical oblle space-time metric.

An appropriate version of the equivalence principle stabes free fall in a grav-
itational field is locally indistinguishable from rest oritorm motion in Minkowski
space-time without gravitational forces, and hence lgdaéie fall defines an inertial
frame. Although also this principle has been derided, we¥oEinstein himself as well
as the rational reconstruction of his thought by DiSallefittaching great importance
to it. Namely, the equivalence principle makes the Newtosi@paration between iner-
tial motion and acceleration ill-defined in case that theetais caused by gravity, and
furthermore it leads to the seemingly paradoxical feathiae in the presence of gravity
different locally inertial frames are not inertial with pect to each other (as they would
be without gravity). In combination with general covariance. the geometric frame-
work of the theory, the equivalence principle then enabtes to solve both problems
at one stroke by identifying inertial motion in a gravitata field with geodesic mo-
tion in a curved space-time. All that remained for Einsteaswo find the relationship
between curvature and matter distribution, a (still Hezanl) task he accomplished by
discovering the equations now named after him.

Einstein’s great antagonist was Bohr. His understandinguaihtum mechanics was
expressed by two principles: thaoctrine of classical concep@nd theprinciple of
complementarity(see [18] for the original papers and [27] for penetratinglgsis).
Significantly, whereas Einstein had his principlesfore his theory, Bohr formulated
themafter the completion of quantum mechanics. Nonetheless, higiptes are even
more obscure than Einstein’s, and in fact it seems that @mhegpeople who have known
Bohr personally still endorse them. This is a pity, becamseur opinion the door to
quantum gravity is opened by reformulating Bohr’s prinegpbf quantum mechanics in
a way inspired by Einstein’s principles of gravftflo do so, we turn to topos theaoty.

WHAT ISA TOPOS?

According to McLarty [23], ‘Elementary toposes arose whenvicere’s interests in the
foundations of physics and Tierney’s in the foundationsogiology led both to study
Grothendieck’s foundations for algebraic geometjopos theory has quite appropri-
ately been compared with an elephant as regards size, cxitgpbnd the possibility
of adopting seemingly different points of view [17]. Indedlde first sentence of the
well-known book by Mac Lane and Moerdijk on topos theory [B2his:

‘A startling aspect of topos theory is that it unifies two sesgty wholly dis-
tinct mathematical subjects: on the one hand, topology kyebeaic geometry
and on the other hand, logic and set theory.’

2 See also [20] for a different attempt at a peaceful resaiutithe Bohr—Einstein debate.

3 To get familiar with topos theory, it is advisable to studg[22, 17] in the given order.

4 See also [19] for a general history of category theory. In dhiginal work of Grothendieck [1],
topoi generalize topological spaces, in that open setsemerglized by “set-valued” opens, or sheaves.
Lawvere’s ideas on the connection with physics are elabdriat[3].



This is elaborated by Vickers [29], as follows:

‘We have, on the one hand, the logic and the set theory, anthewother,
the topology. In a nutshell, the topos connection betweemtis that the
topos acts like a “Lindenbaum algebra” (of formulae modujoiealence) for
a logical theory whose models are the points of a space.’

Indeed, topoi provide semantics for intuitionistic predeclogic, and as such generalize
frames (or, equivalently, Heyting algebras) as the appatgsemantics for intuitionistic
propositional logic [29F. Here one looks at frames as the Lindenbaum algebras of
intuitionistic propositionallogic® Thus a topos is something like the “Lindenbaum
algebra” (technically, the classifying topos) of some itibumistic predicatelogic [29].

Most presentations of the subject, however, start fromdea that topoi generalize
the categongets of sets and functions. This approach defines a topos as acateih:

1. Terminal object; 2. Exponentials; 3. Pullbacks; 4. Syédixclassifier.

These generalize, respectively, the following constandiin Sets:
1. An arbitrary singleton 1 (in that from any S¢tthere is a unique arrol — 1);
2. SetsyX consisting of all function¥ iR Y, for arbitrary setx andY;

3. Fibered product8 xoC = {(b,c) e BxC| f(b) =g(c)} of B I Aandc 2 A,
along with the obvious projection maps— B xaC — C;

4. The sefd = {0,1} in its role as the codomain of characteristic functions dissts:
given an inclusiorA C B of sets, one can reconstruétfrom its characteristic

functionB %4 Q and, vice versaxa is of course defined bxx.

In a general topos2 comes with an arrow 1% Q called truth, such that for every
monomorphisnA—f> B (i.e. injection in the categorical sense, often denoted by B)
there is auniquearrow B %4 Q for which B L A — 1 is a pullback ofB %4 0 and

1L Q7 Amazingly,Q = {0,1} in its role as the subobject classifier in the tojsets
carries the entire logical structure of classical math@satn general, in an arbitrary
toposQ is a so-called Heyting algebra, which provides an algelatescription of some
intuitionistic propositional logic intrinsic to the top@d hand. In such a logic, neither

5 A frameis a sup-complete distributive lattice such than V,y, = V,xAy,. For example, ifX is

a topological space, then the topology (i.e. the set of omts) & (X) of X is a frame withU <V

if U C V. Frames are sometimes callkxtales but the category of locales is the opposite category
to the category of frames. This seemingly curious convengigarantees that, in the above example, a
continuous magf : X — Y induces a mag, : ©(X) — 0(Y) between the associated locales, defined as
f*=1"1:0(Y) — ¢(X) read in the opposite direction. The mind boggles!

6 These are given by the set of formulae modulo provable elariga, ordered by entailment.

” For example, in the topos 8K) of sheaves over a topological spaXehe subobject classifier is the
functorU — &'(U), acting on arrows (i.e. inclusion§) <V as&' (V) — ¢(U),W —WnNU.



Aristotle’s principle of the excluded thiinor Zermelo’s Axiom of Choice necessarily
holds?

STATES, PROPOSITIONSAND TRUTH

The logical perspective on topos theory, culminating indeeisive role of the subobject
classifier, explains its potential relevance for physies, Bs emphasized by Isham and
collaborators [15, 10], the topos framework leads to a newav#hinking about truth in
quantum mechanics. Traditionally, the mathematical aoébath classical and quantum
physics has - in blissful ignorance - simply been the toBets. Both are based on
a pairing (w,P) — [0,1], wherew is a state and® is an elementary proposition (or
“yes-no question”). The numbétw, P) equals the probability that the propositiBris
true in the statew. Elementary propositions are of the forth= a € U, wherea is
an observable and C R. It will be sufficient to deal with the casdd = (r,s); more
generally, one may assume thatis regular open (i.eU coincides with the interior
of its closure)® In classical physics, this scheme works fine. An observabie a
real-valued functiorM % R on some phase spad#, and a yes-no questiome U
may be identified with the subséa € U] = a"1(U) ¢ M. (More precisely,a € U
should be identified with the equivalence class of all praposs b € V with the same
inverse imageb—1(V) = a~1(U).) This subset is open # is continuous, and defines
1 P . . . Xa-1)
a monomorphisna—*(U) — M, characterized by its classifying arrdW — Q. A
pure statew is just a point oM, hence a monomorphismfi M. Composition ofw and
Xa-1(u) Yields an arrow
Xa 1)

1250 =182, (1)

which is precisely the truth value of the proposit®r- a € U in the statew, i.e. (w, P)
is true or equal to 1 ito € a~1(U) (or a(w) € U) and false or equal to 0 otherwise.
Thus the subobject classifier

(@,P)
—

Q={0,1} ={L, T} = {falsetrue} = {no,yes} (2)

in the toposSets is the carrier of truth values of yes-no questions, the tfu¢h answer
“yes”) or falsehood (i.e. answer “no”) of such questionsnigeaissigned by some pure
state. If the state is mixed, the truth value of a yes-no dquest a point in[0, 1], inter-
preted as the probability that the answer to the questiopes.” This is unproblematic

8 Inthe example StX) the logical operations on the internal Heyting alge®@rd) — ¢'(U) are computed

pointwisetruth 1 L QisT=U, falsel = Qis L=0, negation-: Q — Qis -V =int(U\V), conjunction
AN QxQ— QisVAW =V NW, disjunctionv: Q x Q — QisV VW =V UW, and finally(material)
implication=-: Q x Q — Q readsV =W = int((U\V) UW). Consequentlyy V-V =U\gV #U =T.

9 In the sense that any epimorphism, i.e. categorical simjgdtas a right inverse.

10'If one admits general open sets, the logic of classical mechalready comes out as intuitionistic!
This is because the open subsets of a topological space domoia Boolean algebra under natural
operations.



in classical physics, as the decomposition of a mixed state#o pure components leads
to an associated decomposition of the pairjagP) into terms that are either equal to O
ortol.

From a localic point of view, one rather works with the topplaZ’ (M) instead of
with M itself. Still working in Sets, our yes-no questioR = a € U is just an arrow
a'(v)

—

1 ocM)=1 L O(M). A pure statew is now represented by the subobject
Sw C O(M) given by
So={VedM)|weV}. (3)
The pairing map becomes
1%9%0 - 1P gm) X2 q, (4)

wherexs, is the classifying map d&, — ¢'(M). Of course, one ha® w) = (w, P); cf.
(2). It is this localic formulation of the state-propositipairing that can be generalized
to quantum theory, as follows.

Let C(2() be the collection of commutative unit@l*-subalgebras of a unital*-
algebrall, partially ordered by inclusion (seen as a category in thmlusay) and let
T(2) be the toposSets“® of functorsC(2) — Sets. The map that send (seen as an
object inC(2l)) into itself (seen as a set) is functorial in the obvious wag defines an
objectA in T(2(). This object is asommutative G-algebra inT (2() in a natural way?
There is a Gelfand theory for commutati@é-algebras in topoi [2}2 and the Gelfand
spectrunt of A is automatically a (compact completely regular) locale.

This locale, which is explicitly described in [14], plays antral role in the logical
analysis of the quantum theory defineddyBeing a locale, it is automatically a Heyting
algebra, carrying the intuitionistic propositional logitrinsic to the theory. This logic
is ‘spatial’ in the sense that its elementary propositiomsespond to arrows 4+ 3
as in the classical cage= ¢/ (M), we regard such arrows as open subsets of the space
that formally underlies the locale. The relationship between the original observables
of the system and such propositions is not obvitfusjt it turns out that, as in classical
physics, a self-adjoint elemeatc 24 and an intervalr,s) eC R define an arrow (i.e.

11 Our construction was inspired by the work of Déring and IsHa6j, from which it differs in several
respects. For example, whereas Doring and Isham work wileesy we work with locales. This is a
mathematical reflection of the difference between the gbiphical ideas of Heidegger [10] and Bohr
[14].

12 |n a paper dedicated to Klaus Fredenhagen, it may be apptepoipoint out that an algebraic quantum
field theory may not just be seen as a functor, as in [6], but siagleC*-algebra in the topos of pre-
cosheaves over space-time, by a similar construction &imain text.

13 The Gelfand spectrum of A, seen as a frame or locale, is the Lindenbaum algebra of ¢iealaheory
defined by propositions of the forene U indexed bya € AandU € ¢(C), subject to relations suggested
by the situation irSets. One then has an isomorphigh® C(%), whereC(X) stands for the set of locale
maps from> to ¢(C) and hence of frame maps in the opposite direction. The Getfamsform ofa € A
isd: 0(C) — Z,U — [ae U] (i.e. the equivalence class of the proposittoa U, which by definition of

> is an element of it).

14 The difficulty lies in associating an elementf®fo one of2l. This is achieved in [14] by a modification
of the ‘Daseinization’ map of Déring and Isham [10].



‘open set’) faﬂfﬂ 2. In addition, one may generalize (3) in associating a sudmbj

of X to a statew on 2 [7, 14]. At the end of the day, this leads to pairing map defined
exactly as in (4), but now taking values in the subobjectsifes of the topodsT () at
hand.

This suggests that, quite generally, the subobject clasgilays the role of the
codomain of the pairing map between (pure) states and yegHastions. Thus the an-
swers to such questions are neither limited to “yes” or “mw; to some number in the
interval|0, 1] playing the role of some probability. Instead, as suggestgkb, 10], truth
becomes an - a priori non-probabilistic - multi-valued ootin non-classical theories of
physics like guantum mechanics. Itis precisely the atvadaif topos theory for physics
that this theory provides a formal setting for such an itfea.

Truth is prior to probability, and the next step would conhsigderiving the notion of
ordinary probability and the Born rule from multi-valuedtln assignments in a suitable
topos.

NEW PRINCIPLES

Having introduced the notion of a topos and its motivatiarploysics, we wish to return
to the task of finding suitable principles that might undeduantum gravity. Before
doing so, however, we need one more ingredient of toposytjéar 22, 29].

So far, we have seen that topoi generalize frames (the derati@n being from
propositional to predicate logic), which in turn generalimpological spaces: such
a spaceX defines the frame’(X) of all open sets, but not all frames are of this
form. Nonetheless, the notion of a map between frames isithken this example:
if f:X — Y is continuous, then the induced mdp!: ¢(Y) — ¢(X) is a lattice
morphism preservinfjnite A andall v. Hence also in general, frame maps are defined
in this way. It is clear from the definition of a frame that sunhps are quite natural,
but they have the disadvantage that they do not preserventiie gical (i.e. Heyting
algebra) structure encoded in a frame: (material) impbeednd hence negation are not
necessarily preserved. Recalling that frames are Lindenkagebras of intuitionistic
propositional logics, this problem may be circumvented biy @llowing such logical
theories that in addition argeometric This curious name (whose origin lies in fact in
the geometric side of topos theory) stands for the fragmiantwitionistic propositional
logic whose formulae are of the forgh — @, where¢ and ¢ are built from atomic
propositions using the symbols (for “truth”), A (for “and”), andV (for “or”), where
V but notA is allowed to carry an infinite index set. This may be motidaly the
remark that to verify a proposition .o p) one only needs to find a singfg,, whereas
to verify Aycapy the truth of eachp, needs to be established, an impossible task in
practice whem\ is infinite. One may then say that frame maps preserve “gearhet

15 There is a clear parallel with model theory here, in thatulgtothe pairing map each statedefines a
model of the logical theory underlying the spectral obEg¢seen as a frame or Heyting algebra) taking
values inQ. This generalizes the Boolean models of classical logidchvim turn generalize the simplest
models of logic taking values if0,1} = {1, T}.



propositional logical theories.

This idea generalizes to predicate logic, and hence to tihgasy. A geometric intu-
itionistic predicate logic is a theory whose formulae ara@lasve'® now also involving
the existential quantifiel, and whose axioms take the forix : ¢ (x) — @(x).1” The
generalization of a frame map to topos theory is, then, aafledblgeometric morphisin
whose reason of existence is to preserve “geometric” fiderotheories. Specifically,
a geometric morphis® — E is functorg. : F — E with left adjoint¢* : E — F that
preserves finite limits (and also, automatically as a lejiviat, all colimits). Hence the
‘inverse image partyp* of a geometric morphism preserves any mathematical steictu
in a topos that is axiomatized “geometrically” in the sens gescribed; it may be seen
as the ultimate generalization of a continuous map betwepoldgical spaces. Thus
geometric morphisms form the natural maps between topoi.

For the simplest examples of geometric morphisms, contliéguresheaf topdets®
of functors from a categor§ to Sets. Then for eaclt € C one has a geometric morphism
@ : Sets — Sets© with inverse imageg: = evc : Sets© — Sets, i.e. the evaluation map
given byevc(F) = F(C). In particular, forC = C(2() andF = Aone obtaingvc(A) =C.
Hence associating a commutatWesubalgebr& C 2( to a noncommutativ€*-algebra
2 is a geometric operation; physically, this picks a cladsicatext’® In the opposite
direction, there is a unique geometric morphigm Sets¢ — Sets with inverse image
* : Sets — Sets® given as the constant functgr(X) : C — X for all C € C.

Einstein’s principle of general covariance then has a mhaimalogue in topos theory,
which we call theprinciple of general tovariance: any mathematical structure appear-
ing in the laws of physics must be definable in an arbitrarp$ofvith natural numbers
object) and must be preserved under geometric morphisrke.the principle of gen-
eral covariance, the principle of general tovariance hasmmoediate physical content,
but merely serves to identify the mathematical languagehgéigs. Where general co-
variance meant differential geometry, general tovarianggies geometric logié? In
particular, it restricts the mathematical objects that megur in physics to those whose
core can be axiomatized through geometric logic. It seemsstthat this requirement
is the correct formalization of the familiar idea that plogsat the Planck scale be finite
(or at least discrete). Our principle also expresses theetigat physics should be as in-
dependent as possible of the mathematical framework (textent that different topoi
stand for different mathematical universés).

16 The atomic formulae may now involve relations and equalitiad all the usual structures allowed in
first-order logic as well.

17 1n both cases deductiofgy,...,¢n} — ¢ are made from lists of finitely many formulae to single
formulae. See [29] and [17] for details.

18 Continuing footnote 12, the mag — 2A(¢) defining an algebraic quantum field theory comes out as
geometric in exactly the same way.

19 Thus the tendentious slogan that “physics is informaticas to be replaced by the idea tipéysics is
logic.

20 From this perspective the situation is not just similar togyal relativity, but also to algebraic quantum
field theory. Indeed, passing from a Hilbert space framevwor&C*-algebraic one captures the idea of
the representation-independence of the underlying thegogint emphasized by Haag and Kastler [13]
through their appeal to Fell's theorem [11]:9f is a simpleC*-algebra andt is a representation, the



Which mathematical theories are “geometric” in this sen&s?ar as physically
relevant structures are concerned, we mentiifierential geometryalbeit in algebraic
form (i.e. instead of smooth manifold4 one works with the function rin@* (M), etc.)
[24], as well agpre-quasi-C-algebras These are “almositC*-algebras, except that the
norm is actually a semi-norm and that the underlying spacenotaibe completé! The
usual process of turning a pre-qué&stalgebra into an actuél*-algebra by quotienting
by the zero-norm subspace and completing turns out to besoonetric2? but this is of
little concern, because what matters is a given, “coordimatariant” theory, which may
be turned into an (interna@}*-algebra in an arbitrary topos by the said, “non-invariant”
procedure.

We are now in a position to generalize Bohr’s doctrine ofsilzsd concepts in a way
reminiscent of Einstein’s equivalence principle: we ptawithatany algebra of observ-
ables is empirically indistinguishable from a commutatwre?® Much as an observer
can locally avoid the gravitational force by moving alongeadesic (which in Einstein’s
view amounted to a special choice of coordinates), an obs@mguantum theory can
get rid of the noncommutativity of@*-algebra of observables by moving to a very spe-
cial topos in which it becomes commutati&eThis sounds paradoxical, and indeed it
has been suggested that Bohr was simply incompetent [4]eMenwve have seen in the
previous section that the above equivalence principle rdedad be implemented [14].
The use of topos theory then automatically takes care of tammgntarity, in the sense
that mutually exclusive classical snapshots of realityuredly combine into a single
internal commutativ€*-algebra, which carries all physical informatién.

Note added: Following talks by the second author at Lisbon, Princetot ldamburg
in the Fall of 2007, an interesting discussion on Generabfiance has emerged in the
n-Category Cafét t p: / / gol em ph. ut exas. edu/ cat egor y, see December 5,
2007. We hope this paper clarifies the main issues raised.ther
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