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1. Introduction 

In the past decades, fractional differential equations 

have been the focus of many studies due to their frequent 

appearance in various applications in fluid mechanics, 

viscoelasticity, biology, physics and engineering 

[2,10,12,13]. Most fractional differential equations do not 

have exact analytic solutions, so approximation and 
numerical techniques must be used. The fractional spline 

function of a polynomial form (see [5,6,7,8]) is a new 

approach to provide an analytical approximation to linear 

and nonlinear problems, and it is particularly valuable as a 

tool for scientists and applied mathematicians, because 

they provide immediate and visible symbolic terms of 

numerical approximate solutions to both linear and 

nonlinear differential equations. 

In this work we construct a new fractional spline which 

interpolates the (1/2-th derivative for the first case, 1/2, 

3/2 -th derivatives for the second case, and 1/2, 3/2, 5/2-th 
derivatives for the last case of a given function at the 

knots and its value at the beginning of the interval 

considered. We obtain a direct simple formula for the 

proposed fractional spline. error bounds for the function is 

derived in the sense of the Hermite interpolation. To 

illustrate the efficiency and the error analysis two 

numerical examples are considered. 

2. Preliminaries 

In this section, we recall some relevant definitions. 

There are many ways to define fractional integral and 
derivative. In this paper we will use Riemann-Liouville 

fractional integral and Caputo fractional derivative. 

Let  be a positive real number and f(x) be a function 
defined on the right side of a, then Definition 1. [1,2,10] 

The Riemann-Liouville fractional integral of order  > 0 
is defined by 
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where   is the gamma function. 

Definition 2. [1,2,10] The Caputo fractional derivative 

of order  > 0 is defined by 
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3. Description of the Fractional Splines 

We construct here a class of interpolating fractional 

splines of degree j, for j = 2, 4, 6 and  = 0.5. error 
estimates for these splines are also represented. Since all 

cases considered are similar, details are given only for the 

first case of 2. 
Let 0 = x0 < x1 < … < xn-1 < xn = 1 be a uniform 

partition of [0,1] . Set the stepsize h = xi+1 - xi (i = 0(1)n) 

and note that 

 , , ...n
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If g is a real-valued function in [0, 1], then gi stands for 

g(xi) (i = 0(1)n). Since all cases considered are similar, 

details are given only for the first case. We have the 

following cases: 

3.1. Spline of Degree 2 Case (Existence and 

Uniqueness) 

We suppose that s(1/2)(x)  C2
[0,1]  and s(x) in each 

subinterval [xi, xi+1] has a form: 

 1/2( ) (  .. ) (  .. )i i i i is x a x x b x x c    (1) 

where ai, bi and ci are constants to be determined. 

Theorem 1. suppose that s(1/2)(x)  C2
[0,1]  and s(x) in 

each subinterval [xi, xi+1] has the form (1). Given the real 

numbers s(1=2) i = f(1=2) i (i = 0(1)n) and f0, there exist 

a unique s(x) such that 
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The fractional spline which satisfies (2) in [xi, xi+1] is of 

the form: 
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and x = xi + th, t[0,1] , with a similar expression for s(x) 

in [xi-1, xi]. 

The coefficient si in (3) are given by the recurrence 

formula: 
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Proof. Indeed we can express any p(t) in [0,1]  in the 

following form: 
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Now for a fixed  0,1, , 1i n   , set 

 , 0,1ix x th t   . In the subinterval  1,i ix x   the 

fractional spline ( )s x  satisfying (2) is: 
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We have a similar expression for ( )s x in 1[ , ]ix xi . 

From the continuity condition of    
1 1

2 2
i is x s x   we 

arrive the above recurrence formula (5). This completes 

the proof. 

3.2. Error Bounds for the Fractional Spline of 

Degree 2  Case 

In this section, the L  error estimates are presented for 

the above interpolating fractional spline in [0,1]  using one 

of the best theorem of the Hermite interpolation (Theorem 

2). Note that   denotes the L  norm. 

Theorem 2. [4,8,9] Let  2 0,mg C h  be given. Let 

2 1mp   be the unique Hermite interpolation polynomial of 

degree 2 1m  that matches g and its first 1m   

derivatives  r
g  at 0 and h. Then 
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where 
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The bounds in (6) are best possible for 0r   only. 

Theorem 3. Suppose that ( )s x  be the fractional spline 

defined in section 3.1,    
1

22 0,1f x C
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 '(0)  ''(0) 0f f  , then for any [0,1]x  we have 
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1,i ix x x  . So for any  1,i ix x x   we have using (6) 

with 
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From which, we get 
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This gives 
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since, (0) (0)s f  and [0,1]x  then the last equation 

becomes 
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and since  '(0)  ''(0) 0f f  , following [11], p. 20, we 

have 
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Thus we have proved the theorem. 

3.3. Spline of Degree 4  Case (Existence and 

Uniqueness)  

We suppose that    
1
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subinterval 1[ , ]i ix x   has a form: 
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From which the following theorem can be obtained: 

Theorem 4. Suppose that    
1

22 0,1s x C
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    and  s x  

in each subinterval 1[ , ]i ix x   has a form (1). Given the 

real numbers   
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0f , there exist a unique ( )s x  such that 
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The fractional spline which satisfies (10) in 1[ , ]i ix x   is 

of the form: 
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and  , 0,1ix x th t   , with a similar expression for 

( )s x  in 1[ , ]ix xi . 

The coefficient is  in (11) are given by the recurrence 

formula: 
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Proof. In this case we can express any p(t) in [0,1] in 

the following form: 
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and to determine the coefficients , 0,1,2,3,4jA j  , we 

write the above equality for  
1 3 5 7

2 2 2 21, , , ,p t t t t t . 

By the same technique of theorem 1 we obtain the 

desired result and consequently the proof is completed. 

3.4. Error Bounds for the Fractional Spline of 

Degree 4  Case 

Here we will derive the L  error estimates are 

presented for the fractional spline that we have mentioned 

in Section 3.3, the error bounds have shown in the below 

theorem and its proof is similar subsequence of theorem 3. 

Theorem 5. Suppose that ( )s x  be the fractional spline 

defined in section 3.3,    
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which leads to 
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Which proves the theorem. 

3.5. Spline of Degree 6  Case (Existence and 

Uniqueness)  
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Which deduces the following theorem: 
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The fractional spline which satisfies (16) in 1[ , ]i ix x   is 
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

 
     
 
 

  

    

   

    

  

     1t 

(18) 

and  , 0,1ix x th t   , with a similar expression for 

( )s x  in 1[ , ]ix xi . 

The coefficient is  in (17) are given by the recurrence 

formula: 
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1 11

2 22
1 1

3 3 5 53 5

2 2 2 22 2
1 1

0 0

1155 355
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16 8

115 40 59

12 3 12

i i ii

i ii i
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s f



   
   
   

 

       
       
       

 

 
   
 
  

   
      
   
      



 (19) 

Proof. In this case we can express any ( )p t  in [0,1]  in 

the following form: 

         

     

1 1

2 2
0 0 1 1 2 30 1

3 3 5

2 2 2
4 5 60 1 0

p t p A t p A t p A t p A t

p A t p A t p A t

   
   
   

     
     
     

   

  

 

and to determine the coeficients , 0,1, ,6jA j   , we 

write the above equality for  
1 3 5 7 9 11

2 2 2 2 2 21, , , , , ,p t t t t t t t . 

By the same technique of theorem 1 we obtain the desired 

result and consequently the proof is completed. 

3.6. Error Bounds for the Fractional Spline of 

Degree 46 Case 

Error estimates for the fractional spline that we have 

mentioned in Section 3.5 are explained by the following 

theorem: 

Theorem 5. Suppose that ( )s x  be the fractional spline 

defined in section 3.3,    
1

62 0,1f x C

 
 
    and that 

   0 0, 1,2, ,6,
p

f p    then for any [0,1]x  we have 

    

13
6

2

(32)(6!)

h
s x f x f



 
 
    (20) 

Proof. Because  

1

2s x

 
 
   is the Hermite interpolation 

polynomial of degree 3 matching 

1 3 5

2 2 2, ,f f f

     
     
       at 

1,i ix x x  . So for any  1,i ix x x   we have using (6) 

with 

 

   
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1 1

2 2
3

16
6 2

3, ,

32 6!

m g f and p s

h
s x f x D D f



   
   
     

 

 

and following [11], we have 

 

131 13

6 22 2D D f D f f

 
 
    
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This gives 

    

13
6

2

(32)(6!)

h
s x f x f



 
 
    

Which proves the theorem. 

4. Algorithms 

The following remarks are needed in solving a problem: 
1. Note that the above formulation and analysis was 

done in [0,1] . However, this does not constitute a 

serious restriction since the same techniques can be 

carried out for the general interval [ , ]a b . This is 

achieved using the linear transformation 

 
1 a

x t
b a b a

 
 

 (21) 

Form [ , ]a b  to [0,1] .  

2. Use the equations (5), (13) and (19) to compute 

, ( 1(1) )is i n , respectively, in each cases. 

3. Use the equations (3), (11) and (17) to compute ( )s x  

at n equally spaced points in each subinterval 

   1, ( 1 1 1)i ix x i n    and in each cases. 

5. Illustrations Results 

To illustrate our methods as error estimates has been 

found in theorems (3, 5 and 7) and to compare each of 
them with the other one, we have solved two examples of 

fractional equation. We have implemented all of 

problems’ calculations with MATLAB 12b. 

Example 1. Consider the following fractional 

differential equation  

    
1 15

2 2 0, 0,1 ,f x x x

 
 
      (22) 

with (0) 0f   

For which, all actual error bounds for each cases are 

presented in Table 1, 

Table 1. The observed maximum errors 

Example 2. Let  

    
13

2 0, 0,1f x x x    (23) 

For which, all actual error bounds for each cases are 

presented in Table 2. 

Table 2. The observed maximum errors  

  Fractional Splines  

h Degree 2 Degree 4 Degree 6 

1/10 3.4549E-01 8.6372E-04 1.4395E-07 

1/20 8.6372E-02 5.3982E-05 2.2492E-09 

1/30 2.1593E-02 3.3739E-06 3.5145E-11 

1/40 5.3982E-03 2.1087E-07 5.4914E-13 

Example 3. Consider the following fractional 

differential equation  

 
 

   

   

1 15 13

2 2 2
40320 5040

0,
Γ 8.5 Γ 7.5

0 1.5, 0,1 ,

f x x x

f x

 
 
    

 

 (24) 

Numerical and exact solutions are presented in Table 3. 

we give here the fractional spline of degree 6a for 0.1h  . 

Also, the exact and numerical solutions are demonstrated 

in Figure 1. for 0.2h  . 

 

Figure 1. Exact and approximate solutions of Example 3 with 0.2h  . 

Table 3. Exact, approximate and absolute error 

x Exact Approximate Absolute Error 

0.0 1.5000 1.50000 0 
0.1 1.4999 1.49999 2.06501E-08 
0.2 1.49998 1.49999 8.21765E-06 
0.3 1.49984 1.49997 1.28093E-04 
0.4 1.49901 1.49984 8.26040E-04 
0.5 1.49609 1.49935 3.26386E-03 
0.6 1.48880 1.49806 9.25965E-03 
0.7 1.47529 1.49542 2.01315E-02 
0.8 1.45805 1.49144 3.33924E-02 
0.9 1.45217 1.48816 3.59953E-02 
1.0 1.50000 1.49257 7.42376E-03 

6. Conclusions 

In this paper, the existence and uniqueness of three 

fractional splines of degree , 2,4,6, 0.5m m    are 

derived and in each case we have obtained direct simple 

formulas. These formulas are agree with those obtained 

for degree of integer, such as in [3], where a different 
approach was used. Also, Error estimates are derived 

which, together with the numerical results, showed the 

method to be efficient. 
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