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ABSTRACT We present an approximation scheme for deriving reaction rate equations of genetic regulatory networks. This
scheme predicts the timescales of transient dynamics of such networks more accurately than does standard quasi-steady state
analysis by introducing prefactors to the ODEs that govern the dynamics of the protein concentrations. These prefactors render
the ODE systems slower than their quasi-steady state approximation counterparts. We introduce the method by examining a
positive feedback gene regulatory network, and show how the transient dynamics of this network are more accurately modeled
when the prefactor is included. Next, we examine the repressilator, a genetic oscillator, and show that the period, amplitude,
and bifurcation diagram defining the onset of the oscillations are better estimated by the prefactor method. Finally, we examine
the consequences of the method to the dynamics of reduced models of the phage lambda switch, and show that the switching
times between the two states is slowed by the presence of the prefactor that arises from protein multimerization and DNA
binding.

INTRODUCTION

As the complexity of gene regulatory networks under study

increases so does the need for accurate modeling techniques

(1). While exact numerical simulations are possible using

Monte Carlo techniques like the Gillespie algorithm (2), such

simulations can be computationally intensive. Continuous

approximation schemes based on the underlying stoichio-

metric reactions can be used to simulate the dynamics of the

average of each species in the system, but the complexity of

these models can hinder both computational and theoretical

analysis. Hence, many theorists have resorted to using a

quasi-steady-state approximation (QSSA) (3,4) to reduce the

number of dimensions in continuous models. Such reduced

models do an excellent job in many cases, especially when

the asymptotic state of the system is a stable equilibrium

point. However, it has long been known that in some cases

the QSSA does a poor job predicting the timescales over

which systems equilibrate to their steady-state value (5–7).

Moreover, interest is continually growing in gene networks

that exhibit more complicated behavior, like stable limit

cycles (8–11). When periodic behavior is present in a sys-

tem, correct prediction of the timescales involved becomes

necessary for a complete understanding of the system, and is

essential for guiding experimental studies.

In this article, we present a continuous approximation

scheme that reduces the number of dimensions in the system,

while at the same time predicts the timescales of the full

system more accurately than does the classic QSSA. By cor-

rectly applying multiple timescale analysis, the resulting

reduced systems are the same as QSS approximations, but

with a prefactor in front of the time derivatives of the con-

centrations. This method was first introduced by Kepler and

Elston (6), and Bundschuh et al. (12) showed that the

prefactor derived by Kepler and Elston was related to the

Jacobian of a transformation relating monomer concentra-

tions to the total concentration of a particular protein. We

will examine this method in more detail, and demonstrate

that the prefactors appear generally as a result of correct

reduction of multiscale dynamics to a slow manifold in which

fast dynamics are assumed to be in a local quasi-equilibrium.

We first introduce the approximation scheme by examin-

ing a simple example—the genetic feedback loop. We show

that while both the prefactor method and the QSSA correctly

predict the asymptotic behavior of the system, the transient

dynamics are better modeled when the prefactor is included.

Next, we look at a system with a stable limit cycle—the

repressilator (8). While the QSSA correctly predicts oscil-

lations in this system, we show that it incorrectly predicts the

amplitude and frequency of those oscillations, which are

better estimated with the new technique. Furthermore, the

bifurcation between stable fixed points and limit cycles is

more accurately estimated with the new scheme. In the last

section, we will look at the lysis-lysogeny switch of bacteri-

ophage l. The temporal dynamics of the switch are an im-

portant aspect of its function, because the speed with which

it makes transitions between the stable states will act as a

limiting factor on the timescales at which the lytic cycle may

be controlled. Therefore, reduced models describing the dy-

namics of the phage l switch (or any switch) must accurately

reproduce these timescales.

Timescale analysis of a genetic positive
feedback loop

Separation of timescales is very common in the dynamics of

gene regulatory networks. Many processes, like dimer- and

tetramerization, occur at a much faster rate than other pro-

cesses, such as transcription, translation, and degradation

(4,13). Because the fast reactions are quick to equilibrate, it
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has been a common practice by many theorists to use a quasi-

steady-state approximation to replace dynamical variables

involved in these reactions with their steady-state values.

This approximation reduces the number of dimensions in the

resulting systems of ODEs, and hence greatly simplifies en-

suing analysis.

Consider, for instance, the genetic positive feedback loop

(4,14). This system involves a single gene that transcribes a

single protein. Upon dimerization, the protein dimer can bind

to an upstream regulatory site and stimulate transcription.

Additionally, the protein monomer and the mRNA produced

in transcription are subject to degradation. This situation is

depicted in Fig. 1.

In this system there are nine reactions occurring among

five chemical species. A list of these reactions is given in

Table 1. Here x and y are the concentrations of protein

monomers and dimers, respectively; d0 is the concentration

of promoter sites that are free of the dimer; dr is the

concentration of promoter sites that are bound to the protein

dimer; and m is the concentration of mRNA strands.

The first four reactions in Table 1 represent the dimeriza-

tion of the protein, the binding of the dimer to the upstream

regulatory site, and their reverse processes. Reactions 5–7

represent transcription and translation, while the last two

reactions are the degradation of the protein monomers and

the mRNA. Reactions 1–4 typically occur at a much faster

timescale than reactions 5–9.

From the reactions given in Table 1, we can write down a

system of differential equations that represent the time

evolution of the average concentration of each species. These

equations are

_x ¼ 2k�y� 2k1x
2
1 sm� gpx (1)

_y ¼ k1 x
2 � k�y 1 k�dr � k1d0y (2)

_d0 ¼ k�dr � k1yd0 (3)

_dr ¼ k1 yd0 � k�dr (4)

_m ¼ ad0 1 bdr � gmm; (5)

where k6 and k6 are the binding and dissociation rates of the

proteins to themselves and the promoter site, respectively; gp

and gm are the degradation rates of the protein monomers

and mRNA, respectively; s is the rate of translation; and

a and b are the transcription rates from DNA with unbound

and bound promoter sites, respectively. Equations 1–5 rep-

resent a complete description (in the thermodynamic limit) of

the reactions given in Table 1. However, because the system

is five-dimensional (and nonlinear), analysis is difficult. To

get around this, previous studies have taken advantage of the

differences in timescales. Recall that the dimerization and

regulatory binding processes are fast compared to translation,

transcription, and degradation. Equations 2–4 are dependent

only on these reactions, and so will come to equilibrium

faster than their slower counterparts, Eqs. 1 and 5. If we set

the left-hand sides of Eqs. 2–4 equal to zero, and define

d ¼ d0 1 dr (here, d is the constant concentration of the

gene), then we can solve for the steady-state values of y, d0,

and dr in terms of x, with result

y ¼ cpx
2

(6)

d0 ¼ dð1 1 cpcdx
2Þ�1

(7)

dr ¼ dcpcdx
2ð1 1 cpcdx

2Þ�1
; (8)

where cp ¼ k1/k– and cd ¼ k1/k–. These steady-state values

can now be placed into the ‘‘slow’’ equations, Eqs. 1 and 5,

giving us the reduced system

_x ¼ sm� gpx (9)

_m ¼ d

1 1 cpcdx
2½a 1 bcpcdx

2� � gmm: (10)

While Eqs. 9 and 10 correctly predict the steady-state as-

ymptotics of the system, they do a poor job in predicting the

transient dynamics of the system.

The problem with this method of reduction is in treating x
as a slow variable. It is true that _x depends on slow reactions

(namely translation and degradation), but it also depends on

two fast reactions (dimerization and dissociation). Therefore,

x is not a slow variable, but a mixture of both slow and fast.

While rigorous multiple timescale analysis is possible for

systems such as these, it is not always necessary. In many

cases, the variables can be transformed into ‘‘slow’’ and ‘‘fast’’

variables, so that the differential equations for the transformed

variables contain either slow or fast reaction terms, but not

both. Note that this does not imply that there are only two

FIGURE 1 A schematic of the genetic positive feedback loop. The protein

monomers (A) bind into dimers (B) that subsequently bind to the upstream

regulatory site (C), activating production of the monomer.

TABLE 1 Reactions in the genetic positive feedback network

Number Reaction

1 x 1 x �!kþ y

2 y �!k� x 1 x

3 y 1 d0 �!kþ dr

4 dr �!k� y 1 d0

5 d0 �!a d0 1 m

6 dr �!b dr 1 m

7 m �!s m 1 x

8 x �!gp

Ø

9 m �!gm
Ø
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timescales in the problem, since there are typically many

timescales involved in such networks. Instead, by ‘‘slow’’

and ‘‘fast’’ we mean a partitioning of all timescales into two

sets that are separated by at least an order of magnitude.

When this occurs, the classic QSSA can be applied to the

transformed system. Afterwards, the system must be trans-

formed back into the original variables. For systems in which

suitable transformations are not forthcoming, we provide in

the Appendix a rigorous reduction scheme for a class of gene

networks.

For the positive feedback loop in question, we can make

the proper transformation by noting that both dimerization

and dissociation keep the total number of protein molecules

constant, while translation and degradation do not. There-

fore, we can track the truly slow variable nx ¼ x 1 2y 1 2dr,

representing the total concentration of protein molecules (in

any form), and write

_nx ¼ sm� gpx: (11)

The dynamical equation for x can be obtained from the

transformation

nx � x 1 2cpx
2
1 2cpcdd

x
2

1 1 cpcdx
2; (12)

and therefore

_nx ¼ _x
@nx

@x
¼ _xpðxÞ; (13)

where

pðxÞ ¼ 1 1 4cpx 1
4cpcddx

ð1 1 cpcdx2Þ2
: (14)

Combining Eq. 11 with Eq. 14, we arrive at a new system of

equations for the time evolution of x and m, namely,

pðxÞ _x ¼ sm� gpx; (15)

_m ¼ d

1 1 cpcdx
2½a 1 bcpcdx

2� � gmm: (16)

Because p(x) is a prefactor to the time derivative of x, any

fixed point of the previous system (Eqs. 9 and 10) will also

be a fixed point of the corrected system (Eqs. 15 and 16).

Additionally, Eq. 14 implies p(x) $ 1 when x is nonnegative,

meaning that if both systems are attracted to the same fixed

point the corrected system will necessarily relax to the fixed

point slower than the old system—a fact noted by Pirone and

Elston (15), when they examined the consequences of the

prefactor to models of constitutively produced proteins.

Fig. 2 shows the dynamics of the protein monomer

number in both the QSSA (dashed curve) and corrected

version with the prefactor (dash-dot curve). Also shown is

the result of integrating the full system, without any dimen-

sional reduction (solid curve). The reduced system with the

prefactor does a much better job in predicting the correct

timescale over which the system relaxes to the fixed point.

Furthermore, the prefactor method estimates the relaxation

time of the positive feedback loop throughout a wider range

of parameter values more accurately than does the QSSA.

Let t1/2 be the time it takes the system to go from a zero

concentration of proteins and mRNAs to the time at which

the monomer concentration comes to one-half its steady-

state value. Fig. 3 shows a comparison of the values of t1/2

for the QSSA (dashed curve), prefactor method (solid
curve), and the nonreduced system (circles) for a range of

monomer degradation rates, gp. The prefactor method pre-

dicts t1/2 more accurately than does the QSSA. Note that t1/2

is not a monotonic function of the degradation rate. This is

FIGURE 2 A comparison between the QSSA (dashed curve) and the

ODE system with the prefactor correction (dash-dot curve) for a positive

feedback gene network. Also shown (solid curve) is the nonreduced system

of ODEs, Eqs. 1–5. Here k1 ¼ k1 ¼ 50, k– ¼ k– ¼ 1000, a ¼ 1, b ¼ 10,

s ¼ 3, gp ¼ 1, gm ¼ 6, and nc ¼ 20. The initial conditions are x(0) ¼ 10,

x2(0) ¼ 0, m(0) ¼ 0, and d0(0) ¼ d.

FIGURE 3 The relaxation times (t1/2) as a function of gp for the QSSA

(dashed curve), prefactor method (solid curve), and the nonreduced system

(circles). Note that the values of t1/2 predicted by the prefactor method are

nearly identical with the true values obtained from the nonreduced system.

Here k1¼ k1¼ 50, k–¼ k–¼ 1000, a¼ 1, b¼ 10, s ¼ 3, gm¼ 6, and d¼
20. The initial conditions are x(0) ¼ 0, x2(0) ¼ 0, m(0) ¼ 0, and d0(0) ¼ d.
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due to our definition of t1/2, and the existence of nonlinear

positive feedback in the system. As the degradation rate is

changed, so too is the position of the closest stable fixed

point relative to our choice of initial conditions. Furthermore,

because the relaxation is nonlinear, a true ‘‘half-life’’ for the

relaxation can only be obtained very near the fixed points,

making alternative measures of the relaxation necessary.

The repressilator

The correct estimation of the transient dynamics of genetic

feedback loops may be of little consequence, since in most

cases we are only concerned with the final state of the sys-

tem. However, for such systems as oscillators, the final state

will not be a stable fixed point. If accurate estimation of the

timescales of the oscillations (i.e., periods) is desired, we

cannot use the QSSA, since it incorrectly predicts these. To

examine this issue, let us do another example, that of the

repressilator system (8,16), as shown in Fig. 4. The repressilator

is a three-element gene network based on a ring architecture

in which each of the elements represses the next one down

the line. In other words, gene G1 (after transcription and

translation of the resulting mRNA) produces protein x1,

which upon dimerization inhibits transcription of gene G2.

Similarly, the protein dimer y2 represses the gene G3, whose

protein product, y3, represses transcription of G1.

The reactions of the repressilator are shown in Table 2.

The first two equations represent the dimerization and

dissociation of the protein monomers (xi) and dimers (yi).

Reactions 3 and 4 are the binding and dissociation of the

protein dimers to/from the free (d0,i) and repressed (dr,i)

promoter sites. If the promoter of gene Gi is free (unre-

pressed) it can transcribe its associated mRNA (mi), which in

turn can translate its associated protein (reactions 5 and 6).

Furthermore, the protein monomers and mRNAs will

degrade with time (reactions 7 and 8).

As before, we can use the reactions given in Table 2 to

write a system of ODEs that represent the average concen-

trations of each species in the thermodynamic limit. These

equations are

_xi ¼ �2k1x
2

i 1 2k�yi 1 smi � gpxi (17)

_yi ¼ k1x
2

i � k�yi � k1 yid0;j 1 k�dr;j (18)

_d0;i ¼ �k1ykd0;i 1 k�dr;i (19)

_dr;i ¼ k1ykd0;i � k�dr;i (20)

_mi ¼ ad0;i � gmmi; (21)

where i 2 f1, 2, 3g, j 2 f2, 3, 1g, and k 2 f3, 1, 2g.
As with the feedback system, we assume that dimerization

and dissociation of the proteins (to themselves and the

promoters) are fast compared to the other processes. If we

take these reactions to be in equilibrium, we find that

yi ¼ cpx
2

i (22)

and

d0;i ¼ df1 1 cdcpx
2

kg
�1
; (23)

where d ¼ d0,i 1 dr,i is the same constant concentration of

each gene, cp ¼ k1/k– and cd ¼ k1/k–. Since all the terms in

Eq. 21 are slow, we can plug Eq. 23 into it to get

_mi ¼
ad

1 1 cdcpx
2

k

� gmmi: (24)

Also, the total concentration of each protein is well

approximated by

ni ¼ xi 1 2yi 1 2dr;j; (25)

� xi 1 2cpx
2

i 1 2cdcpdx
2

i f1 1 cdcpx
2

i g
�1
: (26)

The dynamics of ni are governed by translation and

monomer degradation, giving us

_ni ¼ smi � gpxi: (27)

Using Eq. 25, we can write

_ni ¼ _xi

@ni

@xi

¼ _xipðxiÞ; (28)

FIGURE 4 A schematic of the repressilator system. Gene G1 produces

protein x1, which upon dimerization inhibits transcription of gene G2.

Similarly, the protein dimer y2 represses the gene G3, whose protein product,

y3, represses transcription of G1.

TABLE 2 Reactions in the repressilator; here i 2 f1, 2, 3g
while k 2 f3, 1, 2g

Number Reaction

1 xi 1 xi �!kþ yi

2 yi �!k� xi 1 xi

3 d0,i 1 yk �!kþ dr,i

4 dr,i �!k� d0,i 1 yk

5 d0,i �!a d0,i 1 mi

6 mi �!s mi 1 xi

7 xi �!gp

Ø

8 mi �!gm
Ø
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where

pðxiÞ ¼ 1 1 4cpxi 1
4cdcpdxi

ð1 1 cdcpx
2

i Þ
2: (29)

If we use the rescalings gmt / t,
ffiffiffiffiffiffiffiffiffi
cdcp
p

xi/xi, and

ðs ffiffiffiffiffiffiffiffiffi
cdcp
p Þ=ðgmbÞmi/mi, then we obtain the system

pðxiÞ _xi ¼ �bðxi � miÞ; (30)

_mi ¼
kd9

1 1 x
2

k

� mi; (31)

where b ¼ gp/gm, k ¼ as/gmgp, d9 ¼ ffiffiffiffiffiffiffiffiffi
cdcp
p

d and the

overdot now represents differentiation with respect to the

rescaled time. When suitably rescaled, the prefactor reads

pðxiÞ ¼ 1 1 4rxi 1
4d9xi

ð1 1 x2

i Þ
2; (32)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffi
cp=cd

p
. Qualitatively, the parameter r is related

to the equilibrium ratios of dimers to monomers and un-

bound to bound promoter sites. If the ratio of unbound to

bound promoter sites is near unity, then r is of the order of

the ratio of dimers to monomers. Specifically,

r ¼ �y

�x

ffiffiffiffiffi
�d0

�dr

s
; ð33Þ

where the overbar represents quasi-equilibrium values, and

the indices are suppressed due to symmetry.

When the prefactor, p(xi), is set to unity, Eqs. 30 and 31

are exactly the equations produced by the QSSA for the

repressilator system (8). Both sets of equations still have

regions of stable limit cycles, but the prefactor version more

accurately reproduces the full dynamics of the system. This

can be seen in Fig. 5. Fig. 5 a shows the results of a simu-

lation of the full, unreduced equations, Eqs. 34–37, while

Fig. 5, b and c, are from the QSSA and the prefactor method,

respectively. Notice that the prefactor method does a much

better job in estimating both the period and the amplitude of

the oscillations. This can also be seen in Fig. 6, a and b,

which show the period and amplitude of each of the three

systems as a function of gp.

To guide experiments, it is necessary to estimate the

regions in parameter space where one should expect stable

limit cycles. The prefactor, Eq. 32, contains the parameter

r which does not appear in the QSSA and as the value of r is

changed (which amounts to changing the ratio of cd to cp

while keeping their product fixed), the bifurcation curve

separating stable fixed points from stable limit cycles (in k–b

space) changes. This is shown in Fig. 7 a. The solid line

represents the bifurcation between stable fixed points (to the

left of the curve) and stable limit cycles (to the right of the

FIGURE 5 An example of the oscillations seen in the repressilator system

for (a) the unreduced equations, Eqs. 34–37, (b) the QSSA—i.e., Eqs. 30 and

31 with p(xi) ¼ 1, and (c) the prefactor method approximation, Eqs. 30 and

31. Here gp ¼ 6, gm ¼ 1, k1 ¼ k1 ¼ 5, k– ¼ k– ¼ 100, a ¼ 10, s ¼ 20,

and d ¼ 20. The initial conditions were xi ¼ 10, yi ¼ 0, di ¼ d, and mi ¼ 0.

FIGURE 6 A comparison of the period (a) and amplitude (b) of the

oscillations as a function of the protein degradation rate in the repressilator

for the unreduced equations (black curves), the prefactor method (circles),

and the QSSA (dashed curves). Here, we calculate the amplitude by

max(x1) – min(x1) on the limit cycle. The parameters for these figures are the

same as those in Fig. 5.
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curve) according to the QSSA. As long as the product cdcp

remains fixed, the bifurcation curve will not change, no

matter what the ratio is. This is in contrast to the predictions

of the prefactor method. While keeping all the parameters the

same as in the QSSA, we change the parameter r to see how

the bifurcation curve changes. The colored curves in Fig. 7 a
represent the bifurcation curve for r ¼ 10 (dash-dot), r ¼ 1

(dotted), and r ¼ 0.1 (dashed). As r / 0, the prefactor ap-

proximation approaches the QSSA, and as r increases, there

is a significant divergence between the regions in parameter

space in which stable limit cycles are present for the two

methods. Because the timescales of the full system are more

accurately predicted with the prefactor method, it does a

better job in estimating the region of oscillations than does

the QSSA.

To compare these results with the full model, we rescale

the additional variables that do not appear in the reduced

systems. If we use the same rescalings as before, the

dimensionless form the full system for repressilator becomes

_xi ¼ �2mðx2

i � yiÞ1 bðmi � xiÞ (34)

_yi ¼ mðx2

i � yiÞr�1 � nr
�2ðyid0;j 1 d0;j � d9Þ (35)

_d0;i ¼ �nr
�1ðykd0;i 1 d0;i � d9Þ (36)

_mi ¼ kdi � mi; (37)

where we have used the additional rescalings cdyi / yi,

d0;i
ffiffiffiffiffiffiffiffiffi
cdcp
p

/d0;i, and we have introduced the new parameters

n ¼ k–/gm, m ¼ k–/gm. When m and n are sufficiently large,

we expect the properly reduced system (with prefactors) to

faithfully reproduce the dynamics of the full system. We find

that when m ¼ n*104 (corresponding to dissociation rates

that are much larger than the mRNA degradation rate), the

prefactor method accurately predicts the bifurcation bound-

ary. As m ¼ n decreases, the shape of the boundary changes

in a nontrivial way, as shown in Fig. 7 b. Here the solid line

represents the prediction of the prefactor method for r ¼ 10.

Also shown are three boundaries of the full system for

several different values of m ¼ n.

When m ¼ n is large enough, it becomes possible to

predict the onset of the instability leading to the limit cycle.

The system of equations, Eqs. 30 and 31, always has a sym-

metric equilibrium S ¼ ðxi;miÞ ¼ ð�x;�xÞ parameterized by

�x ¼ �xðkd9Þ, which is the unique real solution of the equation

�x 1 �x
3 ¼ kd9: (38)

Bifurcation analysis of this steady state reveals that S
becomes unstable through a supercritical Hopf bifurcation,

thus giving rise to a stable limit cycle. The threshold of the

instability and the frequency vH of an unstable mode may be

found from the characteristic equation, which is a sixth-order

FIGURE 7 Comparison of the parameter space for

each model. (a) Bifurcation diagram for the repressi-

lator. The solid line represents the bifurcation curve of

the QSSA between stable fixed points (to the left of the

curve) and stable limit cycles (to the right of the curve).

The remaining curves are the same bifurcation curves

for the prefactor method with r ¼ 10 (dash-dot), r ¼
1 (dotted), and r ¼ 0.1 (dashed). For each of the

prefactor curves the parameters are such that, while r

differs, the corresponding parameters for the QSSA are

the same. The curves for the full system virtually

coincide with the curves for prefactor model (m ¼ n ¼
104) and are not shown for clarity. For all curves, d9 ¼
1. (b) Comparison of the Hopf curves for the prefactor

model with the results for the full system for different

values of m ¼ n. The difference becomes significant as

m and n are decreased and the assumption of the sep-

aration of timescales breaks down. All curves are for

r¼ 10 and d9¼ 1. For smaller values of r and/or d9, the

instability threshold predicted with the prefactor model

converges to the threshold for the full system at smaller

values of m (not shown). (c) Comparison of the Hopf

curves for the prefactor model computed numerically

for r ¼ 0.1 and r ¼ 10 (for d9 ¼ 1, solid lines) with the

asymptotic approximations (dashed lines), Eqs. 39 and

42. (d) The frequency of the unstable mode along the

threshold as a function of b. Circles and squares

correspond to numerical results for the full system (m¼
n ¼ 104) and for the prefactor method, respectively.

The solid line corresponds to the function vH specified

by Eq. 43. The dashed line predicted by QSSA sys-

tematically overestimates the frequency of the oscilla-

tory instability. All curves are for r ¼ 1 and d9 ¼ 1.
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polynomial for the eigenvalue l ¼ ivH. A neutral surface

Fðb; kd9;�x; rÞ ¼ 0 may be found in a closed form; however,

it is more instructive to consider particular limits when

kd9� 1 and either b� 1 or b� 1. Keeping only leading-

order contributions, we find

b� 1; b � 1

3ðkd9Þ2=3
1

4r

3ðkd9Þ1=3
; (39)

b� 1; b � 3ðkd9Þ2=3
1 12rkd9: (40)

In the case of the QSSA, the same distinguished limits are

described by similar expressions,

b� 1; b � 1

3ðkd9Þ2=3
; (41)

b� 1; b � 3ðkd9Þ2=3
: (42)

Notice that the boundaries for the prefactor method (Eqs. 39

and 40) both contain an extra term proportional to r that is

not in the boundaries of the QSSA (Eqs. 41 and 42). These

extra terms are responsible for the divergence of the prefactor

method from the QSSA seen in Fig. 7 a as r increases from

zero. Fig. 7 c shows the accuracy of the boundary estimates

for the prefactor method for two values of m ¼ n.

The Hopf frequency may be expressed in a compact form,

for both the prefactor method and the QSSA, with result

v
2

H ¼
QðBÞ

6
� B 1 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QðBÞ1 6B

p
; (43)

where Q(B) ¼ B2 1 8B 1 1 and B ¼ b=pð�xÞ. In the QSSA

case pð�xÞ ¼ 1, so B ¼ b. Since vH is the monotonously

increasing function of B (see Fig. 7 d) and B # b we

conclude that the prefactor method always predicts lower

frequencies at the threshold; the difference with the QSSA

method becomes more pronounced for larger values of

pð�xÞ and therefore for larger r and/or d9.

The phage l-switch

One important class of gene networks is the toggle switch

(17). These networks are designed to respond to an external

signal in such a way that they are either on (fully induced)

or off (no transcription). A quantitative understanding of

the dynamics of gene switches is a crucial first step toward

a modular description of gene regulation. In addition, the

ability to rapidly switch between multiple stable states is

important to the development of sophisticated cellular con-

trol schemes. Nonlinearities giving rise to two stable states

suggest the possibility of using these states as digital signals

to be processed in cellular-level computations (18,19). One

may eventually be able to produce systems in which se-

quences of such switching events are combined to control

gene expression in complex ways. In any such application,

the speed with which systems make transitions between their

stable states will act as a limiting factor on the timescales at

which cellular events may be controlled. With this in mind, it

becomes important that mathematical models of gene switches

correctly predict the timescales over which they travel from

one state to the other.

The genetic network of l-phage switches its host bacte-

rium from the dormant lysogenous state to the lytic growth

state in ;20 min (13,20). As shown in Fig. 8, it consists of

two promoters, PR and PRM, which share three operator sites,

OR1, OR2, and OR3. The product of the left promoter (PRM)

is the protein cI, which (upon dimerization) can bind to the

promoter sites. When cI is bound, its purpose is twofold.

First, it activates transcription of the left promoter, causing a

positive feedback loop. Second, it represses the right

promoter (PR), blocking its transcription. The system will

remain in this state until some external signal (such as UV

radiation) causes the rapid degradation of cI. This is done by

an activated form of the protein RecA, which cleaves cI

monomers, rendering them incapable of dimerizing. At this

point, the concentration of cI becomes low enough to free up

the promoter sites, releasing the PR so that it may produce

its protein, Cro. Cro can then bind to the promoter sites,

repressing the production of cI.

Transcription of repressor (cI) takes place when there is no

protein (of either type) bound to OR3. When repressor is

bound to OR2, the rate of repressor transcription is enhanced,

and Cro is transcribed only when OR3 is either vacant, or

has a Cro dimer bound to it. If either repressor or Cro is

bound to either OR1 or OR2, the production of Cro is halted.

For brevity, we omit the full derivation of the equations of

motion, and ignore the intermediate step of mRNA transla-

tion. This step can easily be put into the model, but it will not

affect the timescale analysis, or the prefactor. For a listing of

the relevant chemical reactions in the phage l-switch and a

derivation of the equations without the prefactor, we refer the

interested reader to Hasty et al. (4). Letting x and y represent

the concentrations of cI and Cro, the competition for operator

sites leads to deterministic rate equations of the form

ðMxx 1 MxyÞ _x ¼ mð1 1 x2
1 as1x

4Þ=Q� gxx; (44)

FIGURE 8 Genetic network diagram of the phage l switch. The left

promoter produces cI, which activates itself and represses the right promoter.

The right promoter produces Cro, which represses the left promoter. Both of

the proteins, cI and Cro, can bind to the three promoter sites once they have

dimerized.
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ðMyx 1 MyyÞ _y ¼ mryð1 1 y
2Þ=Q� gyy; (45)

where the 2 3 2 matrix M and Q are given by

Mij ¼ @jNi; i; j 2 fx; yg (46)

Nx ¼ x 1 2x
2½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=K2

p
1 mð1 1 3s2s1x

4

1 2s1x
2
1 2s1b4x

2
y

2
1 b5y

2Þ=Q� (47)

Ny ¼ y 1 2y
2½

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K3=K4

p
1 mð1 1 3b1b3y

4

1 2ðb1 1 b2Þy
2
1 b5x

2
1 b4s1x

4Þ=Q� (48)

Q ¼ 1 1 x
2
1 s1x

4
1 s1s2x

6
1 y

2

1 ðb1 1 b2Þy
4
1 b1b3y

6
1 s1b4x

4
y

2
1 b5x

2
y

2
; (49)

where m is the plasmid copy number, and we have rescaled

the concentrations by x=
ffiffiffiffiffiffiffiffiffiffiffi
K1K2

p
/x, and y=

ffiffiffiffiffiffiffiffiffiffiffi
K3K4

p
/y. The

equilibrium constants Ki are for cI dimerization and cI-OR1

binding (K1 and K2), and for cro dimerization and Cro-OR3

binding (K3 and K4), and the si and bi parameters describe

the relative probabilities for cI (si) and cro (bi) binding con-

figurations to OR1, OR2, and OR3. In the above equations,

the right-hand sides of Eqs. 44 and 45 describe the slow

reactions responsible for the changes in the total numbers

of proteins, and the Jacobian matrix M is made of partial

derivatives of Nx, y with respect to (x, y). Nx and Ny represent

the total concentrations of cI and Cro, taking into account the

monomeric, dimeric, and promoter site-bound dimer forms

of each protein. Because the dynamics of Nx and Ny are

affected only by the slow reactions of transcription and

degradation, they are computed under the assumption that

the fast reactions reach equilibrium. The matrix terms that

form the prefactors of Eqs. 44 and 45 describe the lumped

influence of the dynamics of the fast reactions on the

dynamics of slow reactions. When the prefactors are set to

unity (i.e., M¼ I), Eqs. 44 and 45 represent the QSSA of this

model.

Fig. 9 shows simulations of Eqs. 44 and 45, with and

without the prefactor. Before irradiation with UV light, cI is

in its high state, while the concentration of Cro is near zero.

At time t ¼ 0 the irradiation occurs, and the degradation rate

of cI is increased. Subsequently, the concentration of cI

becomes very low, while the concentration of Cro becomes

very high, beginning the lytic process in phage l. Notice that

the timescales over which the switch changes states is much

longer when the prefactor is included.

DISCUSSION

We have introduced a method for approximating and re-

ducing the full systems of ODEs for genetic regulatory

networks. Like the QSSA, the prefactor method simplifies

the analysis of such systems by reducing the number of

dimensions. Unlike the QSSA, however, the timescales of

the system are preserved. Timescale problems have long

been known to exist when using the QSSA to derive

Michaelis-Menten type reaction equations for enzyme kinetics

(21–24). It is not surprising, then, that timescale problems

arise when using the QSSA to derive reduced equations for

genetic regulatory networks.

The timescale problems can be overcome with the correct

use of timescale separation. While we have shown that a

rigorous approach can be derived, one based on multiple

timescale analysis, we have also shown that one can derive

prefactors by plugging the equilibrium values of the ‘‘fast’’

reactants into differential equations for the slow variables.

Generally, the slow variables are not the protein concentra-

tions, but instead are total concentrations of all versions of

the specific protein (free or bound into dimers or larger

complexes), since the total number of proteins in any form

is affected only by the slow reactions of translation and

degradation.

In general, the inclusion of the prefactors into the analysis

slows down the resulting dynamics of the reduced system.

Whereas standard QSSA generally has faster dynamics than

the nonreduced system, the prefactor method estimates the

timescales very accurately. This accuracy is of paramount

importance when modeling gene networks designed to ex-

hibit temporal dynamics (25). For instance, the time that it

takes for a genetic switch (26,27) to move from one stable

fixed point to another can have important consequences.

Furthermore, when designing genetic oscillators, it becomes

necessary to correctly predict the regions in parameter space

in which oscillations are expected. As we saw with the

repressilator, the prefactor method predicts these regions

more accurately than does the QSSA. In many cases, the

separation of timescales is the key to nontrivial behavior, and

correctly modeling such systems is therefore necessary.

It should be noted that in this article we have ignored the

stochastic fluctuations due to the intrinsic randomness of the

FIGURE 9 Dynamics of the phage l switch. Here, the parameters are

m ¼ 20, a ¼ 11, ry ¼ 62.92, s1 ¼ 2, s2 ¼ 0.8, b1 ¼ b2 ¼ b3 ¼ 0.08, b4 ¼
b5 ¼ 1, K1 ¼ K3 ¼ 5 3 107 M�1, K2 ¼ K4 ¼ 3.3 3 108 M�1, and

gy ¼ 0.03 min�1. For t , 0, gx¼ 0.03 min�1. At time t ¼ 0 the degradation

rate of cI is increased to gx ¼ 30 min�1, representing cleavage of cI by the

activated form of RecA due to an increase in UV radiation.
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underlying biochemical reactions (2,6,28). These fluctua-

tions can have profound effects on networks, and the time-

scales of their correlations may determine the nature of their

influence (29). A procedure similar to the one given above

that does include stochasticity involves the reduction of the

full multidimensional master equation onto a manifold of

slowly evolving variables (6,12). One can then derive corre-

sponding Langevin equations for protein concentrations that

will have similar prefactor terms to the ones derived here.

However, these equations ignore the stochasticity inherent in

the fast reactions. It is still an open question, then, how to

project a full system of Langevin equations (containing both

slow and fast reactions) onto a slow manifold while preserving

the stochastic effects of the fast reactions. We are planning to

address this issue in our future work.

APPENDIX: GENERAL METHOD OF TIMESCALE
ANALYSIS FOR GENE NETWORKS

While the procedures given above for reducing systems of ODEs for gene

regulatory networks are illustrative, a more rigorous approach may be

desired. To this end, we present in this Appendix a method based on multiple

timescale analysis (30) for projecting the full dynamics onto a slow manifold

for a general regulatory network.

Let us consider a general framework for a genetic regulatory network.

The notations for the components of the network are listed in Table A1. We

assume that the network consists of N genes each with a concentration di (i¼
1, . . ., N). These genes transcribe N corresponding mRNAs, denoted by mi.

The mRNAs, in turn, are translated at a rate si to produce ni protein

monomers, xi. Each protein can form an associated dimer, yi, with rates ki

and k –i for dimerization and dissociation, respectively. Accompanying each

gene is a promoter that may contain one or more binding sites to which the

protein dimers may bind, and thereby enhance or diminish the transcription

rate of the gene.

We assume that the promoter for the ith gene contains Mi binding sites

Oi
j (j ¼ 1, . . ., Mi) and any protein can bind to any of the Mi binding sites of

the ith promoter. We denote by di
j0 the concentration of unoccupied binding

sites Oi
j , and by di

jn the concentration of the binding sites Oi
j occupied by

nth protein. Note that the sum

+
N

n¼0

d
i

jn ¼ di (A1)

is the constant concentration of the ith gene. In what follows, if we refer to di
jn

we will be referring to bound promoter sites (n . 0) unless we explicitly

refer to di
j0 or unless it is used in a sum such as +N

n¼0
di

jn.

The transcription rate of the ith gene is ai, which is a function of the

current state of the promoter (i.e., which regulatory proteins are bound to

which promoter sites). In general, we can include this dependency by

making the transcription rates functions of the bound promoter site

concentrations, i.e., ai ¼ ai(Di), where Di is an Mi 3 N matrix with

elements di
jn. As written, ai(Di) can be thought of as the transcriptional rate

of the ith gene, averaged over each copy of that gene. In other words, we can

write

aiðDiÞ ¼ ÆaiðsiÞæsi; (A2)

where si ¼ fn1; n2; . . . ; nMi
g is an Mi-tuple of integers representing a

possible configuration of a gene, consisting of protein nk occupying the kth

promoter site, and Æ. . .æsi represents averaging over all ðN11ÞMi possible

states of the promoter. If nk ¼ 0, then that particular binding site is free. The

binding/dissociation rates of the proteins to the ith promoter are described by

two Mi 3 N matrices, Ki and K –i, with components ki
jn and k�i

jn , respectively.

We will assume that there is no cooperativity between the binding of the

proteins to the promoter sites, so that K6i is not a function of Di. This

assumption is made to simplify the analysis, but is not necessary. We also

include into the consideration protein-protein interactions: protein j may

play a role of protease for the protein i, with pij denoting the corresponding

degradation rate. Finally, both the protein monomers and the mRNA will

degrade at rates gp,i and gm,i, respectively. The chemical reactions occurring

in the network are listed in Table A2.

From the reactions given in Table A2 we can write down a system of

ODEs corresponding to the time evolution of the concentrations of each of

the chemical species. As a result, we obtain

_xi ¼ �2kix
2

i 1 2k�iyi � gp;ixi 1 sinimi � xi +
N

j¼1

pijxj (A3)

_yi ¼ kix
2

i � k�jyi 1 +
N

n¼1

+
Mn

j¼1

½�k
n

jid
n

j0yi 1 k
�n

ji d
n

ji� (A4)

_d
i

jn ¼ k
i

jnd
i

j0yn � k
�i

jn d
i

jn (A5)

TABLE A1 Notation for the generalized genetic network model

Symbol Description

di Gene concentrations.

xi Monomer concentrations.

yi Dimer concentrations.

mi mRNA concentrations.

si Translation rates.

gp,i Degradation rates of the monomers.

gm,i Degradation rates of the mRNA.

pij Rate at which protein i is degraded by protein j.

di
j0 Unoccupied binding site Oi

j.

Di Matrix of occupied binding site concentrations for the ith gene.

di
jn The jth, nth element of Di (binding site Oi

j occupied by protein n).

ni Number of protein molecules translated per one mRNA.

Oi
j Label for the jth binding site of the ith gene.

N Number of genes.

Mi Number of binding sites of the ith gene.

k6i Dimerization/dissociation rates of the proteins to/from

themselves.

ai Transcription rate of the ith gene.

K6i Rate matrix for the binding/dissociation of the dimers to the

promoter sites.

k6i
jn The jth, nth element of K6i (binding/dissociation rate of the nth

dimer to the jth binding site of the ith gene).

Hi The ratio ki/k–i.

Gi
jn The ratio ki

jn=k�i
jn .

TABLE A2 Reactions in the generalized genetic network model

Number Reaction Rate

1 xi 1 xi �!ki
yi kix

2
i

2 yi �!k�i
yi 1 yi k–iyi

3 xi �!gp;i

Ø gp, ixi

4 xi 1 xj �!pij

xj pijxixj

5 di �!ai
di 1 mi ai(Di)di

6 di
j0 1 yn �!ki

jn

di
jn ki

jndi
j0yn

7 di
jn �!k�i

jn

di
j0 1 yn k�i

jn di
jn

8 mi �!si
mi 1 nixi simi

9 mi �!gm;i
Ø gm,imi
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_d
i

j0 ¼ � +
N

n¼1

k
i

jnd
i

j0 yn 1 +
N

n¼1

k
�i

jn d
i

jn (A6)

_mi ¼ diaiðDiÞ � gm;imi: (A7)

Because of conservation of the total concentration of the genes, Eq. A6 can

be eliminated, and di
j0 replaced by di �+N

n¼1
di

jn, giving us

_xi ¼ �2kix
2

i 1 2k�iyi � gp;ixi 1 sinimi � xi +
N

j¼1

pijxj (A8)

_yi ¼ kix
2

i � k�jyi 1 +
N

n¼1

+
Mn

j¼1

�k
n

ji dn � +
N

l¼1

d
n

jl

� �
yi 1 k

�n

ji d
n

ji

� �
(A9)

_d
i

jn ¼ k
i

jn di � +
N

l¼1

d
i

jl

� �
yn � k

�i

jn d
i

jn (A10)

_mi ¼ diaiðDiÞ � gm;imi: (A11)

Among the reactions in Eqs. A8–A11, dimerization and protein binding/

dissociation reactions are usually fast, while transcription, translation, and

degradation are slow. This is not to say that there are only two timescales

present in the system. On the contrary, gene networks can possess a diverse

spectrum of timescales. However, these timescales can usually be par-

titioned into two classes—those that occur on fast timescales, and those that

are slow in comparison. When such a partitioning occurs, it becomes pos-

sible to characterize the ratio of the characteristic time constants of fast

and slow reactions by the small parameter e, and introduce scaled kinetic

constants for the slow reactions, g̃p;i ¼ e�1gp;i , ãi ¼ e�1ai , g̃m;i ¼ e�1gm;i,

s̃i ¼ e�1si, and p̃ij ¼ e�1pij. In the spirit of multiple timescale analysis we

introduce the fast and slow times t and T ¼ et, respectively. We assume that

all concentrations are functions of these two independent variables and

expand them in a power series in the small parameter, e,

z ¼ z
ð0Þ

1 ez
ð1Þ

1 e
2
z
ð2Þ

1 . . . ; (A12)

where z ¼ z(t, T) stands for variables xi, yi, di
j0, mi, and di

jn. We replace

the time derivatives in Eqs. A8–A11 by @/@t 1 e@/@T. Then, collecting

terms of equal power of e we obtain:

Oðe0Þ
@tx
ð0Þ
i ¼ �2ki½xð0Þi �

2
1 2k�iy

ð0Þ
i (A13)

@ty
ð0Þ
i ¼ ki½xð0Þi �

2 � k�iy
ð0Þ
i 1 +

N

n¼1

+
Mn

j¼1

�k
n

ji dn � +
N

l¼1

d
nð0Þ
jl

� �
y
ð0Þ
i

�

1 . . . . . . 1 k
�n

ji d
nð0Þ
ji

i
(A14)

@td
ið0Þ
jn ¼ ki

jn di � +
N

l¼1

dið0Þ
jl

� �
yð0Þn � k�i

jn dið0Þ
jn (A15)

@tm
ð0Þ
i ¼ 0 (A16)

Oðe1Þ
@tx
ð1Þ
i 1 4kix

ð1Þ
i x

ð0Þ
i � 2k�iy

ð1Þ
i ¼ �@Tx

ð0Þ
i � g̃p;ix

ð0Þ
i

1 s̃inim
ð0Þ
i � x

ð0Þ
i +

N

j¼1

p̃ijx
ð0Þ
j

(A17)

@ty
ð1Þ
i � 2kix

ð0Þ
i x

ð1Þ
i 1 k�iy

ð1Þ
i � . . .

. . .� +
N

n¼1

+
Mn

j¼1

kn

ji +
N

l¼1

ðdnð0Þ
jl yð1Þi 1 dnð1Þ

jl yð0Þi Þ1 k�n

ji dnð1Þ
ji

� �
¼ �@Tyð0Þi

(A18)

@td
ið1Þ
jn 1 ki

jn +
N

l¼1

ðdið0Þ
jl yð1Þn 1 dið1Þ

jl yð0Þn Þ1 k�i

jn dið1Þ
jn ¼ �@Tdið0Þ

jn

(A19)

@tm
ð1Þ
i ¼ �@Tm

ð0Þ
i 1 diãiðDð0Þi Þ � g̃m;im

ð0Þ
i ; (A20)

etc.

We assume that for large times, t � 1, the solution of Eqs. A13–A16

reaches local equilibrium found from the set of algebraic equations

y
ð0Þ
i ¼ Hi½xð0Þi �

2
(A21)

d
ið0Þ
jn ¼ G

i

jn di � +
N

l¼1

d
ið0Þ
jl

� �
y
ð0Þ
n ; (A22)

where Hi ¼ ki/k –i and Gi
jn ¼ ki

jn=ki
�jn.

To avoid secular growth of the first-order corrections, the right-hand side

of the system, Eqs. A17–A20, must be orthogonal to the nullspace of the

corresponding adjoint linear operator. At large time t the time derivatives in

the left-hand side of Eqs. A17–A20 can be discarded, and the adjoint linear

operator becomes a matrix. Its nullspace contains 2N eigenvectors,

fxi ¼ 0; yi ¼ 0; d
i

jn ¼ 0; mi ¼ dii9g;
fxi ¼ dii9; yi ¼ 2dii9; d

i

jn ¼ 2dii9; mi ¼ 0g; (A23)

where dij is the Krönecker delta function and i9 ¼ 1. . .N. The orthogonality

conditions yield the equations

@T xi 1 2Hix
2

i 1 2 +
Mi

j¼1

+
N

n¼1

d
n

ji

" #
¼ s̃inimi � g̃p;ixi � . . .

. . .� xi +
N

j¼1

p̃ijxj; (A24)

@Tmi ¼ diãiðDiÞ � g̃m;imi; (A25)

where we have dropped the superscript (0) from the zero order variables.

The concentrations di
jn for each binding site j have to be found from

the algebraic system, Eqs. A21 and A22. These concentrations can be

found explicitly,

d
i

jn ¼
diG

i

jnHnx
2

n

1 1 +
N

l¼1
Gi

jlHlx
2

l

: (A26)

Next, we must find an expression for ãiðDiÞ. If we assume noncooperativity,

then the probabilities of being in each state of the promoter are completely

independent of one another. Therefore, we can rewrite Eq. A2 as

ãiðDiÞ ¼ +
si

ãiðsiÞPiðsiÞ ¼ +
si

ãiðsiÞd�Mi

i

YMi

j¼1

di

jnj

( )
; (A27)

where Pi(si) is the probability that the ith promoter is in the state si. Next we

note that from Eqs. A1 and A26 we can derive the relation

d
i

j0 ¼
di

1 1 +
N

l¼1
G

i

jlHlx
2

l

: (A28)
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Furthermore, if we define Gi
j0H0x2

0 ¼ 1, then we can write

d
i

jn ¼
diG

i

jnHnx
2

n

+
N

l¼0
G

i

jlHlx
2

l

: (A29)

Note that Eq. A29 is equivalent to Eq. A26, but only Eq. A29 is valid for

n ¼ 0. Therefore

ãiðDiÞ ¼ +
si

ãðsiÞ
YMi

j¼1

G
i

jnj
Hnj

x
2

nj

+
N

l¼0
G

i

jlHlx
2

l

( )
: (A30)

Plugging Eqs. A29 and A30 into Eqs. A24 and A25, we arrive at the set of

2N equations with the prefactors:

1 1 4Hixi 1 4Hixi +
Mi

j¼1

+
N

n¼1

dnG
n

ji

+
N

l¼0
G

n

jlHlx
2

l

 !
@Txi � . . .

. . .� 4Hix
2

i +
Mi

j¼1

+
N

n¼1

+
N

q¼1

dnG
n

jiG
n

jqHqxq@Txq

ð+N

l¼0
Gn

jlHlx
2

l Þ
2

. . .

. . . ¼ s̃inimi � g̃p;ixi � xi +
N

j¼1

p̃ijxj (A31)

@Tmi ¼ di +
si

ãiðsiÞ
YMi

j¼1

G
i

jnj
Hnj

x
2

nj

+
N

l¼0
G

n

jlHlx
2

l

( )
� g̃m;imi: (A32)

Although the above derivation is applicable to a large class of gene

regulatory networks, it is by no means comprehensive. There are many

systems to which Eqs. A31 and A32 do not apply. For instance, some

regulatory proteins, like LacI, bind to promoter sites as tetramers, and not

dimers (31,32). Furthermore, phenomena such as cooperative binding to

promoter sites (33,34), enzymatic degradation (35,36), the formation of mul-

timeric and hybrid protein complexes (37), and cellular growth and division

(38) are not included in the model. For such cases, it is easy to rederive the

equations to suit the particular needs of the model.

For an example of how to use Eqs. A31 and A32, let us once again derive

the reduced equations for the repressilator, Eqs. 30 and 31. First there are

N ¼ 3 genes, each with Mi ¼ 1 promoter sites and the same concentration

di ¼ d. Each protein has the same affinity to its dimer, so Hi ¼ cp, and there

are no protein-protein degradation reactions (pij ¼ 0). Each dimer acts as a

repressor for one of the other genes, in a ring fashion. The equilibrium

constant, cd, of the dimers to their associated promoter sites is the same for

each, and since Mi ¼ 1 for each gene we can write Gn
ji ¼ Gin, where

G ¼
0 cp 0

0 0 cp

cp 0 0

2
4

3
5: (A33)

Next, we must assign values to the transcriptional rates, ãiðsiÞ. Since each

gene has only one promoter site, and each promoter site can bind to only one

dimer, the state vector turns out to be a scalar that can take on only two

values, either zero (meaning no dimer is bound) or an integer n 2 f1, 2, 3g
representing the index of the allowed repressor dimer. We are assuming

complete repression, so that ã has a nonzero value only when it is free.

Therefore we can write ãiðsiÞ ¼ adsi ;0. Furthermore, we set s̃i ¼ s, ni ¼ 1,

g̃p;i ¼ gp, and g̃m;i ¼ gm.

When we plug the above definitions into Eqs. A31 and A32 we arrive

at the correct reduced equations for the repressilator. For instance, for x1

and m1 we get

1 1 4cdx1 1
4nccdcpx1

ð1 1 cdcpx2

1Þ
2

( )
_x1 ¼ sm1 � gpx1; (A34)

_m1 ¼
da

1 1 cdcpx
2

3

� gmm1: (A35)

Analogous equations can be obtained for the other variables. When these

equations are rescaled to dimensionless variables, they coincide with Eqs. 30

and 31.
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