Using LLVM For Program
Transformation

O

Research project at UIUC
Modular compiler tool chain

Integrated in many open source and commercial
projects

Licensed under an open-source license

Introduction

O

Components of LLVM

Mid-level compiler Intermediate c Cas
Representation (IR)
C/C++ compiler frontend (clang)

Target-specific (X86, ARM, etc) code

Other
frontend
generators
Divide between ‘clang’ and ‘LLVM’ @

Clang is a C/C++ compiler with an SSA

LLVM backend DCE
. ‘ L] , P

LLVM is ‘everything else B e .

Code
generation

11 talk about existing LLVM tools

11 do a few demos using those tools

11 talk about how to build tools on top of LLVM
11 build two analysis tools

1l look at a program re-writing tool

clang — C language frontend, translates C into
LLVM bitcode

opt — Analyze and transform LLVM bitcode

llc — Code generator for LLVM bitcode to native
code

v U »n Wn

clang —c —emit-llvm —o test.bc test.c
opt —01 —0 test.bc test.bc
llc —0 test.s test.bc

gcc —o0 test test.s

Lab: What just happened?

 Full translation of C program to executable program

» At each stage we can look at what the compiler
infrastructure is doing
C to un-optimized bitcode
Optimized bitcode
Machine code
Executable

» Very good blog post on the life of an LLVM
instruction
http://eli.thegreenplace.net/2012/11/24/life-of-an-
instruction-in-llvim/

LLVM Intermediate
Representation

O

Lab: Find Non-Constant Format String

» Condition to check for:

Any time the first parameter to printf, sprintf (others?) is non-
constant, alert for potential security badness

» Can we statically detect this in LLVM IR?

Visit every call instruction in the program

Ask if that call instruction is a format-string
accepting routine

If it is, retrieve the first parameter

If the first parameter is not a constant global, raise
an alert

Very basic driver that uses a PassManager

Reads in LLVM bitcode and runs the VarPrintf pass
on it

Produce bitcode file using clang —c —emit-11lvm

Using the driver might seem clunky, this is easier
than integrating with opt

The pass can later be integrated with opt

v U n N N

cd tutorial

mkdir build

cd build

cmake —DLLVM ROOT=/usr/local
make

CMake is a “meta make”
Why? Why not
CMake generates your build environment
Makefiles
XCode solution
Visual Studio solution
CMake has its own build specification system for
describing building code

It might be saner than what you are used to

LLVM can be built with cmake or automake/
autoconf

Language allows for expression of computation
Instructions produce unique values

Collection of statements:
$5 = add nsw 132 %3, %4
3N — a value
add — a binary instruction

nsw — no signed wrap

The language is Static Single Assignment (SSA)
Values defined by statements are never re-defined

Module

GlobalVariable

Function

BasicBlock

Instruction

« A compilation unit is a Module, contains functions
A function is a Function, contains basic blocks

 An instruction is an Instruction

A basic block is a BasicBlock, contains instructions

Instructions can contain operands, each is a Value
All of the above, except Module, is a Value

No implicit casting in LLVM IR, all values must be
explicitly converted

All values have a static type

Integers are specified at arbitrary bitwidth
11, 12, 13, ..., 132, ... 1398

Floating point types

Derived types specify arrays, vectors, functions
pointers, structures

Structures have types like {132, i32, i8}
Pointers have types like “pointer to i32”

There are no signed or unsigned integers
LLVM views integers as bit vectors

Frontends destroyed signed /unsigned information

Really, C programmers destroyed signed/unsigned
information...

Research prototypes exist that analyze integer
wrapping in LLVM IR (
http://code.google.com/p/wrapped-intervals/)
Operations are interpreted as signed or unsigned
based on instructions they are used in

» LLVM has a low level view of memory
Just a key -> value map
Keys are pointer values
Values stored in LLVM memory must be integers, floating
point, pointers, vectors, structures, or arrays
» LLVM has a concept of creating function-local
memory via alloca

Highest level concept

Contains a set of global values

Global variables
Functions

Name

Argument list
Return type
Calling convention

Extends from GlobalValue, has properties of
linkage visibility

Contains a list of Instructions
All BasicBlocks must end in a TerminatorInst

BasicBlocks descend from values, and are used as
values in branching instructions

Terminator instructions
Binary instructions

Bitwise instructions
Aggregate instructions
Memory instructions

Type conversion instructions
Control and misc instructions

Language By Example

O

Produced with opt —dot-cfg —o fib.bc fib.bc and graphviz

P60
%01 = icmp ult 132 %n, 2
bril %1, label %8. label %2

T F

\

Y02
. %3 = add 132 %n. -1
“o- %4 = tail call i32 @fib(i32 %3)
rot 133 %n %5 = add i32 %n. -2
¢ %6 = tail call i32 @fib(i32 %5)

%7 = add 132 %6, %4
ret 132 %7

CFG for 'fib' function

Language By Example, Part 2

T60:
%% 1 = 1icmp eq %estruct._Foo* 90k, null
bril 91, label % ._crit_edge, label % .Ir.ph

T F

|

Ir.ph:

Y0108 =ph1 132 | %2. % . Irph |. [1, %0 |
Joacc 07 =phi1 132 | %7, Yo Ir.ph |, [O, %0 |
Jocur. 06 = phi %struct._Foo* [%9, % Ir.ph |. | %k, %0]

%2 = add nsw 132 9%1.08. 1

%3 = getelementptr inbounds Zestruct._Foo* 9cur.06, 164 0,132 1
04 = load 132%* %3, align 4

TS = shl 132 %4, 9%2

%6 = mul nsw 132 %5, %b

Y%7 = add nsw 132 %6, Yeacc.07

%8 = getelementptr inbounds Zestruct._Foo* 9%cur.06, 164 0,132 0
%9 = load %estruct._Foo** 98, align 8
%10 = 1icmp eq estruct._Foo* %9, null

br il %10, label 9% ._crit_edge. label 9% .Ir.ph

T F

._crit_edge:

Joacc.O.lcssa =ph1 132 [0, %0 |, | %7, %o .1r.ph |
ret 132 9pacc.0.lcssa

CFG for 'xform_all' function

LLVM contains a pass to promote variable-using
functions to value-using functions

Once transformed by this pass, an LLVM module is
in SSA form

Most LLVM analyses and transformations expect to
operate on an SSA IR

SSA allows for Def-Use and Use-Def chain analysis

Simple function

O

define i32 @foo(i32 %a, 132 %b) nounwind uwtable ssp {
entry:
.addr = alloca i32, align 4

oL
Q

$b.addr = alloca i32, align 4
%1 = alloca i32, align 4
%) = alloca i32, align 4

store i32 %a, i32* %a.addr, align 4
store 132 %b, 1i32* %$b.addr, align 4
%0 = load i32* %a.addr, align 4
store 132 %0, i32* %i, align 4

%1l = load i32* %b.addr, align 4
store i32 %1, i32* %j, align 4

$2 = load i32* %i, align 4

= load i32* %j, align 4

add = add nsw i32 %2, %3

addl = add nsw i32 %add, 1

ret i32 %addl

o o©°
w

oL

define 132 @foo(132 %a, 132 %b) nounwind
uwtable ssp {

entry:
%add = add nsw 132 %a, %b
%addl = add nsw 132 %add, 1
ret 132 %addl

To support conditional assignments, we introduce an
imaginary function

Phi defines a value and accepts a list of tuples as an
argument

Each tuple is a (BasicBlock * Value)

Interpret the phi node as defining a value
conditionally based on the previous basic block

int foo(int a, int b)
int r;

if(a > Db)

r = a;
else
r = b;

return r;

{

define i32 @foo(i32 %a, i32 %b) nounwind uwtable ssp {
entry:

%a.addr = alloca i32, align 4

%$b.addr alloca i32, align 4

$r = alloca i32, align 4

store i32 %a, i32* %a.addr, align 4

store i32 %b, i32* %b.addr, align 4

%0 = load i32* %a.addr, align 4

%1 = load i32* %b.addr, align 4

cmp = icmp sgt i32 %0, %1

br il %cmp, label %if.then, label %if.else

if.then:
%2 = load i32* %a.addr, align 4
store i32 %2, i32* %r, align 4
br label %if.end

if.else:
$3 = load i32* %b.addr, align 4
store i32 %3, i32* %r, align 4
br label %if.end

if.end:
%4 = load i32* %r, align 4
ret i32 %4

define 132 @foo(i32 %a, 132 %b) nounwind uwtable ssp
{

entry:
$cmp = icmp sgt 132 %a, %b
br i1 %cmp, label %if.then, label %$if.else

if.then: br label %if.end

if.else: br label %if.end

if.end: %r.0
$if.else]

ret 132 %r.0

}

phi 132 [%a, %if.then], [

o\°
Ul
-~

int aa(int a, int

int 1 = 0;

int k = 0;

while(k < b) {
1 += a;

}

return 1i;

b)

{

LLVM CFG
@

entry:
br label % while.cond

while.cond:

%1.0 = ph1 132 [0, %entry |, [%add, %while.body |
Jocmp = icmp slt 132 0, %b

br il %ecmp, label %while body, label %while.end

1 b F
while .body: : :
%add = add nsw 32 %i.0, %a “:;‘g;‘;’i .
br label %while.cond i

CFG for 'aa' function

An instruction so frequently misunderstood, it has
its own documentation page about how it is
misunderstood

Frequently abbreviated as GEP
GEP instructions compute offsets from pointer bases

Similar to ‘lea’ instructions in X86 assembler
GEP instructions are type aware

Asking for ‘the 5t field’ of a pointer to structure operand will
‘do the right thing’

» There are specific rules as to what constitutes “Well-
Formed” LLVM
Phi-nodes dominate their uses
Instruction arguments are defined before use
All blocks end in a terminator
All branch targets are defined values

» There is an automatic verification pass that will alert
when IR is not well formed

C++ API
O

Value has a very rich class hierarchy
LLVM API allows the manipulation of every Value
Any degree of transformation is possible

Value class hierarchy

livm::User

livm::BasicBlock

livm::Argument

(livm::Value

llvm::MDString)

livm::MDNode

livm::InlineAsm

livm::PseudoSourceValue

llvm::Instruction Y

livm::Constant
llvm::Operator

livm::FixedStackPseudoSourceVa
lue

livm::Returninst

(v Tormnatons Y
(v Unarynsicton §

livm::Branchinst
livm::Switchinst
livm::IndirectBrinst

livm::Invokelnst

\ livm::Unwindlinst
livm::Resumelnst

livm::Unreachablelnst

livm::Castinst

llvm::GetElementPtrinst -
livm::FPExtinst

livm::Allocalnst) %

livm::LoadlInst
llvm::VAArgInst
llvm::ExtractValuelnst

llvm::ICmplnst

livm::UIToFPlInst
livm::SIToFPInst

livm::InsertValuelnst lvm::FCmplnst

A\ :

livm::Intrinsiclnst

livm::BitCastInst

livm::Dbglnfolntrinsic §

livm::MemlIntrinsic
livm::EHExceptionlnst

livm::EHSelectorinst

livm::LandingPadInst
livm::GlobalValue @<
Ivm:-Constantint llvm::GlobalAlias

livm::ConstantPlaceHolder)

livm::GlobalVariable

livm::ConstantFP

livm::ConstantAggregateZero) llvm::UnaryConstantExpr >

llvm::ConstantArray llvm::BinaryConstantExpr

Ilvm:-ConstantStruct livm::SelectConstantExpr

{El £,

llvm::ConstantVector ;\:m::Extm. C X
_Ilvm::ConstantPoinlerNuII IvminsortElementConstantExp

llvm::BlockAddress /) r

llvm::ConstantExpr Irlvm::ShuffleVectorConstan(Exp
livm::UndefValue

livm::constant_iterator

~L JL " J

llvm::ExtractValueConstantExpr)

llvm::InsertValueConstantExpr)

llvm::OverflowingBinaryOperato
rvm verlowingEinaryper ||vm::GetEIementPtrConstantExp)

r

livm::PossiblyExactOperator)

livm::CompareConstantExpr)

livm::DbgDeclarelnst

livm::MemMovelnst

livm::MemTransferinst

Everything From Value

» Every item contained in a Module inherits from
Value

 This allows for some useful APIs
Def-Use / Use-Def iteration

Replace any Value with another Value
Sub

» Allows for classification
Instructions can be UnaryInstructions or BinaryInstructions
GlobalValues can be Functions or GlobalVariables

» Frequent argument to LLVM API functions

» These can normally be retrieved from a Value via
getContext
There is also a getGlobalContext

» The same LLVMContext should always be used
across code that interacts with the same Values

LLVM objects are created in a specific context and are unique
by pointer values

For example, type objects can be pointer-compared for
equality between types of different instructions

An evil C++ concept

If you have a function that accepts a parameter of an
abstract class and it could be one of any specific
implementations, how to choose?

“Normal” C++ methods
dynamic cast<T> and friends

Compiler stores information about object types off to
the side so that it can be used at run-time

» The LLVM codebase implements its own RTTI for
LLVM objects
When writing passes, you use LLVM specific helpers
isa<T> - True or false if pointer/reference is of type T
cast<T> - “Checked cast”, asserts on failure if not type T
dyn cast<T> -unchecked cast, null if not type T

» The project advises you not to use big chains of these
to approximate ‘match’ from ML

» Instead they give you a Visitor pattern (yay)
* You might find these insufficient (or distasteful)

» “Iterate over BasicBlock in a Function”
Use begin(), end() iterators of Function

» “Tterate over Instructions in a Function”

Use inst iterator

» “Tterate over Def-Use chains”

Use use begin, use end

Pattern to avoid giant blocks of

1f(T *n = dyn cast<T>(foo0))
Inherit from InstVisitor class and define a visitTInst
method

Could work for your purposes

Could contuse control flow even more

llvm-config - executable that will provide useful
info about the installed LLVM

Provide paths to headers, library files, etc

If LLVM is built with Cmake, it will add a
FindLLVM.cmake to your /usr/share

Compiling your code with —fno-rtti will probably be
required

If you compiled LLVM yourself, you can pass
LLVM_REQUIRES RTTI to cmake

Needed if combining boost and llvm

Passes and transformations

O

* In the previous lab, we wrote a ¢ || cn
pass

» Compiling is the act of passing @
over and analyzing/transforming
IR <

» Most things that happen in LLVM
happen in the context of a pass

DCE
Pass
Infrastructure

Code
generation

» Passes can have complicated
actions

» Passes can depend on the output of other passes
Analysis passes for alias analysis

» Passes note their dependencies on other passes
By overriding the getAnalysisUsage method

» PassManager figures out the dependency graph
It also attempts to optimize the traversal of the graph

» Each Pass returns a bool, PassManager runs until
everyone stops

PassManager performs dependency maintenance
Note that PassManager invocations could be multi-threaded!
Importance of multiple LLVMContexts

PassManager also performs optimizations of pass
ordering

PassManager defines different kinds of Passes that
can be run

ModulePass — Run on entire module
FunctionPass — Run on individual functions
BasicBlockpass — Run on individual basic blocks

Non-analysis passes should not ‘remember’ any
information about a function or basic block

Analysis passes should remember some information

Otherwise why run them

Transformation passes should be idempotent

If a variable is allocated on the local stack, a pointer
to that variable should not outlive the stack

This could happen if a pointer to a local is returned
or assigned to a global

clang currently includes a check for this, but the
check is kind of busted

Populate a set of values that escape the function via
return or store

Traverse the set checking for alloca-ed values in
the Values descending from the escapes

Driver is laid out similarly to before
Collection of tests are included

Projects built on LLVM

» Google AddressSanitizer/ThreadSanitizer
http://code.google.com/p/address-sanitizer/

» Utah Integer Overflow Checker
http://embed.cs.utah.edu/ioc/

* Emscripten, LLVM to Javascript
https://github.com/kripken/emscripten/wiki

» Dagger, decompilation from x86 to LLVM
http://llvim.org/devimtg/2013-04/bougacha-slides.pdf

poolalloc — field-sensitive, context-sensitive alias
analysis

11db — llvim debugger
klee — symbolic execution for LLVM

FreeBSD compiles with clang, soon will switch to
building exclusively with clang

LLVM enables powerful transformations

Includes an “industry grade” C/C++ frontend

clang is default compiler on OSX, supported by Apple
Can compile much of Linux userspace

Well defined Intermediate Language

Modular and pluggable framework for analysis and
transformation

» Good documentation online
http://www.llvm.org/docs

» Documentation covers many aspects of the LLVM
project
Programmers manual details finer points of the C++ API

Language reference is ultimate source for language details and
semantics

» Relatively responsive IRC channel on OFTC
» Active and responsive mailing list

