
Robust Boosting for Learning from Few Examples

Lior Wolf & Ian Martin
The Center for Biological and Computational Learning

The McGovern institute for brain research
Massachusetts Institute of Technology

Abstract

We present and analyze a novel regularization technique
based on enhancing our dataset with corrupted copies of
our original data. The motivation is that since the learning
algorithm lacks information about which parts of the data
are reliable, it has to make more robust classification func-
tions. Using this framework, we propose a simple addition
to the gentle boosting algorithm which enables it to work
with only a few examples. We test this new algorithm on a
variety of datasets and show convincing results.

1. Introduction
Boosting - the iterative combination of classifiers to build a
strong classifier - is a popular learning technique. The al-
gorithms based on it, such as AdaBoost and gentleBoost,
are easy to implement, work reasonably fast, and in general
produce classifiers with good generalization properties for
large enough datasets. If the dataset is not large enough and
there are many features, these algorithms tend to overfit and
perform much worse than the popular Support Vector Ma-
chine (SVM) algorithm. SVM can be successfully applied
to all datasets, from small to very large.

The major drawback of SVM is that it uses, at run time,
when classifying a new examplex, all the measurements
(features) ofx. This poses a problem because, while we
would like to cover many promising features during train-
ing, computing all the features at run-time might be too
costly. This is especially true for object detection problems
in vision, where we often need to search the whole image
in several scales over thousands of possible locations, each
location producing one such vectorx. While several ap-
proaches for combining feature selection with SVM have
been suggested in the past (e.g., [14]), they are rarely used.

The complexity of the feature vector can be controlled
more easily by using boosting techniques over weak classi-
fiers based on single features (e.g., regression stumps), such
as in the highly successful system of [13]. In this case, the
number of features used is bounded by the number of itera-
tions in the boosting process. However, since boosting tends
to overfit on small datasets, there is a bit of a dilemma here.

An ideal algorithm would enable good control over the to-
tal number of features, while being able to learn from only
a few examples. Such an algorithm is presented in Sec. 4.

This new algorithm is based on gentleBoost. Within it
we implemented a regularization technique based on a sim-
ple idea: add corrupted copies of your training dataset to the
original one, and the algorithm will not be able to overfit. A
general background on fitting and regularization is given in
the next Section.

2. Background

We are given a set ofn exampleszi = {(xi, yi)}n
i=1, x ∈

X , y ∈ Y drawn from a joint distributionP on X × Y.
The ultimate goal of the learning algorithm is to produce a
functionf : X → Y such that theexpected errorof f given
by the expressionE(x,y)∼P(f(x) 6= y) is minimized. The
boolean expression inside the parentheses evaluates to one
if it holds, zero otherwise.

Since we do not know the distributionP we are tempted
to minimize theempirical error given by

∑n
i=1(f(xi) 6=

yi). The problem is that if the space of functions from which
the learning algorithm selectsf is too large, we are at risk
of overfitting(learning to dealonly with the training error).
Therefore, while the empirical error is small, the expected
error is large. In other words, thegeneralization error(the
difference of empirical error from expected error) is large.
Overfitting can be avoided by using any one of severalreg-
ularizationtechniques.

Overfitting is usually the result of allowing too much
freedom in the selection of the functionf . Thus, the most
basic regularization technique is to limit the number of free
parameters we use while fitting the functionf . For exam-
ple, in binary classification we may limit ourselves to learn-
ing functions of the formf(x) = (h>x > 0) (we assume
X = <n. h is a vector of free parameters). Using such
functions, we reduce the risk of overfitting, but may never
optimally learn thetarget function(i.e., the “true function”
f(x) = y that is behind the distributionP) of other forms,
e.g., we will not be able to learnf(x) = (x(1)2−x(2) > 0).

Another regularization technique is to minimize the em-
pirical error subject to constraints on the learned functions.

1



For example, we can require that the norm of the vector of
free parametersh be less than one. A related but different
regularization technique is to minimize the empirical error
together with a penalty term on the complexity of the func-
tion we fit. The most popular penalty term –Tikhonov reg-
ularization– has a quadratic form. Using the linear model
above, an appropriate penalty function would be||h||22, and
we would minimize

∑n
i=1((h

>xi > 0) 6= yi) + ||h||22.
Sometimes, adding a regularization term to the optimiza-

tion problem solved by the algorithm is not trivial. In the
most extreme case, the algorithm is a black box we cannot
alter at all. Still, a simple form of regularization called noise
injection can be employed. In the noise injection technique,
the training dataset is enriched by multiple copies of each
training data pointxi. A zero-mean, low-variance Gaussian
noise (independent for each coordinate) is added to each
copy, and the original labelyi is preserved. The motivation
is that if two data pointsx, x′ are close (i.e.,||x − x′|| is
small), we would likef(x) andf(x′) to have similar val-
ues. By introducing many examples with similarx values,
and identicaly values we teach the classifier to have this sta-
bility property. Hence, the learned function is encouraged
to be smooth (at least around the training points).

The study of the noise injection technique, which blos-
somed in the mid 90’s, established the following results on
noise injection: (1) It is an effective way to reduce gener-
alization error. (2) It has a similar effect on shrinkage (the
statistical term for regularization) of the parameters in some
simple models (e.g., [2]). (3) It is equivalent to Tikhonov
regularization [1]. Note that this does not mean that we can
always use Tikhonov regularization instead of noise injec-
tion, as for some learning algorithms it is not possible to
create a regularized version.

The technique we introduce next is similar in spirit to
noise injection. However, it is different enough that the re-
sults obtained for noise injection will not hold for it. For ex-
ample, the results of [1] use a Taylor expansion around the
original data points. Such an approximation will not hold
for our new technique, since the “noise” is too large (i.e.,
the new datapoint is too different). Other important proper-
ties that might not hold are the independence of noise across
coordinates, and the zero mean of the noise.

Our regularization technique is based on creating cor-
rupted copies of the dataset. Each new data point is a
copy of one original training point, picked at random, where
one random coordinate (feature) is replaced with a different
value–usually the value of the same coordinate in another
random training example. The basic procedure used to gen-
erate the new example is illustrated in Fig. 1. We call it the
feature knock out (KO) procedure, since one feature value
is being altered dramatically. It is repeated many times to
create new examples. It can be used with any learning al-
gorithm, and we use it in the analysis presented in Sec. 3.

Input: (x1,y1), ..., (xm,ym) wherexi ∈ <n, yi ∈ Y .
Output: one synthesized pair (x̂, ŷ).

1. Select two examplesxa, xb at random.

2. Select a random featurek ∈ [1..n].

3. Setx̂ ← xa andŷ ← ya.

4. Replace featurek of x̂: x̂(k) ← xb(k).

Figure 1:The Feature Knockout Procedure

However, as we focus our application emphasis on boost-
ing, we use the specialized version in Fig. 2.

The KO regularization technique is especially suited for
use when learning from only a few examples. The robust-
ness we demand from the selected classification function
is much more than local smoothness around the classifi-
cation points (c.f. noise injection). This kind of smooth-
ness is easy to achieve when example points are far from
one another. Our regularization, however, is less restrictive
than demanding uniform smoothness (Tikhonov) or requir-
ing the reduction of as many parameters as possible. Both
of these approaches might not be ideal when only a few ex-
amples are available because there is nothing to balance a
large amount of uniform smoothness, and it is easy to fit a
model that uses very few parameters. Instead, we encourage
redundancy in the classifier since, in contrast to the shortage
of training examples, there is an abundance of features.

3. Analysis
The effect of adding noise to the training data depends on
the learning algorithm used, and is highly complex. Even
for the case of adding a zero-mean, low-variance Gaussian
noise (noise injection) this effect was studied only for sim-
ple algorithms (e.g. [2]) or the square loss function [1].

In Sec. 3.1 we study the effect of feature knock-out on
the well known linear least square regression problem. We
show that it leads to a scaled version of Tikhonov regular-
ization. Compare this to Bishop’s result (using a Taylor ex-
pansion) that noise injection is equivalent to Tikhonov regu-
larization. Following in Sec. 3.2, we will try to analyze how
feature KO affects the variance of the learned classifier.

3.1. Effect of feature KO on linear regression

One of the most basic models we can apply to the data is
the linear model. In this model, the input examplesxi ∈
<n, i = 1..m are organized as the columns of the matrix
A ∈ <n×m; the correspondingyi values are stacked in one
vectory ∈ <m. The prediction made by the model is given
by X>h, whereh is the vector of free parameters we have
to fit to the data. In the common least squares case,||y −
X>h||2 is minimized.

2



In the case that the matrixA is full rank and overdeter-
mined, it is well known that the optimal solution ish =
A+y, whereA+ = (AA>)−1A is known as the pseudo in-
verse of the transpose ofA (our definition ofA is the trans-
pose of the common text book definition). IfA is not full
rank, the matrix inverse(AA>)−1 is not well defined. How-
ever, as an operator in the range ofA it is well defined, and
the above expression still holds, i.e., even if there is an am-
biguity in selecting the inverse matrix, there is no ambiguity
in the operation of all possible matrices on the range of the
columns ofA, which is what we care about.

Even so, if the covariance matrix(AA>) has a large con-
dition number (i.e., it is close to being singular), small per-
turbations of the data result in large changes toh, and the
system is unstable. The solution fits the dataA well, but
does not fit data which is very close toA, hence there is
overfitting. To stabilize the system, we apply regularization.

Tikhonov regularization is based on minimizing||y −
X>h||2 + λ||h||2. This is equivalent to using a regularized
pseudo inverse:A+

λ = (AA> + λI)−1A, whereI is the
identityn×n matrix, andλ is the regularization parameter.

In many applications, the linear system we need to solve
is badly scaled, e.g., one variable is much larger in magni-
tude than the other variables. In order to rectify this, we may
apply a transformation to the data that weights each variable
differently, or equivalently weight the vectorh by applying
a diagonal matrixD, such thath becomeŝh = Dh.

Instead of solving the original systemAh = y, we now
solve the system̂Aĥ = y, whereÂ = D−1A. Solving
this system using Tikhonov regularization is termed “scaled
Tikhonov regularization.” IfD is unknown, a natural choice
is the diagonal matrix with the entriesDkk =

√
(AA>)kk

[9]. We will now show that using the knock-out procedure
to add many new examples is equivalent to scaled Tikhonov
regularization, using the weight matrix above.

Lemma 1 When using the linear model with a least
squares fit, applying the knock out procedure in Fig. 1 to
generate many examples is equivalent to applying scaled
Tikhonov regularization whereDkk =

√
(AA>)kk.

Proof see [15]

To get a better understanding of the way feature knock
out works, we study the behavior of scaled Tikhonov reg-
ularization. In the boosting case, the knock out procedure
is expected to produce solutions which make use of more
features. Are these models more complex? This is hard to
define in the general case, but easy to answer in the linear
least square case study.

In linear models, the predictionšy on the training data
take the form:y̌ = Py. For example, in the unregularized
pseudo inverse case we havey̌ = A>h = A>(AA>)−1Ay,
and thereforeP = A>(AA>)−1A. There is a simple mea-
sure of complexity calledthe effective degrees of freedom

[7], which is justTr(P ) for linear models. A model with
P = I (the identity matrix) has zero training error, but may
overfit. In the full rank case, it has as many effective degrees
of freedom as the number of features (Tr(P ) = n).

Lemma 2 The linear model obtained using scaled
Tikhonov regularization has a lower effective degree of
freedom than the linear model obtained using unregularized
least squares.

Proof see [15].

Similar to the work done on noise injection, we exam-
ined the effect of our procedure on a simple regression tech-
nique. We saw that feature knock out resembles the effect of
scaled Tikhonov regularization, i.e., high norm features are
penalized by the knock out procedure. However, boosting
over regressions stumps seems to be scale invariant. Mul-
tiplying all the values of a feature by some constant does
not change the resulting classifier, since the process that fits
the regression stumps (see Sec. 4) uses the values of each
feature to determine the thresholds that it uses. However, a
closer look reveals the connection between scaling and the
effect of the knock out procedure on boosting.Boosting
over stumps(e.g., [13]) chooses at each round one out ofn
features, and one threshold for this feature. The thresholds
are picked from them possible values that exist in between
every two sorted feature values. The feature and the thresh-
old define a “weak classifier” (the basic building blocks
of the ensemble classifier built by the boosting procedure
[10]), which predicts -1 or +1 according to the threshold.
Equivalently, we can say that boosting over stumps chooses
from a set ofnm binary features – these features are exactly
the values returned by the weak classifiers. Thesenm fea-
tures have different norms, and are not scale invariant. Let
us call each such feature annm-feature.

Using the intuitions of the linear least squares case, we
would like to inhibit features of high magnitude. Allnm-
features have the same norm (

√
(m)), but different en-

tropies (a measure which is highly related to norm). These
entropies depend only on the ratio of positive values in each
nm-feature - call this ratiop.

Creating new examples using the feature knock-out pro-
cedure does not change the number of possible thresholds,
and therefore the number of features remains the same. The
values of the new example in thenm feature space will be
the same for all features originating from then − 1 fea-
tures that were not changed in the knockout procedure. The
value for a knocked-out feature (featurek in Fig. 1), will
change if the new value is on the other side of the thresh-
old as compared to the old value. This will happen with
probability2p(1− p). If this sign flip happens then the fea-
ture is inhibited because it gives two different classifications
to two examples with the same label (KO leaves labels un-
changed). Note that the entropy of a feature with a positive

3



ratio of p and the probability2p(1 − p) behave similarly:
both rise monotonically for0 ≤ p ≤ 1/2 and then drop
symmetrically. Hence, We obtain the following result:

Lemma 3 Let t be a singlenm-feature created by com-
bining a single input feature with a threshold. The amount
of inhibition t undergoes, as the result of applying feature
knockout, grows monotonically with the entropy ofp.

Hence, similarly to the scaling in the linear case, the
knock out procedure inhibits high magnitude features (here
the magnitude is measured by the entropy). Note that in the
algorithm presented in Sec. 4, a feature is used for knock-
out only after it was selected to be a part of the output classi-
fier. Still, KO inhibits more weak classifiers based on these
features with higher entropies, making them less likely to
get picked again. It is possible to perform this higher-
entropy preferential inhibition directly on all features, there-
fore simulating the full knock-out procedure. The imple-
mentation of this is left for future experiments.

3.2. Bias/variance decompositions

Many training algorithms can be interpreted as trying to
minimize a cost function of the form

∑n
i=1 L(f(xi), yi),

whereL is a loss function. For example, in the0/1 loss
function L(f(x), y) = (f(x) 6= y), we pay 1 if the la-
bels are different, 0 otherwise. By applying the knock-
out procedure to generate more training data, an algorithm
that minimizes such a cost function will actually minimize:∑n

i=1 Ex̂∼CX(xi)L(f(x̂), yi), whereCX(x) represents the
distribution of all knocked-out examples created fromx.

Consider a bias-variance decomposition based on the
0/1 loss function, as analyzed in [3]. We follow the ter-
minology of [3] with a somewhat different derivation, and
for the presentation below we include a simplified version.
Assume for simplicity that each training example occurs
in our dataset with only one label, i.e., ifxi = xj then
yi = yj . Define theoptimal predictionf∗ to be the “true”
label f∗(xi) = yi. Define themain predictionof a func-
tion f to be just the predictionf(x). The bias is defined
to be the loss between the optimal and main predictions:
B(x) = (f(x) 6= f∗(x)). The varianceV (x) is defined
to be the expected loss of the prediction with regard to the
main prediction:V (x) = Ex̂∼CX(x)(f(x) 6= f(x̂)). These
definitions allow us to present the following observation:

Observation 1 Let B0 be the set of all training- example-
indices for which the biasB(xi) is zero (the unbiased set).
Let B1 be the set for whichB(x1) = 1 (the biased set).
Then,

∑n
i=1 Ex̂∼CX(xi)(f(x̂) 6= yi) =

∑m
i=i B(xi) +∑

i∈B0 V (xi)−
∑

i∈B1 V (xi)

In the unbiased case (B(x) = 0), the variance (V (x)) in-
creases the training error. In the biased case (B(x) = 1), the

variance at pointx decreases the error. A functionf , which
minimizes the training cost function that was obtained us-
ing feature knock-out, has to deal with these two types of
variance directly while training. Define the net variance to
be the difference of the biased variance from the unbiased;
a function trained using the feature knock-out procedure is
then expected to have a higher net variance than a function
trained without this procedure. If we assume our corrup-
tion processCX is a reasonable model of the robustness
expected from our classifier, a good classifier would have
a high net variance on the testing data. The net variance
measured in our experiments [15] shows the effect of the
feature knockout approach.

4. The gentleBoostKO algorithm

While our regularization procedure can be applied, in prin-
ciple, to any learning algorithm, using it directly when the
number of featuresn is high might be computationally de-
manding. This is because for each one of them training ex-
amples, as many asn(m−1) new examples can be created.
Covering even a small portion of this space might require
the creation of many synthesized examples.

However, for some algorithms our regularization tech-
nique can be applied with very little overhead. For boost-
ing over regression stumps, it is sufficient to modify those
features that participate in the trained ensemble (i.e., those
features that actually participate in the classification).

The basic algorithm used in our experiments is specified
in Fig. 2. It is a modified version of the gentleBoost algo-
rithm [6]. gentleBoost seems to converge faster than Ad-
aBoost, and performs better for object detection problems
[12]. At each boosting round, a regression function is fit-
ted (by weighted least-squared error) to each feature in the
training set. We used linear regression for our experiments,
fitting parametersa, b and th so that our regression func-
tions are of the formf(x) = a(x > th)+ b. The regression
function with the least weighted squared error is added to
the total classifierH(x) and its associated feature (kmin) is
used for Feature Knockout (step d).

In the Feature Knockout step, a new example is created
using the class of a randomly selected examplexa and all
of its feature values except for the value atkmin. The value
for this feature is taken from a second randomly-selected
examplexb. The new examplexm+t is then appended to the
training set. In order to quantify the importance of the new
example in the boosting process, a weight has to be assigned
to it. The weightwm+t of the new example is estimated by
copying the weight of the example from which most of the
features are taken (xa). Alternatively, a more precise weight
can be determined by applying the total classifierH(x) to
the new example.

As with any boosting procedure, each iteration ends with

4



Input: (x1,y1), ..., (xm,ym) wherexi ∈ <n, yi ∈ Y = ±1.
Output: Composite classifierH(x).

1. Initialize weightswi ← 1/m.

2. for t = 1, 2, 3, ...T .

(a) For each featurek, fit a regression functionf (k)
t (x) by

weighted least squares onyi to xi with weightswi, i =
1..m + t− 1.

(b) Let kmin be the index of the feature with the minimal asso-
ciated weighted least square error.

(c) Update the classifierH(x) ← H(x) + f
(kmin)
t

(d) Use Feature KO to create a new examplexm+t:

Select two random indices1 ≤ a, b ≤ m
xm+t ← xa

xm+t(kmin) ← xb(kmin)
ym+t ← ya

(e) Set new example weightwm+t to that of its source:
wm+t ← wa

(f) Update the weights and normalize:

wi ← wie
−yif

(kmin)
t

(xi), i = 1..m + t

wi ← wi/
∑m+t

i=1
wi

3. Output the final classifierH(x)

Figure 2: The GentleBoostKO Algorithm

the update of the weights of all examples (including the new
one), and a new round of boosting begins. This iterative pro-
cess finishes when the weights of the examples converge,
or after a fixed number of iterations. In our experiments,
we stopped the boosting after 100 rounds–enough to ensure
convergence in all cases.

5. Experiments
Visual recognition using the Caltech datasets. We
tested our gentleBoostKO algorithm on several Cal-
tech object recognition datasets that were presented in
[5]. In each experiment we had to distinguish be-
tween images containing an object and background im-
ages that do not contain the object. The datasets:
Airplanes, Cars, Faces, Leafs and Motorbikes, as
well as the background images were downloaded from
http://www.vision.caltech.edu/ .For the ex-
periments we used the predefined splits (available to all the
datasets but the Leafs dataset). For leafs, we used a random
split of 50% training and 50% testing. Note that since our
methods are discriminative, we needed a negative training
set. For this end, we removed30 random examples from the
negative testing set, and used them for training.

To turn each image into feature-vectors we used500 C2
features [11]. These extremely successful features allow us
to learn to recognize objects using few training images, and

the results seem to be comparable or better than the results
reported in [4]. The results are shown in Fig. 3. To compare
with previous work, we used the error at the equilibrium-
point between false and true positives as our error-measure.
It is clear that for a few dozen examples, SVM, gentleBoost
and gentleBoostKO have the same performance level. How-
ever, for only a few training examples, gentleBoost does not
perform as well as SVM, while gentleBoostKO achieves the
same level of performance.

We also tried to apply Lowe’s SIFT features [8] to the
same datasets, although these features were designed for
a different task. For each image, we used Lowe’s bina-
ries to comute the SIFT description of each key point. We
then sampled from the training set 1000 random keypoints
k1, ..., k1000. Let {kI

i } be the set of all keypoints associ-
ated with imageI. We represented each training and testing
imageI by a vector of1000 elements:[vI(1)...vI(1000)],
such thatvI(j) = mini||kj − kI

i ||. Note that in [8] the use
of the ratio of distances between the closest and the next
closest points were encouraged (and not just the minimum
distance). For our application, which disregards all geo-
metric information, we found that using the minimum gives
much better results. For the testing and training splits re-
ported in [5] we got the following results (ME=mean error,
EqE=error at equilibrium):

Algorithm Planes Cars Faces Leaves Motor.
Lin. SVM ME 0.104 0.019 0.107 0.118 0.033
gentleB ME 0.118 0.036 0.168 0.137 0.026
gentleBKO ME 0.100 0.033 0.119 0.114 0.023
Lin. SVM EqE 0.108 0.018 0.111 0.126 0.007
gentleB EqE 0.120 0.037 0.166 0.132 0.003
gentleBKO EqE 0.111 0.030 0.136 0.120 0.008

Car type identification. This dataset consists of480 im-
ages of private cars, and248 images of mid sized vehicles
(such as SUV’s). All images are20 × 20 pixels, and were
collected using Mobileye’s car detector, on a video stream
taken from the front window of a moving car. The task is to
learn to identify private cars from mid sized vehicles, which
has some safety applications. Taking into account the low
resolution and the variability in the two classes, this is a
difficult task. The results are shown on the bottom right
corner of Fig. 3. Each point of the graph shows the mean
error when applying the algorithms to training sets of dif-
ferent size (between 5 and 40 percent of the data). The rest
of the examples were used for testing. It is evident that
for this dataset gentleBoost outperforms SVM. Still, gentle-
BoostKO does even better.

Acknowledgments

This report describes research done at the Center for Biological
& Computational Learning, which is in the McGovern Institute
for Brain Research at MIT, as well as in the Dept. of Brain &
Cognitive Sciences, and which is affiliated with the Computer

5



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Airplanes

Total Positive Training Examples

E
qu

ili
br

iu
m

 E
rr

or

Linear SVM
GentleBoost
GentleBoostKO

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Cars

Total Positive Training Examples

E
qu

ili
br

iu
m

 E
rr

or

Linear SVM
GentleBoost
GentleBoostKO

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Faces

Total Positive Training Examples

E
qu

ili
br

iu
m

 E
rr

or

Linear SVM
GentleBoost
GentleBoostKO

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Leaves

Total Positive Training Examples

E
qu

ili
br

iu
m

 E
rr

or

Linear SVM
GentleBoost
GentleBoostKO

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Motorbikes

Total Positive Training Examples

E
qu

ili
br

iu
m

 E
rr

or

Linear SVM
GentleBoost
GentleBoostKO

0 5 10 15 20 25 30 35 40
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Percent Used for Training

M
ea

n 
E

rr
or

Car Types

Linear SVM
GentleBoost
GentleBoostKO

Figure 3: A comparison using the C2 features between gentleBoost, gentleBoostKO (Fig. 2), and linear SVM on the five Caltech datasets: Airplanes,
Cars, Faces, Leafs and Motorbikes. The graphs show the the equilibrium error rate vs. the number of training examples used from the class we want to
detect. In each experiment, the test set was fixed to be the same as those described in [5].Lower right corner: The results of applying the three algorithms
to the car types dataset, together with example images. The results shown are mean and standard error of30 independent experiments versus percentile of
training images.

Sciences & Artificial Intelligence Laboratory (CSAIL). This re-
search was sponsored by grants from: Office of Naval Research
(DARPA) Contract No. MDA972-04-1-0037, Office of Naval Re-
search (DARPA) Contract No. N00014-02-1-0915, National Sci-
ence Foundation (ITR/SYS) Contract No. IIS-0112991, National
Science Foundation (ITR) Contract No. IIS-0209289, National
Science Foundation-NIH (CRCNS) Contract No. EIA-0218693,
National Science Foundation-NIH (CRCNS) Contract No. EIA-
0218506, and National Institutes of Health (Conte) Contract No.
1 P20 MH66239-01A1. Additional support was provided by:
Central Research Institute of Electric Power Industry (CRIEPI),
Daimler-Chrysler AG, Compaq/Digital Equipment Corporation,
Eastman Kodak Company, Honda R&D Co., Ltd., Industrial Tech-
nology Research Institute (ITRI), Komatsu Ltd., Eugene McDer-
mott Foundation, Merrill-Lynch, NEC Fund, Oxygen, Siemens
Corporate Research, Inc., Sony, Sumitomo Metal Industries, and
Toyota Motor Corporation.

References

[1] C.M Bishop. Training with Noise is Equivalent to Tikhonov
Regularization.Neural Computation, 1995.

[2] L. Breiman. Heuristics of Instability and Stabilization in
Model Selection.Ann. Statist., 1996.

[3] P. Domingos. A Unifies Bias-Variance Decomposition for
Zero-One and Squared Loss.Proc. Int. Conf. AI, 2000.

[4] L. Fei-Fei, R. Fergus, & P. Perona. A Bayesian approach to
unsupervised 1-Shot learning of Object categories.ICCV03.

[5] R. Fergus, P. Perona, and A. Zisserman. Object Class Recog-
nition by Unsupervised Scale-Invariant Learning.CVPR2003

[6] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: a statistical view of boosting.Ann. Statist., 2000.

[7] T. Hastie, R. Tibshirani, J. H. Friedman The Elements of Sta-
tistical Learning Springer, 2001.

[8] D.G. Lowe. Distinctive image features from scale-invariant
keypoints.IJCV, 2004.

[9] A. Neumaier. Solving ill-conditioned and singular linear sys-
tems: A tutorial on regularization.SIAM Review1998.

[10] R.E. Schapire. A brief introduction to boosting. Proc. Int.
Joint Conf. AI, 1999.

[11] T. Serre, L. Wolf and T. Poggio. A New Biologically Mo-
tivated Framework for Robust Object Recognition.CVPR,
2005.

[12] A. Torralba, K.P. Murphy and W.T. Freeman. Sharing fea-
tures: efficient boosting procedures for multiclass object de-
tection.CVPR, 2004.

[13] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features.CVPR, 2001.

[14] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio
and V. Vapnik. Feature Selection for SVMs.NIPS, 2001.

[15] L. Wolf and I. Martin. Regularization Through Feature
Knock Out. MIT CSAIL TR: CBCL-242, 2004.

6


