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Abstract

The dynamics of a city are characterized, among others,
by the traveling patterns of its dwellers. Accurate
knowledge of human mobility patterns would have
applications, e.g., in urban design, in the optimization of
public transportation operating costs, and in the
improvement of public transportation services. The
present paper combines a large scale bus transportation
dataset with publicly available data sources to predict bus
usage. We propose a Gaussian process-based approach for
modeling and predicting bus ridership. To validate our
approach we perform experiments on data collected from
Lisbon, Portugal. The results demonstrate significant
improvements in prediction accuracy compared to a
probabilistic baseline predictor.
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Introduction

It is well known that optimized public transit can reduce
congestion, gasoline consumption, and overall carbon
footprint [5, 13]. From a customer perspective, however, a



mobility choice is only a choice if it is fast, comfortable,
and reliable. Therefore, strategies for increasing public
transit ridership and improving user satisfaction are an
active and ongoing area of research.

Transit authorities are increasingly taking advantage of
pervasive sensing technologies to provide new types of
intelligent transportation services and to understand
transit usage. As an example, services that enable
travelers to access real-time transit vehicle location,
arrival time, connection, and other related pieces of
information are emerging (e.g., [6, 8, 17]). From a public
transport management perspective, this real-time
information can help to improve service and resource
management effectiveness, and hence also ridership and
user satisfaction.

The present paper investigates how the combination of
data collected from pervasive sensors (ticketing and bus
arrival information) and public, open data sources
(weather and transit network information) can be used to
enhance public transportation systems, e.g., for service
and resource management such as dispatching and
scheduling. Specifically, we propose a Gaussian
process-based technique for modeling and predicting bus
ridership, i.e., the number of passengers using a specific
bus stop at a given period of time. The proposed model
allows efficient estimation of the ridership rates in various
contexts. Besides modeling the weekly and daily
fluctuations in bus usage, the model allows incorporating
additional predictors, such as the weather conditions or
demographic information.

Most of present day public transport systems, such as
buses, are operating with fixed schedules, respectively for
weekdays, weekends, night hours, and holidays. Making
use of historical logs and contextual information, such as

weather and time contexts, can give more insights into
the dynamics of ridership demands and user behavior,
paving way towards adaptive public transport systems that
are responsive to user need and demands. This approach
also contributes to the visions of adaptive transportation
systems [3, 4] and the 'swam’ concept introduced in the
2006 UK Government's Foresight program (i.e.,
on-demand public transport systems).

We validate our approach using data collected from
Lisbon, Portugal, demonstrating that our Gaussian
Process-based predictor achieves significantly better
performance than a probabilistic baseline predictor.

Related Work

The idea of using pervasive sensing in traffic engineering
was first introduced by Zito et al. [18] who investigated
the use of GPS for intelligent highway services. Recent
advances in information and communication technologies
have led to development of several services for transport
systems. Camacho et al. [2] presented an overview of
IT-based services offered in public transport, and
discussed how passenger-centric services can improve
public transport systems, particularly service quality and
passenger satisfaction.

Availability of public transportation data such as train and
bus arrival times opens up new directions for researchers
to get a better understanding of the current systems and
seek ways to improve upon them. Ferrari et al. [7]
described a methodology for measuring accessibility of
public transportation system-based on analysis of
underground train data, whereas Patnaik et al. [10]
developed a predictive model for bus arrival times. Pinel
et al. [11] presented a method to measure accessibility of
a city using bus probe data. Uno et al. [15] proposed a



methodology to evaluate road network-based on travel
time stability and reliability using bus probe data. Bejan
et al. [1] developed a model for bus journey time
estimation and examined influential factors such as time
of the day and day of the week. Sun et al. [14] analyzed
encounter patterns of people using bus GPS and ticketing
data and found regularity in the patterns, which was
shown as an empirical evidence of the 'familiar strangers’
concept in social network studies.

Data Description

We consider a dataset containing bus information
collected over a period of two months (April-May 2010)
by one of the largest bus operators in Lisbon, Portugal.
The dataset consists of two parts: 1) bus probe data and
2) ticketing data. The bus probe data contains arrival
information of buses at various stops along their
predefined route. The ticketing data, on the other hand,
contains information about passengers getting on a bus.
Below we describe the datasets in greater detail and
include description of publicly available weather data and
applied data pre-processing.

Bus Probe Data

The bus probe dataset contains information of bus arrival
times at 2, 104 bus stops along various bus routes in the
city of Lisbon. Overall, the dataset contains
measurements from 96 different bus lines comprising of
187 bus routes'. During the period of two months, over
650, 000 bus trips were recorded. The mobility context of
a bus was captured by recording bus ID,
heading/direction, bus stop ID, arrival time at a bus stop
and bus stop location (/atitude, longitude). The locations
of the bus stops considered in this study are shown in

1Bus routes are calculated by considering different directions of
journey by a bus-line, e.g., 'Up’, 'Down’ or 'Circular’

Figure 1 overlaid on the road network of Lisbon (courtesy
of OpenStreetMap?).

Ticketing Data

The second part of the dataset contains bus ridership
information collected during passenger ticketing. Nearly
all bus riders in Lisbon use a transit pass, which is a
pre-purchased card that allows the user to use a bus
service. When the user uses the transit pass to enter the
bus, the card ID is recorded along with a timestamp and
bus specific information such as vehicle ID and bus route
ID. During the study period of two months, 812,170
anonymized unique passengers were recorded in the
ticketing data.
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Figure 1: Spatial distribution of all bus stops on top of the
road network in the city of Lisbon, Portugal.

Weather data
We augment the Lisbon transportation data with weather
information, e.g., temperature, humidity, rain and thunder

’http://www.openstreetmap.org/
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extracted from a publicly available weather data source
(courtesy of Weather Underground®) that provides
weather indicators every half an hour.

Data Pre-processing

Before analysis, we process the dataset by removing all
bus lines that are not present in both datasets. The bus
probe and ticketing datasets were collected independently,
but can be combined to generate ridership information by
matching all passengers' boarding times recorded in the
ticketing dataset to a specific bus arrival time present in
the bus probe dataset. More specifically, given the
boarding time of a passenger and the bus line ID, we
search all records of the same bus line for the day and
identify the passenger’s bus stop as the one having
smallest positive time difference to the arrival times of a
bus at various stops along the bus route.The resulting
integrated data is shown in Figure 2, which shows the
ridership per hour recorded at two bus stops for a period
of one week. The plot indicates a clear difference in bus
ridership during weekdays and weekends, additionally it
clearly shows the existence of a daily cycle.

Modeling Bus Ridership

For predicting the number of people getting on a bus we
build separate predictive models for each of the bus stops.
The task then is to create a model that takes as input a
set of variables describing the current context and provides
as an output the expected number of passengers entering
a bus in that context. In the simplest case, the context is
defined as the time of day and the day of week, but in the
more general case the context variables should provide all
the information that is needed for making the prediction,
such as the weather conditions or the demographics of the
destinations that can be reached by the busline.

3http:/ /www.wunderground.com/

In the present work we first introduce models that use
time as the only context. In particular, we model the daily
and hourly fluctuations, depicted in Figure 2, by
describing the context with two variables: the day of the
week d and the time of the day h (discretized into
one-hour intervals). The task then is to estimate

7 x 24 = 168 parameters pq 5 that describe the expected
number of passengers getting on a bus at that given time.
We propose using Gaussian process (GP) regression [12]
for solving the problem, but also present a baseline model
that simply counts the passengers in the training data for
comparative analysis.

After addressing the task of modeling the weekly and
hourly cycles in passenger volume, we demonstrate how
the proposed GP model directly extends to richer contexts
that enable more accurate predictions. In particular, we
incorporate the current weather conditions into the model.

Baseline Algorithm

To model the passenger counts we define pq s, as the
expected number of passengers getting on any bus that
arrives at the stop during day d and hour h. Given a
reasonably large collection of training data, we can
directly estimate these parameters as the average number
of passengers seen entering in that temporal context. We
use p; ;, to denote the number of passengers using the
stop during day d and hour h for a given training index
(week) t, and nj; ;, to denote the number of buses using
the stop. Then the expected number of passengers
entering a bus at those conditions can be estimated as:

T

B >t pﬁl,h

===
D1 ”fi,h

where T' denotes the number of weeks present in the
training data. Besides intuitive reasoning, the model can

Ha.h (1)
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Figure 2: Variation of number of passengers using two bus stops recorded over a period of one week.

be justified as the maximum likelihood estimator for
observations that are assumed to follow a normal
distribution. For predicting the ridership for a future test
case, we simply multiply the expected count with the
observed number of buses:

Dd,h = Nd,h * Kd,h- (2)

This baseline model makes reasonably accurate
predictions in well-defined discrete contexts. It effectively
just looks at the history and predicts that the number of
passengers will equal that of the mean count in the
history, which is often a reasonable prediction. Even a
model with T' = 1 which just predicts that the number of
passengers will be the same as it was during the same
time last week is useful; we will later demonstrate this as
the comparison model. However, the model breaks down
if we attempt to extend it to richer contexts. It estimates
the ratio separately for each possible context, and hence
needs discrete context variables. The richer the context,
the more parameters are needed in the model and, more
crucially, the more training data is needed to accurately
estimate the parameters. It cannot make reasonable
predictions for contexts that did not occur in the training

data, and for rich context this will necessarily be the case
for several if not majority of the contexts.

Gaussian Process Model

As described above, the straightforward approach of
looking back at historical data cannot work for rich
contexts. Instead, we need to learn models that generalize
over nearby contexts. Even if the training data had no
examples of the passenger count at Wednesday 3PM
when it is raining, the model should provide a reasonable
estimate by borrowing information about rainy afternoons
in other days and the usual count of passengers near
Wednesday 3PM. This task can in general be solved by
learning the parameters for different contexts together and
by regularizing the solutions towards each other.

In this article we propose to solve the contextual ridership
problem by a nonparametric Bayesian approach called
Gaussian process regression [12], a powerful probabilistic
inference technique that has gained popularity in recent
years. It is a regression technique that predicts u, the
expected number of passengers, for arbitrary contexts
using a nonlinear mapping from the context variables to
the output while constraining the predictions of similar



contexts to be close. The GP regression model is
nonparametric, which means that we do not need to
specify the functional form of the mapping in advance,
and in particular need not restrict to modeling the outputs
with any simple family such as linear functions. Instead,
we only need to define a way of computing similarity
between the contexts in the form of a kernel function.
The kernel function then implicitly defines a family of
smooth functions between the contexts and the outputs.

We denote the context by @, which is a vector over the
context variables, for example x = [h, d] in the case of
temporal context only. The output variable in the training
data is computed as y = pg 5 /na,n. The GP regression
model then specifies that the independent variable y are
noisy versions of an arbitrary non-linear function f(x),
where f(x) has a Gaussian process prior. This prior,
which is on the functions themselves, specifies that the
joint distribution of f(x) and f(«) for any « and x’ is
Gaussian, and that the covariance of these two is given by
a similarity kernel k(x,x’). This similarity kernel uniquely
defines the properties of the GP prior space.

The actual model is defined as

ylf.o ~ iip(yilfi 9), (3)
fxlo) ~ GP(m(z), k(z,z)), (4)
0.6 ~ p(0)p(e), (5)
where the observations y = [y;, ..., 7|’ are assumed to

be conditionally independent given the function values
f(x), GP(m(x), k(x,x’)) is the GP prior, and 6 and ¢
are hyperparameters of the likelihood and kernel functions
with some suitable prior distributions. To fully specify the
model we need to fix the likelihood function, the kernel
function, and the prior distributions for the
hyperparameters.

We start with the likelihood, choosing the Student
t-distribution given by:

o D(v+1)/2)
v oe gy ) Joma, (1 "

(yi — fv')2> —rn

2
vo?

where v is the degrees of freedom and o is the scale of
the observation noise, dictating how close to the function
values f(Zx) the observations are likely to fall. We chose
the t-distribution instead of the computationally easier
normal distribution due to its robustness to outliers [9],
which might be prevalent in our data especially for
low-volume stops; even if the average rate is very low, a
party of several people might occasionally get on a bus,
creating a strong outlier.

The choice of the kernel function determines how the
functions f(x) behave in the space of all possible
contexts, controlling the smoothness of the predictions.
We adopt the common choice of Gaussian kernel function

d
Zk:l (zr — l";c)Z

k(iL’,:l:’) = 03 exp(— 212 )s (6)

where o2 controls the amplitude of the functions and the

l;, parameters are the length-scales for individual context
variables. We could also use other kernels to encode
different kind of relationships between the contexts, but
the Gaussian kernel is a flexible choice for modeling
continuous and ordinal context parameters.

Learning the GP model consists of specifying the values
for the hyperparameters, in our case ¢ = (v, 0,) for the
likelihood function and 6 = (o, {l;}¢_,) for the kernel
function. The values for these parameters uniquely define
the predictions of the model, and hence there is no need
to learn anything else; the model has no actual
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Figure 3: Scatter plot of
observed bus ridership with its
prediction obtained from GP
model.

parameters for the mappings themselves, but instead it
defines the predictions indirectly as the posterior
distribution of the function values f(x) for unseen test
contexts. The most important hyperparameters are the
length scales Ij, which control the smoothness of the
predictions; the larger [ is for a specific context variable
the smoother the predictions are because of borrowing
information from a broader range along that variable.

For learning the parameters we use Bayesian inference,
namely the Markov chain Monte Carlo (MCMC)
technique. Instead of learning specific values for the
parameters, we compute the predictions by integrating
over the posterior distribution of the hyperparameter
values, using the GPstuff package [16] and the default
choices for the prior parameters as provided in the
package. These predictions cannot be expressed in close
form analytical solution, but they are computationally
efficient for reasonably sized training collections. That is,
for any given context x observed at the test time we can
compute the expected count p. Furthermore, we directly
get confidence intervals for the predictions.

Results

To illustrate the proposed modeling framework, we
conduct a number of experiments on the Lisbon
transportation dataset. After the pre-processing and data
integration we split the data into individual weeks and
performed a 5-fold cross validation to illustrate the
predictions and to compare the GP model with the
baseline. We always train the models with one week of
training data and apply it for predicting the passenger
count for the remaining weeks, separately for each of the
bus stops. To measure the quality of the prediction we use
root mean-square error (RMSE) measure.

We start with the simple temporal context of the day of
week and the hour of day, learning both the GP model
and the baseline model. Figure 3 shows the crossplot of
the observed counts and the predictions made by the GP
model, showing that the model does reasonably well. It
somewhat overestimates the highest counts and the
predictions are noisy, but the correlation between the
predictions and the true values is high (R = 0.93). The
corresponding plot for the baseline model would be
similar, but noisier.

To compare the two models in quantitative terms, we
compute the RMSE for each of the bus stops, resulting in
an average error of 5.1 for GP and 5.7 for the baseline
model. A McNemar test indicated that the resulting
difference is statistically significant (p < 0.01.) Figure 4
illustrates the difference by plotting the cumulative
average RMSE over all the bus stops.

As an exemplary illustration of GP model, we choose one
bus stop and plot the bus ridership for 'Wednesday' in
Figure 6. The plot includes the mean prediction and the
confidence intervals provided by the MCMC integration.
The actual observations covering 8 weeks of test data
typically fall within the confidence bounds. Figure 5 shows
the posterior distribution of the length scale parameter [
for the variable h. The mode of the distribution is around
3, indicating that the learned kernel for the hour
influences the bus ridership prediction significantly for a
duration of 3 neighboring hours.

Finally, to illustrate the way the GP model can handle
richer contexts, we apply the model on data that include a
binary indicator telling whether it rains or
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Figure 4: Cumulative RMSE over all bus stops with a 5-fold
cross validation.

not. We train the model using one week of data, chosen
so that there is instances of rain during the week, and
then apply it on the remaining weeks. This results in
small improvement, i.e., average RMSE from 4.95 to 4.93,
in the prediction accuracy (with p = 0.02 i.e., significant
at the 95% level).

Conclusion and Future Work

Identifying factors influencing bus ridership is an
important step, both towards understanding the dynamics
of a city and towards enabling on-demand intelligent
transportation services. In this work we proposed a
Gaussian process-based predictive model that uses
contexts, e.g., time day of the week, hour and rain
information to predict bus ridership. We evaluated our
approach using two months of bus data collected from
Lisbon, Portugal. The GP model results in accurate bus
ridership predictions even with a small amount of training
data, and is capable of generalizing across contexts.
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Figure 6: lllustration of the GP prediction for 'Wednesday' at

one of the stops. The observed test samples fall usually within

the confidence interval, and the mean prediction closely

approximates them.

Through experimental analysis we showed that the
performance of GP outperforms a simple probabilistic
baseline. By complementing the temporal context with a
simple weather indicator, we also demonstrated that richer
contextual descriptions can further improve predictive
accuracy. Even though the improvement in accuracy was
only marginal, the experiment acts as a proof of concept
that the modeling framework can be extended to include
more complex contexts, e.g., temperature, demographic
information, bus line popularity, proximity to touristic
attraction, etc. We plan to include rich context modeling
using GP as our future work.
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