
TAMING DR. FRANKENSTEIN:
CONTRACT-BASED DESIGN

FOR
CYBER-PHYSICAL SYSTEMS

PT. 2

ANTONIO IANNOPOLLO EE249

HOKEUN KIM

PLATFORM-BASED AND
CONTRACT-BASED DESIGN

•  Platform-based design and contract-based design to
formulate the design process with a meet-in-the-
middle approach

•  Can be considered both horizontal and vertical
contracts

•  Used “to govern the horizontal composition of the
cyber and the physical components and to establish
the conditions for correctness of their composition

•  It is possible to design a correct-by-construction
system

PLATFORM-BASED DESIGN:
KEY CONCEPTS
Design through different abstraction layers,
each one defined by a design platform.
Each design platform consists of
•  A set of library components
•  Models of the components in terms of

functional and non-functional
characteristics

•  Rules for the determination of
component composition

CONTRACT-BASED DESIGN

HORIZONTAL CBD
 As an example of this contract-based virtual integration

testing, consider Figure 3. Each of the subsystems Sj are
equipped with horizontal contracts CH(Sj) = (AH

j , GH
j).

Contract-based virtual integration testing then requires to be
able to demonstrate all assumptions AH

j from the given
design context. For example, let us consider subsystem S2.
Its design context is in part given by subsystem S1, which
thus becomes responsible for establishing those horizontal
assumptions relating to S2´s in-port p21. Intuitively, then, we
expect the guarantee GH

1 of the horizontal contract of S1 to
be sufficient to demonstrate compliance of any restrictions S2

was placing on allowed uses of p21. Note also the dependency
of S2 on the yet undetermined part of the design context of
S2 reflected by input p3S to the realization of system S on
layer N . In general, then, in contract-based virtual integration
testing, this yet unknown design context is represented by
horizontal contracts of the composed system S itself; Figure 3
highlights the horizontal contract CH

N (S) = (AH
N (S), GH

N (S))
of S at layer N . This contract will enforce, that any design
context of S will be guaranteed to be compliant to AH

N (S).
Thus, when checking the design context of S2 for compliance
to its horizontal assumptions on uses of port p3S , we expect
this to be derivable from AH

N (S). In general, then, in contract-
based virtual integration testing, we need to demonstrate that
all horizontal assumptions of subsystems can be derived from
the conjunction of all horizontal guarantees of subsystems and
horizontal assumptions of the composed system.

Circular reasoning: At the current level of discourse we
point to the fact, that the above argument typically involves
circular reasoning. For example, in Figure 3 GH

1 will only be
guaranteed for legal design contexts of S1. Thus, only once
AH

1 is established, can we actually rest our argumentation
on GH

1 . Establishing, then, AH
1 , we would like to involve

GH
3 , which, however, is only sound once AH

3 is established.
This, finally, would involve GH

2 as witness, but it is exactly
for the purpose of establishing AH

2 , that this reasoning chain
is established. The mathematical theory essentially justifies
the use of such seemingly circular arguments, for classes of
contracts whose assumptions and guarantees are expressible
in the rich set of safety properties (which can always be
proven and disproved by finite observations). However, certain
restrictions on how assumptions and guarantees refer to out-
ports respectively in-ports of a system have to be observed.

Vertical contracts: Each of the subsystems Sj can then
either be further refined, or assumed to be given as design basis
at layer N , as platform library elements. Such components, as
S2 in Figure 3, could be placeholders, to be then elaborated in
a design process at layer N�1. Symmetrically, Figure 3 shows
the system S at layer N as a realization of the placeholder S
at layer N +1. To transition across design layers, we use what
we call vertical contracts.

Specifically, when using placeholder S at layer N + 1,
bottom-up vertical contracts are used to capture what is
expected to be offered by possible implementations of S at
layer N , so as to be able for S to perform its intended function
at layer N + 1 as expressed by a top-down vertical contract.

This entails, that the correctness of the level N + 1 design
hinges on finding an implementation of S meeting this bottom-
up vertical contract.

When using budgeting, the designer assigns responsibilities
to the subsystems of S by deriving top-down contracts for
each, which jointly establish S´s bottom-up vertical contract.
Alternatively, when using a bottom-up approach, we assume
the top-down vertical contracts of Sj as given, and establish
either directly or passing through a characterization of the
functionality realized by S at layer N (as a top-down contract),
that the layer N + 1 bottom up contract of S is satisfied. In
both the top-down and bottom up approach, the verification of
this cross-layer design steps would assume that the contract-
based virtual integration test was successful. This allows using
the guarantees of horizontal contracts as additional premise in
the verification of refinement steps.

We finally point out that additional verification steps are
required for each component to demonstrate that, based on
the expected capabilities of its realization, as expressed by
its bottom-up vertical contract, the functionality of the com-
ponent as expressed by its top-down vertical contract can be
achieved. Again, this proof can take horizontal contracts of the
component as additional supportive arguments. For composed
systems, such as the system S at layer N in Figure 3, the
bottom-up contracts are given by the set of bottom-up contracts
of its leaf components.

Crossing design layers thus asks for verification of either
refinement (top-down) or aggregation (bottom-up) steps. The
presentation given so far ignores extensions of the framework
required in practice to deal with what is often called interface
refinement, e.g., [8], [25]. Due to the very purpose of abstrac-
tion layers of hiding complexity, a representation of a design at
level N will typically explicate implementations aspects such
as representations of messages and variables, protocols used
for communication and synchronization. In general, both the
representation of the system in the data-domain as well as in
the time domain may change, calling for notions of refinement
which are expressive enough to deal both with re-timing
and type conversions. The theory for these notions of weak
simulation relations is well understood for particular classes of
mathematical models (see [19]), which jointly are rich enough
to support a broad spectrum of viewpoints, including safety,
real-time, performance, power.

To allow to build on these in the methodology for contract-
based design, we introduce what we call simulation compo-
nents relating traces, i.e. sequences of observations of ports of
a level N + 1 component S to sequences of observations of
ports of components S at level N . Referring to Figure 3, this
component would thus have an interface towards layer N + 1
observing ports p1S and p2S , and an interface towards layer
N observing ports p1S , p2S , and p3S . Simulation components
can use contracts to characterize the intended inter-relation
between valuations of these. These contracts can take the form
of both logic-based and automata-based formalisms, giving
sufficient expressivity in capturing the intended relations be-
tween traces of interface objects of S at level N +1 and level

12

As an example of this contract-based virtual integration
testing, consider Figure 3. Each of the subsystems Sj are
equipped with horizontal contracts CH(Sj) = (AH

j , GH
j).

Contract-based virtual integration testing then requires to be
able to demonstrate all assumptions AH

j from the given
design context. For example, let us consider subsystem S2.
Its design context is in part given by subsystem S1, which
thus becomes responsible for establishing those horizontal
assumptions relating to S2´s in-port p21. Intuitively, then, we
expect the guarantee GH

1 of the horizontal contract of S1 to
be sufficient to demonstrate compliance of any restrictions S2

was placing on allowed uses of p21. Note also the dependency
of S2 on the yet undetermined part of the design context of
S2 reflected by input p3S to the realization of system S on
layer N . In general, then, in contract-based virtual integration
testing, this yet unknown design context is represented by
horizontal contracts of the composed system S itself; Figure 3
highlights the horizontal contract CH

N (S) = (AH
N (S), GH

N (S))
of S at layer N . This contract will enforce, that any design
context of S will be guaranteed to be compliant to AH

N (S).
Thus, when checking the design context of S2 for compliance
to its horizontal assumptions on uses of port p3S , we expect
this to be derivable from AH

N (S). In general, then, in contract-
based virtual integration testing, we need to demonstrate that
all horizontal assumptions of subsystems can be derived from
the conjunction of all horizontal guarantees of subsystems and
horizontal assumptions of the composed system.

Circular reasoning: At the current level of discourse we
point to the fact, that the above argument typically involves
circular reasoning. For example, in Figure 3 GH

1 will only be
guaranteed for legal design contexts of S1. Thus, only once
AH

1 is established, can we actually rest our argumentation
on GH

1 . Establishing, then, AH
1 , we would like to involve

GH
3 , which, however, is only sound once AH

3 is established.
This, finally, would involve GH

2 as witness, but it is exactly
for the purpose of establishing AH

2 , that this reasoning chain
is established. The mathematical theory essentially justifies
the use of such seemingly circular arguments, for classes of
contracts whose assumptions and guarantees are expressible
in the rich set of safety properties (which can always be
proven and disproved by finite observations). However, certain
restrictions on how assumptions and guarantees refer to out-
ports respectively in-ports of a system have to be observed.

Vertical contracts: Each of the subsystems Sj can then
either be further refined, or assumed to be given as design basis
at layer N , as platform library elements. Such components, as
S2 in Figure 3, could be placeholders, to be then elaborated in
a design process at layer N�1. Symmetrically, Figure 3 shows
the system S at layer N as a realization of the placeholder S
at layer N +1. To transition across design layers, we use what
we call vertical contracts.

Specifically, when using placeholder S at layer N + 1,
bottom-up vertical contracts are used to capture what is
expected to be offered by possible implementations of S at
layer N , so as to be able for S to perform its intended function
at layer N + 1 as expressed by a top-down vertical contract.

This entails, that the correctness of the level N + 1 design
hinges on finding an implementation of S meeting this bottom-
up vertical contract.

When using budgeting, the designer assigns responsibilities
to the subsystems of S by deriving top-down contracts for
each, which jointly establish S´s bottom-up vertical contract.
Alternatively, when using a bottom-up approach, we assume
the top-down vertical contracts of Sj as given, and establish
either directly or passing through a characterization of the
functionality realized by S at layer N (as a top-down contract),
that the layer N + 1 bottom up contract of S is satisfied. In
both the top-down and bottom up approach, the verification of
this cross-layer design steps would assume that the contract-
based virtual integration test was successful. This allows using
the guarantees of horizontal contracts as additional premise in
the verification of refinement steps.

We finally point out that additional verification steps are
required for each component to demonstrate that, based on
the expected capabilities of its realization, as expressed by
its bottom-up vertical contract, the functionality of the com-
ponent as expressed by its top-down vertical contract can be
achieved. Again, this proof can take horizontal contracts of the
component as additional supportive arguments. For composed
systems, such as the system S at layer N in Figure 3, the
bottom-up contracts are given by the set of bottom-up contracts
of its leaf components.

Crossing design layers thus asks for verification of either
refinement (top-down) or aggregation (bottom-up) steps. The
presentation given so far ignores extensions of the framework
required in practice to deal with what is often called interface
refinement, e.g., [8], [25]. Due to the very purpose of abstrac-
tion layers of hiding complexity, a representation of a design at
level N will typically explicate implementations aspects such
as representations of messages and variables, protocols used
for communication and synchronization. In general, both the
representation of the system in the data-domain as well as in
the time domain may change, calling for notions of refinement
which are expressive enough to deal both with re-timing
and type conversions. The theory for these notions of weak
simulation relations is well understood for particular classes of
mathematical models (see [19]), which jointly are rich enough
to support a broad spectrum of viewpoints, including safety,
real-time, performance, power.

To allow to build on these in the methodology for contract-
based design, we introduce what we call simulation compo-
nents relating traces, i.e. sequences of observations of ports of
a level N + 1 component S to sequences of observations of
ports of components S at level N . Referring to Figure 3, this
component would thus have an interface towards layer N + 1
observing ports p1S and p2S , and an interface towards layer
N observing ports p1S , p2S , and p3S . Simulation components
can use contracts to characterize the intended inter-relation
between valuations of these. These contracts can take the form
of both logic-based and automata-based formalisms, giving
sufficient expressivity in capturing the intended relations be-
tween traces of interface objects of S at level N +1 and level

12

At level N, a set of contracts (1 … j)
refine a the global contract of the level N

Circular
reasoning only
valid for some
classes of
contracts (G and
A as safety
properties)

VERTICAL CBD

Placeholder

Refinement
(strong
assumptions)

Aggregation
(weak
assumptions)

CBD EXAMPLE:
A WATER FLOW CONTROL SYSTEM
Problem Information:
•  Input: Inlet pressure P
•  Output: Water Level wl, outlet flow rate Fout, energy

consumption E
•  Parameters: container size D and H, inlet cross

sections Sin and Sout, evaporation rate ε.
Translated in the global contract:
•  Assumption: P>=5000
•  Promises:

N [4].
Strong vs. weak assumptions and the issue of compatibil-

ity: We close this section by pointing out a subtle, but highly
relevant, difference in the methodological use of assumptions
in horizontal and vertical contracts. Within horizontal con-
tracts, assumptions are used to restrict the allowed design con-
text of a component. By enforcing contract-based virtual inte-
gration testing, as discussed above, we therefore complement
each model-based integration steps with verification activities
demonstrating that the currently known design context C[] of
a component S actually complies to these restrictions. This
is key to enforcing what has been called composability of
systems by [26], a fundamental principle in good architecture
design ensuring functionality realized by components of the
architecture are maintained when integrating these into a
compound architecture. It is the purpose of assumptions to
support this composability property. Specifically, if system
S realizes function F (S) (e.g. as expressed in a top-down
vertical contract), and C[] meets the contract-based virtual
integration test for S, then S will be guaranteed to offer its
functionality F (S) when being put into this design context
C[]. We refer to assumptions which must be enforced for the
component to behave as expected as strong assumptions.

In contrast, additional assumptions may be added to the
strong assumption to ensure that if these assumptions are met,
then “non essential” but desired properties are guaranteed.
These additional assumptions are called in contrast weak
assumptions. In vertical contracts, in particular in bottom-
up contracts, weak assumptions represent anticipations often
based on experience or estimation functions on what could be
assumed to be realizable by lower implementations levels. As
the designs refines vertically across multiple layers, eventually
such assumptions either become validated based on top-down
contracts of completed designs, or invalidated (e.g. due to
insufficient processing power, non-matching assumptions on
failure distributions, or insufficient signal strength). By main-
taining dependency between contracts, it is then possible to
backtrack to the higher-level bottom up assumption which thus
became invalidated, and explore possibilities of weakening,
such as by re-budgeting.

Turning assumptions in vertical contracts to strong assump-
tions would entail a binding restriction of the design space:
a failure to meet such strong vertical assumptions would be
considered a contract failure. Strong vertical assumptions can
be used to enforce compliance to standards, or within the
supply chain hierarchy, to eliminate the likelihood of deep
design iterations crossing organizational boundaries. In a gen-
eralized setting, such as currently pushed in the context of the
German Innovation Alliance for Embedded Systems,21 we thus
allow contracts to refer to both strong and weak assumptions,
allowing to customize design processes supporting additional
use cases of strong assumptions as outlined above.

21See SPES2020 Architecture Modeling Deliverable of the German Inno-
vation Alliance on Embedded Systems SPES 2020,BMBF grant FK 01 IS
O8045 W, http://spes2020.informatik.tu-muenchen.de

V. CONTROL DESIGN AND CONTRACTS WITH AN
EXAMPLE

In this section we present a simple example of control of a
cyber-physical system design that makes use of the contract-
based design methodology. The example, a Water Flow Con-
trol system, was first proposed by the Israel Aerospace Indus-
tries Ltd. (IAI) in the context of the SPEEDS project, and has
been analyzed using hybrid modeling techniques [5]. Here we
present a version using a continuous model to highlight the
use of contracts in a familiar, equation-based notation. We
will discuss how to model the system requirements, as well as
how these are partitioned in assume/guarantee pairs (contracts)
for each component of the system. Different verification and
design activities can be carried out using this model.

A. The Water Flow Control system

A cylindrical water container is equipped with an inlet pipe
at the top, and an outlet pipe at the bottom. The container has
a diameter D = 5m and a height H = 9m. The inlet and
outlet cross sections are Sin = 0.5m2 and Sout = 0.16m2,
respectively. We are to design a system that guarantees a
continuous outlet flow Fout of 1.0  Fout  2.0m3/sec,
after 10 seconds since startup. In addition, the system must
guarantee that the container will not overflow, and that the
energy consumption is lower than a limit El. The designer
can assume a constant inlet pressure P � 5, 000pa, and a
maximum evaporation rate ✏ = 0.25m3/hour.

To formalize the problem, we construct a component rep-
resenting the overall Water Flow Control system, with input,
output and parameters corresponding to the above specifica-
tion. To simplify our task, we decide to make state variables,
such as the water level, visible as primary outputs. The WFC
formal specification is therefore composed of the following
items:

• Input: Inlet pressure P
• Output: Water Level wl, outlet flow rate Fout, energy

consumption E
• Parameters: container size D and H , inlet cross sections

Sin and Sout, evaporation rate ✏.
To proceed with the system specification we define a contract
that the implementation must satisfy. The contract distin-
guishes between the assumptions and the guarantees that must
be enforced. Assuming t represents time, the above conditions
can be formally specified as follows:

• Assumptions: P � 5, 000.
• Promises:

8t.(t � 10 =) (1.0  Fout  2.0))
8t.(wl(t)  H)
E  El

B. Design Solution

There are many ways to guarantee the required properties
given the assumptions. Here we examine a solution method
based on the regulation of the water level. From the Bernoulli

13

CBD APPROACH

Law, we know that the outlet flow rate depends on the water
level according to the formula

Fout = V · Sout =
p

2g wl · Sout

where V is the velocity. The water level is therefore given by

wl =
✓

Fout

Sout

◆2

· 1
2g

.

Thus, the promise 1.0  Fout  2.0 is equivalent to having

2.0  wl  8.0.

We will therefore approach the problem by controlling the
water level in the container through a valve at the inlet. As a
result, the system will be composed of an inlet valve, the water
container, a water level sensor and a controller that controls
the opening and closing of the valve based on the measured
water level, as shown in Figure 4. Our methodology is the

λ

cmd

outFinF

wlm

valve container

sensorcontroller

F

wlλ

Figure 4. Block diagram of the Water Flow Control system

following:
• We define for each component the contract that it must

satisfy
• We compose the contracts for each component
• We finally verify that the composite contract refines the

contract for the system, given above.
Having verified the system at the virtual integration level, the
contract theory ensures that a composition of components,
each satisfying its contract, will also satisfy the system spec-
ification.

1) Model for the valve: The inlet flow is controlled by a
valve that may get position commands from the controller. We
denote the valve aperture by �, where 0  �  1. The valve
is controlled by a signal �cmd, coming from the controller,
whose range is also 0  �cmd  1. The position � of the
valve follows that of the aperture command �cmd at a rate of
0.5/sec.

Assume that F is the flow rate at the input of the valve,
and call Fin the flow rate at the output of the valve, which is
also the flow rate at the input of the container. We can express
Fin as a function of the current valve position as follows:

Fin = F · (0.2�2 + 0.8�)

In summary, the sets of inputs and outputs for the valve is
• Input: �cmd, F
• Output: �, Fin

In this simplified model, the valve must satisfy a contract that
makes no assumption. In practice, one can use the assumption
to limit the range of validity of the model, for example by
requiring that the flow rate at the input be less than a certain
value. This translates, after composition with the rest of the
components, in a requirement on the environment that the
pressure P be less than a certain value. Obviously, if one
such assumption is introduced, the overall contract will not be
satisfied, as no constraint is imposed at the system level for
the pressure P other than it be greater than a certain value.

The valve satisfies the following promises.
• Rate of change of valve position

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

• Flow rate at the output of the valve

Fin = F · (0.2�2 + 0.8�)

• The initial position of the valve is closed

�(0) = 0.

Sometimes it may appear ambiguous whether a certain re-
quirement should be guaranteed by a component, or assumed
from the environment. For instance, one could take the initial
position of the valve as an assumption. The ambiguity dis-
appears when one considers which component is responsible
for setting a certain value. Since the position of the valve is
an output of the valve, it is the valve responsibility to ensure
its initial value, and the requirement is therefore a guarantee.
A valve that does not satisfy this condition will simply not
satisfy the contract.

2) Model for the container and the outlet: The container
is characterized by the following inputs and outputs:

• Input: the inlet flow rate Fin

• Output: the water level wl and the outlet flow rate Fout.
The water level depends on the inlet and the outlet flow rate,
as well as on the evaporation rate ". We assume that the
evaporation rate is bounded. In order to model this situation,
we must add " to the set of inputs. Then, the container must
satisfy the following contract.

For the assumptions, we assume that the evaporation rate is
bounded:

8t."(t)  0.25

The container must ensure the following promises:
• The water level is given by the integral of the difference

between the water coming in and the water going out
(including the evaporation), divided by the base are of
the container. Formally,

8t, t0. t0 > t =) wl(t0) =

= wl(t) +
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

• The outlet water flow is given by the Bernoulli law

Fout = V · Sout =
p

2g wl · Sout

14

•  Define a contract for each component
•  Compose the different contracts
•  Verify that the obtained composite

contract is a refinement of the global
contract

CBD APPROACH
 The composite contract is characterized by

•  I/O:
•  Assumption:
•  Promises:

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

CBD APPROACH
 The composite contract is characterized by

•  I/O:
•  Assumption:
•  Promises:

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

CBD APPROACH
 The composite contract is characterized by

•  I/O:
•  Assumption:
•  Promises:

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

3) Model for the water level sensor: The sensor is modeled
simply as a transducer that outputs a measured water level
wlm as an approximation of the real water level wl. Thus, the
sensor has wl as an input and wlm as an output. The sensor
makes no assumption, and makes the promise:

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t),

i.e., the sensor has a 5% error.
4) Model for the controller: The controller takes as input

the measured water level wlm, and controls the position of the
valve through the signal �cmd, which is therefore an output
of the controller.

We initially experiment with a simple control function. In
order to maintain the required output flow rate, and to avoid
the container overflow, the valve will be opened when the
water in the container goes below a certain level wlmin (so
that the container will be filled), and will be closed when the
water goes above a certain level wlmax (to avoid overflow).
The promises of the controller are therefore as follows:

wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

Note that the specification of the controller makes no promise
when wlm is between wlmin and wlmax. Thus the specifica-
tion admits several different possible implementations for the
controller.

5) Determination of consumed energy: We assume that the
energy consumption is due primarily to the valve motion. We
also assume that the energy is proportional to the distance
traveled by the valve, which can be expressed as follows:

⇤(T) =
Z T

0

����
d�

dt

���� dt.

The average distance traveled at time T is therefore

⇤(T) =
⇤(T)

T
.

The energy can be computed using an appropriate constant c

E(T) = c · ⇤(T) = c · ⇤(T)
T

.

The total energy is therefore given by

E = c · lim
T!1

⇤(T)
T

.

We therefore add an output E to the valve, and add the
additional promise that expresses the value of E as a function
of �.

C. System composition
Having defined the contracts for the component of the

system, our aim is to verify that their collective requirements
are consistent with the overall system contract. To do so, we
must derive an overall system by taking the composition of all
the contracts of the components described above. Composition
in the context of this model is simple, and corresponds to
putting all the equations in a system so that they are all

satisfied simultaneously (i.e., we must take the intersection
of the sets of solutions of the individual equations). One,
however, has to take care of separating the assumptions from
the guarantees, and make sure that assumptions that are not
already discharged by other components of the system are
properly propagated to the composite.

To give an example, we compose the model of the valve V
with the model of the container C. The composition is defined,
since the set of outputs of the two components is disjoint,
and therefore there is no conflict over which equation to use
to define the value of a variable. The composition has the
following interface signals

I = {�cmd, F, "}
O = {�, Fin, wl, Fout}

which are obtained by taking as output any of the outputs of
the two components, and as inputs the remaining signals. The
composite must satisfy the following assumption, which is an
assumption of the container which is not discharged by the
valve:

8t."(t)  0.25

In addition, the composite must satisfy all of the following
promises:

d�

dt
= sgn(�cmd(t)� �(t)) · 0.5

Fin = F · (0.2�2 + 0.8�)
�(0) = 0
8t, t0. t0 > t =) wl(t0) = wl(t)+

+
1

⇡(D/2)2

Z t0

t

(Fin(t00)� Fout(t00)� "(t00))dt00

Fout = V · Sout =
p

2g wl · Sout

Note that some of the outputs may now be hidden in the
composition. For instance, the output Fin does not need to
appear explicitly, as long as it is considered in the promises.
That is, we need to replace the guaranteed expression of
Fin in the expression for wl, and then remove Fin from the
set of outputs. Likewise, we could remove � from the set
of outputs. However, since � is not defined explicitly as a
function (but rather as the solution to a differential equation)
the substitution is problematic from a formal point of view.
From a theoretical standpoint, however, if the constraint on
� were to be expressed for example as an extended state
machine, the usual procedure of taking the product can be
used to compute the final result.

Note also that the assumption coming from the container is
also an assumption of the composite. This is because the other
component in the composition does not discharge the assump-
tion, which must therefore be maintained and propagated to
the environment of the composition.

The parallel composition can then be extended to include
the water level sensor and the controller. The final set of inputs

15

and outputs (without hiding) is the following:

I = {F, "}
O = {�, �cmd, Fin, wl, wlm, Fout}

with the additional promises

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t)
wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

In addition to that, we can add the output E for the energy
consumption and the corresponding promise to compute the
energy consumption as a function of the position of the valve.
The total set of inputs and outputs is therefore:

I = {F, "}
O = {�, �cmd, Fin, wl, wlm, Fout, E}

D. Contract verification
Contract verification consists now in checking whether the

contract for the composition that we have derived in the
previous section refines the contract for the system, outlined in
Section V-A. Refinement, as discussed in Section III, amounts
to checking that the guarantees offered by the collection of
components are stronger than the guarantees required by the
overall specification (the implementation promises at least
the same, or more), under a weaker set of assumptions (the
implementation assumes the same from the environment, or
less). These conditions, in turn, can be verified by comparing
the set of solutions of the equations. Stronger guarantees
mean a smaller set of solutions for the promises (a more
constrained behavior), while weaker assumptions imply a
larger set. Formally, if we take A and G as the sets of solutions,
the contracts must satisfy the usual relation

A0 ✓ A

G ✓ G0

where C 0 = (A0, G0) is the system contract, while C = (A,G)
is the contract obtained by taking the composition of the
contracts for each component. This formulation, however, is
effective only when comparing contracts that have the same
set of inputs and outputs. This is not the case here, since the
overall system contract specification and the system composite
are defined on slightly different alphabets of signals. Hence,
the set of inputs and outputs must somehow be equalized.
One solution is to extend the system specification to include
the ports of the composition, such as �, �cmd, Fin and wlm.
The promises of the system specification do not change, so
that in practice the system specification allows any value on
those ports. Alternatively, we may hide the extra outputs, and
keep only the relevant ones, i.e., wl, Fout and E.

The situation is different for the inputs. First, the composi-
tion depends on F rather than on P . Thus, we must add to
the composition a component PF that translates the value of
P into the corresponding value of F , by applying again the
Bernoulli law. That is, PF has P as an input and F as an

output. After the composition, the overall composite will have
P as an input (since it is an input of PF and it is not an
output of any other component), and F as an output (since it
is an output of PF and an input of the valve). Obviously, at
this point, the port F must be hidden, since it is not an output
in the system specification.

To equalize on ", we may add it as an input to the system
specification. The equations do not change, so that the system
specification is effectively independent of the value of ".

After equalization, we can check containment of the solution
sets. It is apparent that the condition on the assumptions is
not satisfied: in fact, A requires that " be bounded, which is
a condition that is not specified by the system specification
A0. The problem can be solved by changing the way we
modeled the container. There, we made the assumption that
the evaporation rate is bounded. Thus, we had to take " as an
input of the specification. A closer look, however, reveals that
the evaporation rate is a function of the shape of the container.
Hence, the rate of evaporation can actually be guaranteed by
the container itself. Thus, " should actually be an output of
the container, and the assumption on boundedness is changed
into a guarantee.

Checking the guarantees is more complex, and requires
solving the system of equations that characterize the composite
and deriving the expression of wl, Fout and E explicitly. After
that, we need to check the containment relation. In our specific
case, we can solve the equation for the valve under some
hypothesis on the value of the command �cmd. However, the
equation for the water level requires a numerical solution. One
way to address this problem is to construct hybrid models of
the system, as described in our previous work [5]. Questions
of scalability do arise, and abstractions must be typically
employed to make the solution practical.

Note that we made no assumption on P in the implemen-
tation. Therefore, A admits more solutions than A0. We can
take advantage of this fact, and only check that

A0 ✓ A

G [¬A ✓ G0 [¬A0

since a promise is effective only if the corresponding assump-
tions are satisfied. Because ¬A is smaller than ¬A0, satisfying
the condition on the guarantees is easier, as the formulation
applies the assumptions for the system specification to the
implementation.

The model that we have developed still allows several
possible implementations. In particular, nothing is said about
the behavior of the controller when the water level is between
wlmin and wlmax. That is, the controller may arbitrarily
switch between open and close valve while in that range.
While all choices may actually be such that the guarantee on
Fout is satisfied, some choices may lead to a violation of the
guarantee of the energy consumption. This would be detected
during verification, if the tools used for refinement checking
are powerful enough to handle the continuous time speci-
fication. The ability to formalize and check non-functional

16

and outputs (without hiding) is the following:

I = {F, "}
O = {�, �cmd, Fin, wl, wlm, Fout}

with the additional promises

8t. 0.95 · wl(t)  wlm(t)  1.05 · wl(t)
wlm  wlmin =) �cmd = 1
wlm � wlmax =) �cmd = 0

In addition to that, we can add the output E for the energy
consumption and the corresponding promise to compute the
energy consumption as a function of the position of the valve.
The total set of inputs and outputs is therefore:

I = {F, "}
O = {�, �cmd, Fin, wl, wlm, Fout, E}

D. Contract verification
Contract verification consists now in checking whether the

contract for the composition that we have derived in the
previous section refines the contract for the system, outlined in
Section V-A. Refinement, as discussed in Section III, amounts
to checking that the guarantees offered by the collection of
components are stronger than the guarantees required by the
overall specification (the implementation promises at least
the same, or more), under a weaker set of assumptions (the
implementation assumes the same from the environment, or
less). These conditions, in turn, can be verified by comparing
the set of solutions of the equations. Stronger guarantees
mean a smaller set of solutions for the promises (a more
constrained behavior), while weaker assumptions imply a
larger set. Formally, if we take A and G as the sets of solutions,
the contracts must satisfy the usual relation

A0 ✓ A

G ✓ G0

where C 0 = (A0, G0) is the system contract, while C = (A,G)
is the contract obtained by taking the composition of the
contracts for each component. This formulation, however, is
effective only when comparing contracts that have the same
set of inputs and outputs. This is not the case here, since the
overall system contract specification and the system composite
are defined on slightly different alphabets of signals. Hence,
the set of inputs and outputs must somehow be equalized.
One solution is to extend the system specification to include
the ports of the composition, such as �, �cmd, Fin and wlm.
The promises of the system specification do not change, so
that in practice the system specification allows any value on
those ports. Alternatively, we may hide the extra outputs, and
keep only the relevant ones, i.e., wl, Fout and E.

The situation is different for the inputs. First, the composi-
tion depends on F rather than on P . Thus, we must add to
the composition a component PF that translates the value of
P into the corresponding value of F , by applying again the
Bernoulli law. That is, PF has P as an input and F as an

output. After the composition, the overall composite will have
P as an input (since it is an input of PF and it is not an
output of any other component), and F as an output (since it
is an output of PF and an input of the valve). Obviously, at
this point, the port F must be hidden, since it is not an output
in the system specification.

To equalize on ", we may add it as an input to the system
specification. The equations do not change, so that the system
specification is effectively independent of the value of ".

After equalization, we can check containment of the solution
sets. It is apparent that the condition on the assumptions is
not satisfied: in fact, A requires that " be bounded, which is
a condition that is not specified by the system specification
A0. The problem can be solved by changing the way we
modeled the container. There, we made the assumption that
the evaporation rate is bounded. Thus, we had to take " as an
input of the specification. A closer look, however, reveals that
the evaporation rate is a function of the shape of the container.
Hence, the rate of evaporation can actually be guaranteed by
the container itself. Thus, " should actually be an output of
the container, and the assumption on boundedness is changed
into a guarantee.

Checking the guarantees is more complex, and requires
solving the system of equations that characterize the composite
and deriving the expression of wl, Fout and E explicitly. After
that, we need to check the containment relation. In our specific
case, we can solve the equation for the valve under some
hypothesis on the value of the command �cmd. However, the
equation for the water level requires a numerical solution. One
way to address this problem is to construct hybrid models of
the system, as described in our previous work [5]. Questions
of scalability do arise, and abstractions must be typically
employed to make the solution practical.

Note that we made no assumption on P in the implemen-
tation. Therefore, A admits more solutions than A0. We can
take advantage of this fact, and only check that

A0 ✓ A

G [¬A ✓ G0 [¬A0

since a promise is effective only if the corresponding assump-
tions are satisfied. Because ¬A is smaller than ¬A0, satisfying
the condition on the guarantees is easier, as the formulation
applies the assumptions for the system specification to the
implementation.

The model that we have developed still allows several
possible implementations. In particular, nothing is said about
the behavior of the controller when the water level is between
wlmin and wlmax. That is, the controller may arbitrarily
switch between open and close valve while in that range.
While all choices may actually be such that the guarantee on
Fout is satisfied, some choices may lead to a violation of the
guarantee of the energy consumption. This would be detected
during verification, if the tools used for refinement checking
are powerful enough to handle the continuous time speci-
fication. The ability to formalize and check non-functional

16

VERTICAL CONTRACTS IN
CONTROL

Controllers are “bounds by contracts to the
plant”

requirements, under the assumptions, is a critical advantage
of a contract-based design methodology in which different
viewpoints can be mixed in the specification. Observe also
how the energy consumption depends on the actual behavior
of the implementation, so that the two viewpoints must be
integrated to obtain significant results.

Besides verification, controller synthesis can be applied
to derive automatically a controller that satisfies the system
contract. In this case, we take the composition of all the
components, except for the controller itself. The problem con-
sists of deriving a contract for the controller, such that when
the controller is composed with the rest of the system, the
composition satisfies the system specification. This problem
is subject of current research, and typically suffers from high
computational complexity, especially in the case of timed
systems. The synthesis problem has been addressed and solved
in certain circumstances through an operator of quotient [40],
[39].

E. Vertical Contracts in Control
Contracts are most naturally established between entities

or components that operate at the same level of abstraction.
By sharing a common understanding of the system, two
components rely on each other’s guarantees to fulfil the
system requirements, while assumptions formalize this inter-
dependence thereby enabling their separate and independent
implementation. Of potentially greater interest, however, is
the use of contracts across different levels of abstraction, as
described in Section IV-B. When used this way, a vertical
contract defines a relation between the properties of a system
and those of its implementation platform. In other words, the
system requirements can be satisfied by operating not only at
the level of the application, but also by configuring execution
parameters and by taking advantage of the expected behavior,
as described by the assumptions, of both the application
and the platform. Co-design and multi-layer techniques are
therefore fully supported by the contract models, and are
well incorporated and extended by the Platform-Based Design
paradigm discussed in the previous sections.

These aspects are of increasing importance in the context
of control design. Martin Törngren describes controllers as
“bound by contracts to the plant”, in the sense that the con-
troller parameters must refer to closed loop system dynamics,
which are in turn determined by the plant dynamics [44].
Likewise, timing constraints refer to both open and closed loop
systems, as the controller parameters depend on the chosen
sampling period and on the particular techniques (such as
delay compensation) used in designing the control loop. These
contracts, therefore, extend to the implementation platform.
Indeed, in control design there are three entities that interact
in different ways, as illustrated in Figure 5. The controller
implements the control law in a tight loop with the plant.
At the same time, the implementation platform executes the
controller and physically interfaces with the plant, defining the
critical non-functional parameters (delay, jitter and throughput)
that concur in establishing the system properties.

(A, G)

Platform

(A, G) (A, G) (A, G) (A, G)

Plant

Control algorithm

F1

F2F3

F4

(A, G) (A, G) (A, G) (A, G)

ECU ECUECU ECU U.S. AIR FORCE
602

AMC

40602

Figure 5. Typical interactions between controller, plant and implementation
platform

In this setting, we focus in particular on the interaction
between the controller and the platform. Here the controller
defines requirements in terms of several aspects that include
the timing behavior of the control tasks and of the communica-
tion between tasks, their jitter, the accuracy and resolution of
the computation, and more generally requirements on power
and resource consumption. These requirements are taken as as-
sumptions by the controller, which in turn provides guarantees
in terms of the amount of requested computation, activation
times and data dependencies.

Examples of this kind of interaction abound, and highlight
the need for a theory that can integrate vertical as well as hor-
izontal contracts. A typical application, shown in Figure 6 and
inspired by the cited presentation of Martin Törngren, is the
implementation of a vehicle stability control system, in which
three different controllers related to the yaw, the brakes and
the engine must interact together with the wheel, the engine
and the overall vehicle dynamics. Different implementation
platforms can be used to support the functionality, guaran-
teeing different quality levels. In this application, the control
systems depends upon several subsystems, each integrated on a
separate platform, and connected through often heterogeneous
communication fabric. Horizontal contracts at the level of the
platform can be used to understand the interactions between
the subsystems, and between the system and the plant with
respect to non-functional properties. Similarly, at the level of
the application horizontal contracts define the global properties
and the interaction between the control algorithm and the plant
with respect to the functional control specification. Vertical
contracts fit across these two levels as bridges that relate the
performance of the different implementation platforms to their
mapped applications.

The relations between contracts outlined in Section III
can be applied to vertical contracts, as well. The relation of
satisfaction is unchanged, since it involves the comparison
between an implementation and its contract. In the case of
an execution platform, this typically requires showing that
the guaranteed timing constraints are met under the load
conditions assumed by the contract. Compatibility is more
interesting. In the context of a platform, the “environment”

17

CONCLUSION

•  Even in their most elementary form
(informal textual requirements) contracts
have a considerable methodological
value

•  Can be customized to match particular
viewpoints in different design phases
(safety, real-time, costs)

•  Formal definition of contracts allows to
think about new tools and frameworks

