
Introduction: Abstract Data Types
and Java Review

Computer Science E-119
Harvard Extension School

Fall 2012

David G. Sullivan, Ph.D.

Welcome to Computer Science E-119!

• We will study fundamental data structures.

• ways of imposing order on a collection of information
• sequences: lists, stacks, and queues
• trees
• hash tables
• graphs

• We will also:

• study algorithms related to these data structures

• learn how to compare data structures & algorithms

• Goals:

• learn to think more intelligently about programming problems
• acquire a set of useful tools and techniques

Sample Problem I: Finding Shortest Paths

• Given a set of routes between pairs of cities, determine the
shortest path from city A to city B.

BOSTON

PORTSMOUTH

PORTLAND

CONCORD

WORCESTERALBANY

PROVIDENCE

NEW YORK

84

74
83

49

54

49

185

42

44134

63

Sample Problem II: A Data "Dictionary"

• Given a large collection of data, how can we arrange it
so that we can efficiently:

• add a new item

• search for an existing item

• Some data structures provide better performance than others
for this application.

• More generally, we’ll learn how to characterize the efficiency
of different data structures and their associated algorithms.

Prerequisites

• A good working knowledge of Java

• comfortable with object-oriented programming concepts

• some prior exposure to recursion and linked lists
would be helpful

• if your skills are weak or rusty, you may want to consider
first taking CSCI E-50b/S-111a

• Familiarity with precalculus mathematics (Math E-10)

• several topics will involve mathematical reasoning

• mostly simple algebra, but need to understand
the basics of logarithms (we’ll review this)

• will do some simple proofs

Requirements

• Lectures and weekly sections

• sections: start next week; times and locations TBA

• also available by streaming and recorded video

• Five problem sets
• plan on 10-20 hours per week!
• code in Java; must compile on nice.fas.harvard.edu
• must be your own work
• grad-credit students will do extra problems

• Open-book midterm exam

• Open-book final exam

• Programming project
• for grad credit only

Additional Administrivia

• Instructor: Dave Sullivan

• lecturer on computer science, Boston University

• CSCI S-111 since 2000; CSCI E-119 since 2005

• TAs: Cody Doucette, Ryan Meltzer, Lily Wong

• Office hours and contact info. will be available on the course
Web site:

http://www.courses.fas.harvard.edu/~cscie119

• For questions on content, homework, etc., send e-mail to:

cscie119@fas.harvard.edu

Review: What is an Object?

• An object groups together:

• one or more data values (the object's fields – also known as
instance variables)

• a set of operations that the object can perform
(the object's methods)

• In Java, we use a class to define a new type of object.

• serves as a "blueprint" for objects of that type

• simple example:

public class Rectangle {
// fields
private int width;
private int height;

// methods
public int area() {

return width * height;
}
…

Class vs. Object

• The Rectangle class is a blueprint:

• Rectangle objects are built according to that blueprint:

(You can also think of the methods as being inside the object,
but we won’t show them in our diagrams.)

public class Rectangle {
// fields
private int width;
private int height;

// methods
...

}

height 12

width 10

height 72

width 55 height 13

width 40

Creating and Using an Object

• We create an object by using the new operator and
a special method known as a constructor:

Rectangle r1 = new Rectangle(10, 30);

• Once an object is created, we can call one of its methods
by using dot notation:

int a1 = r1.area();

• The object on which the method is invoked is known as
the called object or the current object.

Two Types of Methods

• Methods that belong to an object are referred to as
instance methods or non-static methods.

• they are invoked on an object

int a1 = r1.area();

• they have access to the fields of the called object

• Static methods do not belong to an object – they belong
to the class as a whole.

• they have the keyword static in their header:

public static int max(int num1, int num2) {

…

• they do not have access to the fields of the class

• outside the class, they are invoked using the class name:

int result = Math.max(5, 10);

Abstract Data Types

• An abstract data type (ADT) is a model of a data structure
that specifies:

• the characteristics of the collection of data

• the operations that can be performed on the collection

• It’s abstract because it doesn’t specify how the ADT will be
implemented.

• A given ADT can have multiple implementations.

A Simple ADT: A Bag

• A bag is just a container for a group of data items.

• analogy: a bag of candy

• The positions of the data items don’t matter (unlike a list).

• {3, 2, 10, 6} is equivalent to {2, 3, 6, 10}

• The items do not need to be unique (unlike a set).

• {7, 2, 10, 7, 5} isn’t a set, but it is a bag

A Simple ADT: A Bag (cont.)

• The operations supported by our Bag ADT:

• add(item): add item to the Bag

• remove(item): remove one occurrence of item (if any)
from the Bag

• contains(item): check if item is in the Bag

• numItems(): get the number of items in the Bag

• grab(): get an item at random, without removing it
• reflects the fact that the items don’t have a position

(and thus we can’t say "get the 5th item in the Bag")

• toArray(): get an array containing the current contents
of the bag

• Note that we don’t specify how the bag will be implemented.

Specifying an ADT Using an Interface

• In Java, we can use an interface to specify an ADT:
public interface Bag {

boolean add(Object item);
boolean remove(Object item);
boolean contains(Object item);
int numItems();
Object grab();
Object[] toArray();

} (see ~cscie119/examples/bag/Bag.java)

• An interface specifies a set of methods.

• includes only the method headers

• cannot include the actual method definitions

Implementing an ADT Using a Class

• To implement an ADT, we define a class:

public class ArrayBag implements Bag {
private Object[] items;
private int numItems;
…
public boolean add(Object item) {

…

} (see ~cscie119/examples/bag/ArrayBag.java)

• When a class header includes an implements clause,
the class must define all of the methods in the interface.

Encapsulation

• Our implementation provides proper encapsulation.

• a key principle of object-oriented programming

• also known as information hiding

• We prevent direct access to the internals of an object
by making its fields private.

public class ArrayBag implements Bag {
private Object[] items;
private int numItems;
…

• We provide limited indirect access through methods
that are labeled public.

public boolean add(Object item) {
…

All Interface Methods Are Public

• Methods specified in an interface must be public, so we don’t
need to use the keyword public in the interface definition.

• For example:
public interface Bag {

boolean add(Object item);
boolean remove(Object item);
boolean contains(Object item);
int numItems();
Object grab();
Object[] toArray();

}

• However, when we actually implement one of these methods in
a class, we do need to explicitly use the keyword public:

public class ArrayBag implements Bag {
…
public boolean add(Object item) {

…

Inheritance

• We can define a class that explicitly extends another class:

public class Animal {
private String name;
…
public String getName() {

return name;
}
…

}

public class Dog extends Animal {
…

• We say that Dog is a subclass of Animal, and Animal is a
superclass of Dog.

• A class inherits the instance variables and methods
of the class that it extends.

The Object Class

• If a class does not explicitly extend another class, it implicitly
extends Java’s Object class.

• The Object class includes methods that all classes must
possess. For example:

• toString(): returns a string representation of the object

• equals(): is this object equal to another object?

• The process of extending classes forms a hierarchy of classes,
with the Object class at the top of the hierarchy:

Object

Animal

DogCatAnt

StringArrayBag

Polymorphism

• An object can be used wherever an object of one of its
superclasses is called for.

• For example:

Animal a = new Dog();

Animal[] zoo = new Animal[100];
zoo[0] = new Ant();
zoo[1] = new Cat();
…

• The name for this capability is polymorphism.

• from the Greek for "many forms"

• the same code can be used with objects of different types

Storing Items in an ArrayBag

• We store the items in an array of type Object.
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
…

}

• This allows us to store any type of object in the items array,
thanks to the power of polymorphism:

ArrayBag bag = new ArrayBag();
bag.add("hello");
bag.add(new Double(3.1416));

Another Example of Polymorphism

• An interface name can be used as the type of a variable.

Bag b;

• Variables that have an interface type can hold references to
objects of any class that implements the interface.

Bag b = new ArrayBag();

• Using a variable that has the interface as its type allows us
to write code that works with any implementation of an ADT.

public void processBag(Bag b) {
for (int i = 0; i < b.numItems(); i++) {

…

}

• the param can be an instance of any Bag implementation

• we must use method calls to access the object's internals,
because we can't know for certain what the field names are

Memory Management: Looking Under the Hood

• In order to understand the implementation of the data
structures we’ll cover in this course, you’ll need to have a
good understanding of how memory is managed.

• There are three main types of memory allocation in Java.

• They correspond to three different regions of memory.

Memory Management, Type I: Static Storage

• Static storage is used in Java for class variables, which are
declared using the keyword static:

public static final PI = 3.1495;
public static int numCompares;

• There is only one copy of each class variable; it is shared by all
instances (i.e., all objects) of the class.

• The Java runtime system allocates memory for class variables
when the class is first encountered.

• this memory stays fixed for the duration of the program

Memory Management, Type II: Stack Storage

• Method parameters and local variables are stored in a region
of memory known as the stack.

• For each method call, a new stack frame is added to the top of
the stack.

public class Foo {
static void x(int i) {

int j = i - 2;
if (i >= 6) return;
x(i + j);

}
public static void
main(String[] args) {
x(5);

}
}

• When a method completes, its stack frame is removed. The
values stored there are not preserved.

args

3

5

return addr

i

j

6

8

return addr

i

j

x(8)

x(5)

Stack Storage (cont.)

• Memory allocation on the stack is very efficient, because there
are only two simple operations:

• add a stack frame to the top of the stack

• remove a stack frame from the top of the stack

• Limitations of stack storage:
It can’t be used if

• the amount of memory needed
isn’t known in advance

• we need the memory to persist
after the method completes

• Because of these limitations,
Java never stores arrays or
objects on the stack. args

3

5

return addr

i

j

6

8

return addr

i

j

x(8)

x(5)

Memory Management, Type III: Heap Storage

• Arrays and objects in Java are stored in a region of memory
known as the heap.

• Memory on the heap is allocated using the new operator:

int[] values = new int[3];
ArrayBag b = new ArrayBag();

• new returns the memory address of the start of the array or
object on the heap.

• This memory address – which is referred to as a reference in
Java – is stored in the variable that represents the array/object:

• We will often use an arrow to represent a reference:

000values

0x23a
0x23a

000values

Heap Storage (cont.)

• In Java, an object or array persists until there are no
remaining references to it.

• You can explicitly drop a reference by setting the variable
equal to null. For example:

int[] values = {5, 23, 61, 10};
System.out.println(mean(values, 4));
values = null;

• Unused objects/arrays are automatically reclaimed by a
process known as garbage collection.

• makes their memory available for other objects or arrays

Constructors for the ArrayBag Class
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
items = new Object[DEFAULT_MAX_SIZE];
numItems = 0;

}
public ArrayBag(int maxSize) {

if (maxSize <= 0)
throw new IllegalArgumentException(
"maxSize must be > 0");

items = new Object[maxSize];
numItems = 0;

}
…

}

• If the user inputs an invalid value for maxSize, we throw an
exception.

Example: Creating Two ArrayBag Objects
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• After the objects have been created, here’s what we have:

args

…

b1

b2

stack heap
items

numItems

nullnullnull

items

0

nullnull
numItems

0

null

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);
…

}

Copying References

• A variable that represents an array or object is known as a
reference variable.

• Assigning the value of one reference variable to another
reference variable copies the reference to the array or object.
It does not copy the array or object itself.

int[] values = {5, 23, 61, 10};
int[] other = values;

• Given the lines above, what will the lines below output?

other[2] = 17;
System.out.println(values[2] + " " + other[2]);

5 23 61 10values

other

Passing an Object/Array to a Method

• When a method is passed an object or array as a parameter,
the method gets a copy of the reference to the object or array,
not a copy of the object or array itself.

• Thus, any changes that the method makes to the object/array
will still be there when the method returns.

• Consider the following:

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3;
}

}

Passing an Object/Array to a Method (cont.)

n

a

main

1 2 3

a

main

1 2 3

triple

before method call

during method call

a

main

3 6 9

after method call

a

main

3 6 9

triple

A Method for Adding an Item to a Bag
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
…
public boolean add(Object item) {

if (item == null)
throw new IllegalArgumentException();

if (numItems == items.length)
return false; // no more room!

else {
items[numItems] = item;
numItems++;
return true;

}
}
…

}

• add() is an instance method (a.k.a. a non-static method),
so it has access to the fields of the current object.

Example: Adding an Item
public static void main(String[] args) {

String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack heap
items

numItems

nullnullnull

0

null

public boolean add(Object item) {
…
else {

items[numItems] = item;
numItems++;
return true;

}
}

"hello, world"

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• add's stack frame includes:
• item, which stores a copy of the reference passed as a param.
• this, which stores a reference to the called/current object

Example: Adding an Item (cont.)

public static void main(String[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack heap
items

numItems

nullnullnull

0

null

public boolean add(Object item) {
…
else {

items[numItems] = item;
numItems++;
return true;

}
}

this

"hello, world"

item

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• The method modifies the items array and numItems.
• note that the array holds a copy of the reference to the item,

not a copy of the item itself.

Example: Adding an Item (cont.)

public static void main(String[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack heap
items

numItems

nullnull

1

null

public boolean add(Object item) {
…
else {

items[numItems] = item;
numItems++;
return true;

}
}

this

"hello, world"

item

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• After the method call returns, add's stack frame is removed
from the stack.

Example: Adding an Item (cont.)

public static void main(String[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack heap
items

numItems

nullnull

1

null

public boolean add(Object item) {
…
else {

items[numItems] = item;
numItems++;
return true;

}
}

"hello, world"

Using the Implicit Parameter
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
…
public boolean add(Object item) {

if (item == null)
throw new IllegalArgumentException();

if (this.numItems == this.items.length)
return false; // no more room!

else {
this.items[this.numItems] = item;
this.numItems++;
return true;

}
}
…

}

• We can use this to emphasize the fact that we're accessing
fields in the current object.

Determining if a Bag Contains an Item

• Let’s write the ArrayBag contains() method together.

• Should return true if an object equal to item is found,
and false otherwise.

_________________ contains(_____________ item) {

}

An Incorrect contains() Method
public boolean contains(Object item) {

for (int i = 0; i < numItems; i++) {
if (items[i] != null && items[i].equals(item))

return true;
else

return false;
}
return false;

}

• Why won't this version of the method work in all cases?

• When would it work?

A Method That Takes a Bag as a Parameter
public boolean containsAll(Bag otherBag) {

if (otherBag == null || otherBag.numItems() == 0)
return false;

Object[] otherItems = otherBag.toArray();
for (int i = 0; i < otherItems.length; i++) {

if (!contains(otherItems[i]))
return false;

}

return true;

}

• We use Bag instead of ArrayBag as the type of the parameter.

• allows this method to be part of the Bag interface

• allows us to pass in any object that implements Bag

• Because the parameter may not be an ArrayBag,
we can't assume it has items and numItems fields.

• instead, we use toArray() and numItems()

A Need for Casting

• Let’s say that we want to store a collection of String objects
in an ArrayBag.

• String is a subclass of Object, so we can store String
objects in the bag without doing anything special:

ArrayBag stringBag = new ArrayBag();
stringBag.add("hello");
stringBag.add("world");

• Object isn’t a subclass of String, so this will not work:
String str = stringBag.grab(); // compiler error

• Instead, we need to use casting:
String str = (String)stringBag.grab();

Extra: Thinking About a Method's Efficiency

• For a bag with 1000 items, how many items will contains()
look at:

• in the best case?

• in the worst case?

• in the average case?

• Could we make it more efficient?

• If so, what changes would be needed to do so, and what would
be the impact of those changes?

Extra: Understanding Memory Management

• Our Bag ADT has a method toArray(), which returns an array
containing the current contents of the bag

• allows users of the ADT to iterate over the items

• When implementing toArray() in our ArrayBag class,
can we just return a reference to the items array?
Why or why not?

