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Abstract

We introduce a probabilistic model for the
factorisation of continuous Poisson process
rate functions. Our model can be thought of
as a topic model for Poisson point processes
in which each point is assigned to one of a
set of latent rate functions that are shared
across multiple outputs. We show that the
model brings a means of incorporating struc-
ture in point process inference beyond the
state-of-the-art. We derive an efficient varia-
tional inference scheme for the model based
on sparse Gaussian processes that scales lin-
early in the number of data points. Finally,
we demonstrate, using examples from spa-
tial and temporal statistics, how the model
can be used for discovering hidden structure
with greater precision than standard frequen-
tist approaches.

1 INTRODUCTION

When we observe many real-world phenomena we fre-
quently obtain event or occurrence data. Such data
usually consists of a set of points distributed in some
spatio-temporal domain. Often we will observe multi-
ple event processes simultaneously (or equivalently a
single event process in which each event has an asso-
ciated label). It is easy to imagine many examples of
such situations, for example, the time of purchases of
multiple product types or the spatio-temporal distri-
bution of the occurrence of various diseases.

For a variety of purposes, we are typically interested
in inferring a function which describes how frequently
the events are occurring; in medical or crime preven-
tion applications for example this enables resources to
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be suitably allocated or anomalous changes in activity
to be detected. The Cox process—also known as the
doubly-stochastic inhomogeneous Poisson process—is
a commonly used model for constructing statistical
models of event data, providing the mathematical un-
derpinning for the inference of the associated rate func-
tion.

Until recently Bayesian inference of continuous Cox
processes required expensive Markov Chain Monte
Carlo (mcmc) posterior simulation. It has now been
shown that sparse variational Gaussian processes can
be used to infer posterior distributions of Cox process
rate functions more efficiently without resorting to dis-
cretisation of the underlying space (Lloyd et al., 2015a;
Matthews et al., 2016).

In this paper we build on this new approach to de-
velop an inference method for multi-output structured
point processes, where individual output point pro-
cesses may share similar characteristics. We name this
algorithm Latent Poisson Process Allocation (lppa),
alluding to the similarities between lppa and Latent
Dirichlet Allocation (lda) (Blei et al., 2003), often
used to build topic models of document corpora. In
lda each word in each document is assigned a topic
from a set of latent shared topics. In lppa points are
assigned to latent rate functions that are shared across
multiple observed point processes. Thus lppa is con-
ceptually a topic model for Poisson point processes.

lppa is a continuous analogue of Non-negative Matrix
Factorisation (nmf) (Lee and Seung, 2001) and, in par-
ticular, bears a resemblance to the fully Bayesian nmf
(bnmf) model of Cemgil (2009), since both bnmf and
lppa exploit the infinite divisibility property of the
Poisson distribution to apportion data to multiple ex-
planatory factors. However lppa infers continuous—
and not discretised—rate functions and, in addition,
lppa benefits from a smooth spatial prior over the con-
tinuous latent factors.

lppa is also related to the Semi-Parametric Factor
Model (spfm) for multi-task Gaussian process (gp)
regression (Teh et al., 2005). Like lppa, spfm is is a
scaled mixture of latent Gaussian processes except, in
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the case of the former, the outputs, the (transformed)
gp latent functions and mixture parameters are con-
strained to be positive. Whereas the spfm uses the In-
formative Vector Machine (ivm) machinery to achieve
computational tractability, lppa uses a sparse varia-
tional approach (Hensman et al., 2013). Furthermore,
the lppa offers efficient inference for point processes,
enabling it to be applied to problems for which the
spfm is unsuitable.

lppa, like the Log-Gaussian Cox Process (lgcp)
(Moller et al., 1998) and the Sigmoid-Gaussian Cox
Process (sgcp) (Adams et al., 2009), uses transformed
Gaussian processes (Rasmussen and Williams, 2006)
to construct the prior over the rate function, however
lppa uses the square link function, which results in
more tractable integrals.

This work shares a similar motivation to the works
of Gunter et al. (2014), Miller et al. (2014) and Lian
et al. (2014). Like lppa, Gunter et al. (2014) uses gps
to model latent rate functions, however the former uses
a efficient variational inference scheme rather than the
expensive mcmc uniformisation technique employed
by the latter. Compared to the approach of Miller
et al. (2014), lppa provides a single integrated model
for both rate process smoothing and rate process fac-
torisation.

Lian et al. (2014) is conceptually similar to lppa.
Both methods attempt to factor continuous point pro-
cesses using a positive weighted sum of latent func-
tions. There are important differences however in the
model used to drive the latent processes and the in-
ference methods used, binary semi-Markov Jump Pro-
cesses (bsmjp) and Forward Filtering and Backward
Sampling (ffbs) respectively, which together would
seem to limit the approach to 1-dimensional time se-
ries. A gp function allows lppa to extend naturally to
higher dimensions and mixed-continuous-and-discrete
latent co-ordinate spaces.

lppa is somewhat related to a body of work
on cascading-Poisson processes, otherwise known as
Hawkes processes, for example Iwata et al. (2013),
Simma and Jordan (2010) and Linderman and Adams
(2014). In such processes, events trigger further events
and the inference challenge is to infer which events
(if any) each event triggers: lppa as formulated here
is not specifically intended for modelling these self-
excitatory processes. In addition, lppa uses a non-
parametric model for underlying rate functions, unlike
the work on Hawkes processes.

As might be expected due to the generality of the
model, lppa is applicable to a variety of applications,
which we explore in Section 4.

1.1 Multivariate Marked Cox Processes

Formally a Cox process—or doubly stochastic inho-
mogenous Poisson process—over events X ! {x(n) ∈
RR} is defined via a stochastic intensity function λ(x) :
RR → R+, with an arbitrary domain of dimension
R. The number of points, N(Xi), found in any sub-
region Xi ⊂ RR is Poisson distributed with param-
eter λXi

!
∫

Xi
λ(x) dx—where dx indicates integra-

tion with respect to the Lebesgue measure over the
subregion—and for disjoint subsets Xi, Xj , the counts
N(Xi), N(Xj) are independent. This independence is
due to the completely independent nature of points in
a Poisson process (Kingman, 1993).

A marked Cox process over events M !{(
x(n), A(x(n))

)
| x(n) ∈ RR, A(x(n)) ∈ T

}
extends

a Cox process by associating with each point, x, an
additional piece of information A(x) ∈ T called a
mark. The form of mark itself is very general; it can
be a discrete random variable, real valued random
variable or indeed another point process. The mark
assigned at any point can depend on the location and
the value of the rate function at that location.

We consider a multivariate (discrete) mark set T !
{1, . . . , T}. As the marks are discrete there will be a
rate process, λt(x), associated with each mark t. Fur-
thermore, since the set of all points, M , is equal to
the union of all sets Mt !

{(
x(n), t

)
| x(n) ∈ RR

}
, the

overall rate process must be the sum of the individ-
ual rate processes. Therefore λ(x) =

∑T
t=1 λt(x) and,

using the Poisson-multinomial connection, the proba-
bility of mark t at a point x is p(t;x) = λt(x)/λ(x).
In general the individual rate functions λt may not be
independent, although in the model we develop in the
next section we will assume they are.

In this framework, the probability density of a set of N
observed marked points M = {(x(n), A(n))}N

n=1, where
A(n) = A(x(n)), in some bounded region, X , factorises
conditioned on the rate processes1

p(M | λ1:T ) = p({x(n)}N
n=1 | λ1:T )

× p
(
{A(n)}N

n=1 | {x(n)}N
n=1, λ1:T

)
. (1)

The probability density of the points is

p({x(n)}N
n=1 | λ1:T ) = exp

{
−
∫

X
λ(x) dx

} N∏

n=1

λ(x(n)),

(2)
and, using the Poisson-multinomial connection, the

1We use the MATLAB-like notation p(a1:I | b1:J) to
denote p(a1, . . . , aI | b1, . . . , bJ).
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Figure 1: Rate functions are correlated via a
convolution process.
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Figure 2: Rate functions are uncorrelated
square-transform Gaussian processes.

probability of the N labels is

p
(
{A(n)}N

n=1 | {x(n)}N
n=1, λ1:T

)
=

N∏

n=1

λA(n)(x(n))

λ(x(n))
.

(3)
A standard inference task for multiple point processes
would be to learn the labelling distribution and unob-
served point process intensity λ. For independent rate
functions, this reduces to simply inferring the rates
functions λt from subset of points marked with the
corresponding mark t.

If the rate functions are not independent, then we may
seek to refine our model by constructing a structural
prior which allows statistical strength to be shared be-
tween the point processes associated with each label.
The latter approach was validated by Gunter et al.
(2014), using a convolution process to tie the rate pro-
cesses together, as shown in Figure 1.

In this work we will assume the marks T are unob-
served latent variables to be inferred. Due to a lack
of observability, this is impossible for a single point
process. To increase observability we need to observe
multiple point process in which the latent rate func-
tions are present in linearly independent proportions.
We will designate each of these point processes a sep-
arate output yielding a dataset Ds ! {x(s,n) ∈ X}Ns

n=1

and each of which will be tied to its own set of out-
put rate functions λs,t. Since these outputs are them-
selves marks in S = {1, . . . , S}, their superposition is a
marked point process. There are therefore two distinct
sets of marks: observed marks in S corresponding to
the outputs and unobserved marks in T corresponding
to the latent function or topic.

1.2 Permanental Point Processes

There are a variety of options for constructing the
strictly non-negative stochastic rate function λ(x),

which drives the point process of a given mark. One
common approach is to transform a Gaussian process
through a link-function, where typical choices include
the exponential (Kom Samo and Roberts, 2015), and
the sigmoid function (Adams et al., 2009). We follow
(Lloyd et al., 2015a) in using the square transform.

Constructing a rate function as a sum of square trans-
formed, zero-mean independent Gaussian processes re-
sults in a particular sub-class of Cox processes known
in the mathematical probability literature as perma-
nental point processes (Eisenbaum and Kaspi, 2009;
Hough et al., 2006).

The square transform allows efficient variational
Bayesian inference machinery that is entirely
tractable—this is not the case for the other two
transforms. The square transform places prior mass
on a larger set of translation invariant Cox processes
than the other two link-functions. The reason for
this is as follows: as we break the independence
assumption inherent in the homogeneous Poisson
process and instead introduce an increasing amount
of positive correlation between disjoint neighbouring
sub-sets of the space, the resulting point process
will exhibit ever stronger clustering behaviour for a
given configuration of points. In order to model that
range of point processes, from nearly homogeneous
to strongly clustered, we need a link function that
results in a transformed prior which has good dynamic
range, but can also achieve both very high and very
low function values, without breaking dependence be-
tween nearby function values. The squared transform
has high dynamic range, and furthermore is unique
amongst the set listed in being able to easily model
low values—including numerical zero if necessary.

From Figures 1 and 2, we can see that this makes in-
tuitive sense: the increased dynamic range afforded
by the square transform leads to a better ability to
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model high and low function values, which in turn en-
ables strong local correlations between neighbouring
subsets of the space—a characteristic of permanental
point process.

2 MODEL

We will assume the intensity of the tth topic of the sth

output is λs,t(x) = γs,tf
2
t (x), where the functions ft

are independent Gaussian process distributed random
functions. We constrain the output length scales γs,t

to being positive and thus the rate functions are a
positive mixture of positively valued latent functions
f2

t .

We condition each latent function ft at a set of in-
ducing points Z ! {z(m) ∈ X}M

m=1 and we denote
the evaluation of ft at these points ut ∼ N (⃗1ūt,Kzz).
Therefore ft|ut ∼ GP

(
µt(x), Σt(x,x′)

)
is a Gaussian

process with mean function µt(x) = kxzK
−1
zz ut and

covariance function Σt(x,x′) = Kxx′ − kxzK
−1
zz kzx′ ,

where kxz = k⊤
zx, Kxx′ , Kzz are matrices evaluated at

x, x′ and Z using a suitable kernel function. For no-
tational convenience, we have assumed that all latent
functions ft share the same set of inducing points Z,
although it is entirely possible to relax this constraint.
In this work we use the exponentiated quadratic (also
known as the “squared exponential”) Automatic Rel-
evance Determination (ard) kernel with parameters
α1:R (Appendix A.1).

Combining the Cox process likelihood, Equation 2,
and mark likelihood, Equation 3, using indicator vari-
ables, square transform Gaussian process rate func-
tions and output (square) length scales γs,t gives2

p(Ds, As | f1:T ,Θ) =
∏

t
exp

(
−
∫

γs,tf
2
t (x)dx

)

×
∏

n

[
γs,tf

2
t

(
x(s,n)

)] {A(n)
s =t}

. (4)

The joint distribution of D1:S , f1:T , u1:T and A1:S in
this hierarchy is

p(D1:S , A1:S , f1:T ,u1:T | Θ)

=
∏

t
p(ft | ut) p(ut) ×

∏
s
p(Ds, As | f1:T ), (5)

where Θ ! {Γ, α1:R, ū1:T } is the set of model parame-
ters and Γ ∈ RS×T

+ is a matrix of output length scales
with elements γs,t. For notational convenience we will
often omit conditioning on Θ.

2We use
∑

n as shorthand for
∑Ns

n=1 and
∑

t for
∑T

t=1

and
∑

s for
∑S

s=1 and analogously for products.

3 VARIATIONAL INFERENCE

We will use variational inference to obtain a bound on
the model evidence p(D1:S). To achieve this we take
the following steps: firstly integrate out the inducing
points ut and marginalise the rate functions f2

t (Sec-
tion 3.1) to obtain an uncollapsed lower bound; then
integrate this uncollapsed bound over the region X
(Section 3.2); before collapsing the indicator variables
As (Section 3.3).

3.1 The Uncollapsed Bound

We begin by integrating out the latent function vari-
ables u1:T using a variational distribution q(u1:T ) =∏

t q(ut). In contrast to standard variational inference
approaches we bring both q(u1:T ) and p(f1:T | u1:T )
outside of the logarithm giving the uncollapsed bound
(also see §A.2):

log p(D1:S , A1:S |Θ) ≥ Eq(f1:T )

[
log p(D1:S , A1:S | f1:T )

]

− KL
(
q(u1:T )

∥∥ p(u1:T )
)

! L(D1:S , A1:S ; Θ). (6)

Since the likelihood is not directly dependent on u1:T

we can integrate it out before taking expectations. As
p(ft | ut) and q(ut) are conjugate, we can write q(ft) =
∫

p(ft | ut) q(ut)dut = GP
(
ft; µ̃t(x), Σ̃t(x,x′)

)
, (7)

where µ̃t(x) = kxzK
−1
zz mt and Σ̃t(x,x′) = Kxx′ −

kxzK
−1
zz kzx′ + kxzK

−1
zz StK

−1
zz kzx′ and q(f1:T ) =∏

t q(ft). The last term in Equation 6 is the Kullback-
Leibler divergence between T pairs of independent
Gaussian distributions (§A.3).

We expand Equation 6 using (4) to give3

Eq(f1:T )

[
log p(D1:S , A1:S | f1:T )

]
= (8)

∑
s

[
−
∑

t
γs,t

∫

X

(
Eq(ft)[ft,x]2 + Varq(ft)[ft,x]

)
dx

+
∑

n

∑
t

{A(n)
s = t}

(
log(γs,t) + Eq(ft)[log f2

s,t,n]
)]

.

The integral Eq(ft)[log f2
s,t,n] has an analytic solution

Eq(ft)[log f2
s,t,n] = −G̃

(
− µ̃2

s,t,n

2σ̃2
s,t,n

)
+ log

(
σ̃2

s,t,n

2

)
− C

= Gs,t,n (9)

where C ≈ 0.5772156 is the Euler-Mascheroni constant
and G̃ is a specialised version of a partial derivative of
the confluent hyper-geometric function (Ancarani and
Gasaneo (2008), §A.4).

3We use the following shorthand definitions: ft,x !
ft(x), µ̃t,x ! µ̃t(x), σ̃2

t,x ! Σ̃t(x,x), fs,t,n ! ft(x
(s,n)),

µ̃s,t,n ! µ̃t(x
(s,n)), σ̃2

s,t,n ! Σ̃t(x
(s,n),x(s,n))
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3.2 Integrating over the region X

Due to the integral embedded in the likelihood, Equa-
tion 4, we demand the following integrals over the re-
gion X , where |X | =

∫
X dx:

∫

X
Eq(ft)[ft,x]2dx = m⊤

t K−1
zz ΨzzK

−1
zz mt, (10)

∫

X
Varq(ft)[ft,x]dx = |X | − Tr(K−1

zz Ψzz)

+ Tr(K−1
zz StK

−1
zz Ψzz). (11)

The matrix Ψzz is constructed using the function
Ψ(z, z′) =

∫
X K(z,x)K(x, z′)dx. Ψ can be computed

in closed form for the ard kernel used in this work
(§A.5), as well as for other kernels including the spec-
tral kernel (Wilson et al., 2014).

3.3 Collapsing the Bound

The bound (6) contains a large number of multi-

variate indicator variables A
(n)
s . The standard vari-

ational inference approach to this problem would be
to marginalise these variables using a variational dis-
tribution q(A1:S) and to update q(u1:T ), q(A1:S) and
Θ alternately using co-ordinate ascent ‘E’ and ‘M’-
steps. Instead we prefer to collapse out the indicator
variables and update the variational parameters and
model parameters in a single joint optimisation.

Collapsed variational Bayes has a couple of primary
benefits: firstly it reduces the number of variables
which must be explicitly updated via a marginal gradi-
ent step at each iteration; secondly, as we have analyt-
ically marginalised (in this case a large subset of) the
unknown variables, the implicit updates of those un-
known variables will occur with greater efficiency (in
the sense that they will converge to a solution faster)
(Hensman et al., 2012).

To do this we first note that we can write the bound
(6) as the sum of a set of variables As,t,n = log(γs,t)+

Gs,t,n which multiply the indicator variables A
(n)
s and

a term B, that does not, resulting in the compact def-
inition:

L(D1:S , A1:S ; Θ) = B +
∑

s,t,n

{A(n)
s = t}As,t,n. (12)

To collapse the bound we sum over all the possible
assignments to each of the allocation variables4:

log p(D1:S |Θ) = log
∑

A1:S

p(D1:S , A1:S |Θ)

≥ B +
∑

s

∑
n

log
∑

t
exp As,t,n

! L(D1:S ; Θ) (13)

4A more complete derivation is given in §A.6.

3.4 Kronecker Structure

Since our GP kernel, is—by necessity—separable
across input dimensions, e.g. Equation 18, we can con-
struct our kernel matrices to have Kronecker structure.
Such an approach was previously used with Poisson-
likelihood gp models by Flaxman et al. (2015), albeit
outside of a variational framework. To achieve this
structuring we begin by introducing a separate set of

inducing points Zr !
{
z
(m)
r ∈ [XMin

r , XMax
r ]

}Mr

m=1
for

each dimension r, so that the overall inducing point set
is the cross product of these sets, i.e. Z = Z1×. . .×ZR

and M =
∏

r Mr.

Using these inducing points we can construct the ma-
trices Kzz, Ψzz as the Kronecker product of R matri-
ces:

Kzz = ⊗R

r=1Kzrzr
, Ψzz = ⊗R

r=1Ψzrzr
(14)

where the functions used to construct Kzrzr
and Ψzrzr

are the same as Equations 18 and 26 without the prod-
uct over R. We must also give the covariance of the
variational distributions, St, Kronecker structure:

St = ⊗R

r=1St,r (15)

We could also similarly structure the means, mt, how-
ever our implementation left these as general full vec-
tors, since we can still exploit Kronecker structure
when multiplying Kronecker matrices with full vec-
tors. In fact, we never need to construct any full
M ×M matrix to compute the collapsed lower bound,
nor any of its derivatives and instead we store each of
the constituent matrices separately. For example, us-
ing straight-forward applications of the Kronecker ma-
trix identities for inversion, multiplication and trace,
we can compute the following term of Equation 11:
Tr(K−1

zz Ψzz), as

Tr

(⊗R

r=1K
−1
zrzr

Ψzrzr

)
=
∏

r

Tr
(
K−1

zrzr
Ψzrzr

)
,

which only requires multiplication and inversion of Mr

sized matrices. We also need to maintain Kronecker
structure of the cross-kernel terms kzx = k⊤

xz:

k(s,n)
zx = ⊗R

r=1k
(s,n)
zrxr

. (16)

To allow efficient use of low-level matrix libraries, it

is important to keep all the constituent vectors k
(s,n)
zrxr

stacked together in contiguous memory as follows:

K(s,1:Ns)
zrxr

= [k(s,1)
zrxr

, . . . ,k(s,Ns)
zrxr

]. (17)

This allows us to compute, for example, K
(s,1:Ns)
xz K−1

zz

using only R BLAS function calls rather than Ns × R
calls separately.
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There are two important consequences of this struc-
turing. The first is that inducing points cannot be

moved independently, we can only control the z
(m)
r

each of which controls the rth co-ordinate of M/Mr

inducing points in Z. However, if we are content to
place the inducing points on a grid and forgo the (com-
putationally expensive) opportunity of optimising the
locations, this distinction is moot. The other impor-
tant consequence is the restriction of St to have Kro-
necker structure. Since this restricts the variational
distribution q(ut), the latter is necessarily less flexible
than the full matrix equivalent. We can therefore ex-
pect the tightest variational bound achievable in the
full matrix case will always be at least as good as in the
Kronecker structured case; the latter may also induce
a more complicated optimisation landscape.

3.5 Computational Complexity

The computational complexity of lppa is a function
of the total number of data points in all outputs
N =

∑
s Ns, the number of latent functions T and the

number of inducing points M (or for Kronecker struc-
tured kernel matrices maxr(Mr)). As can be seen from
Equation 8, the computational complexity is linear in
N and T . The most significant computational costs are
associated with inverting M ×M (or Mr ×Mr) matri-
ces, with complexity O(M3) if computed via Gauss-
Jordan elimination, and with matrix-matrix multipli-
cations with complexity O(NM2).

We note that both Kzz and Ψzz meet the require-
ments for inversion and matrix-vector multiplication
using the Inverse Fast Multipole Method (ifmm) (Am-
bikasaran and Darve, 2014)—when computed using
squared exponential kernel—which has O(n) complex-
ity for both operations. However, the headline com-
plexity is still governed by matrix-matrix multiplica-
tions of S in either case and is O(TNM2).

3.6 Predictive Distribution

To evaluate the performance of lppa we will com-
pute a lower bound on the predictive log-likelihood,
Lp ≤ log p(H1:S |D1:S), of held out sources with Hs =

{x̃(s,n)}Ñs
n=1. The derivation of Lp begins by assuming

the posterior distribution of the latent functions at the
inducing points, p(u1:T |D1:S), is well approximated by
the optimised variational distribution q(u1:T ). The re-
maining steps follow the derivation of collapsed bound
and the resulting bound is the same except there is no
KL term.

When evaluating Lp there are two distinct use cases
corresponding to whether we believe the held out data
has the same rate as the training data, or whether

they merely have the same latent functions f2
t , albeit

in different proportions. The former case corresponds
to reusing the same learned output length scales, Γ,
for test, and the latter corresponds to allowing Γ to be
re-optimised, holding the remaining parameters fixed.

3.7 Model Identifiability

Like most factor models—nmf, lda, etc.—lppa is
non-identifiable and non-unique; there may be mul-
tiple decompositions that are well supported by the
data and the decomposition found is sensitive to initial
conditions. The Gaussian process prior and Bayesian
shrinkage will tend to reduce the non-identifiability of
the solutions, by expressing a preference for smooth
latent functions. Bayesian shrinkage will also tend to
prevent over-fitting the number of latent functions.

The requirements for lppa to generate unique solu-
tions will be at least those for unique nmf solutions,
i.e. complete factorial sampling of linearly indepen-
dent basis (Donoho and Stodden, 2003).

4 EXPERIMENTS

In this section we will motivate and demonstrate the
application of lppa to several real world datasets.

We do not include experiments on synthetic data with
known ground truth rate functions as they are not very
informative. Due to non-identifiability the learned la-
tent rate functions may not be very similar to the gen-
erative latent functions in a mean-squared-error sense.
The learned rate functions are often sparse hybrids of
the generative functions.

Approximate model recovery using lppa usually re-
quires a large number of points since the rate functions
are only weakly observed, with each latent function
dominating one of the outputs. However this is not
representative of real world use on which we focus.

Neither model recovery nor identifiability is required
for the model to be of practical value since the out-
puts are identifiable and, as we shall demonstrate, the
ability of the model to generalise across data sets does
improve predictive performance.

4.1 Benchmark

We benchmark against an algorithm combining Ker-
nel Smoothing (ks) and Poisson-nmf (Lee and Se-
ung, 2001) We first smooth each data set using trun-
cated normal densities to construct a rate process,
λs(x) =

∑Ns

n=1 NX (x;x(s,n), Σ∗
s), for each data source

s with diagonal covariances, Σ∗
s learned by leave-one-

out cross validation (§A.7). Next we integrate the rate
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Figure 3: Bases computed by lppa for the Basketball data set using 20 players. Note the sparsity of the three
factors, and the fact that they strongly conform to three ‘modes’ of shot typically attempted by players. From
left to right: the slam-dunk, the two-pointer shot, and finally the three-point boundary line and corners.

functions, λs, over D grid-cells, each of dimension ∆x,
and denote lsd as the result of the integral over the dth

cell. We then factorise the matrix L ∈ RS×D
+ , with en-

tries lsd, using nmf as L ∼ P(AB), where A ∈ RS×T
+

is the so-called “activation” matrix, and B ∈ RT×D
+

is the “template” matrix. This two stage procedure
results in a predictive rate function that is a positive
weighted sum of piece-wise constant functions.

4.2 Twitter Data

Our first application is a simple 1-dimensional time
series from Twitter. We pulled the Twitter streams
of randomly selected politicians from Australia (19
politicians), the UK (24) and the US (25) during an
84-hour time window, specifically from midday on 1st

June 2015 through to midnight on 5th June 2015.

We created 10 test/train splits of roughly equal size
by dividing each stream in half (odd tweets randomly
assigned). We then ran up to 1000 iterations of gra-
dient decent on our lppa model. Each split contained
∼ 672 tweets and each politician tweeted between 3
and 61 times (in each split). We used 10 random ini-
tialisations for lppa and the benchmark, selecting the
run with the best training likelihood; the latter was
then used to compute the predictive likelihood. We
repeated this for each split and averaged the result.

2nd 3rd 4th 5th
Figure 4: Bases computed by lppa for Twitter data.

As shown in Figure 4, the three base functions inferred
are periodic and it is clear that they do not fully over-
lap, the phase lag can be attributable to the 8-12 hour

time difference between each of the three time-zones.
The predictive log-likelihood performance5 , Table 1,
is very strong as compared to the competing method.

Table 1: Twitter held out predictive log-likelihoods.
lppa (Lp) ks+nmf ind. ks
-163.98 -379.77 -393.82

4.3 Basketball Data

For our next experiment we investigate an applica-
tion analysed by Miller et al. (2014) and Gunter et al.
(2014), specifically that of learning the scoring inten-
sity of professional NBA Basketball players. Although
players score from different locations there are several
different key positions that influence where each player
is likely to score from, as shown in Figure 3.

As described in Section 3.6 we can consider two use
cases: 1) the common rate (cr) case, corresponds to
the prediction of a held out set of shot data from
players used to train the model and 2) the common
topic (ct) case, corresponds the construction of rate
processes for players not previously used to train the
model using new output length scales, learnt for each
new player independently.

As before we create test/train splits and use random
restarts. Inducing points were fixed on an evenly
spaced grid and we used a 25×30 grid for the bench-
mark. Experimental results5 are given in Tables 2&3.

4.4 Wild Bird Data

In this experiment we used the wild-bird dataset previ-
ously investigated by Ioannis et al. (2012). The dataset

5 Predictive performance can be improved by using the
variational distribution as a Monte-Carlo integration pro-
posal distribution as described in Lloyd et al. (2015a).
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Figure 5: Bases computed by lppa for the Wild Bird dataset. Each sub-plot represents the spatio-temporal
distribution of putative communities of birds. The numbers and colour coding correspond those in Figure 6.

Table 2: Basketball held out predictive log-likelihoods.
lppa(Lp) ks+nmf ind. ks

cr(1) ct(2) cr(1) ct(2) cr(1)
1 -3599.2 -3577.7 -3808.0 -4063.0 -4079.8
2 -3701.4 -3602.8 ” ” ”
3 -3648.3 -3610.9 -3787.0 -3947.5 ”
4 -1866.6 -1832.6 -1998.1 -1806.5 -2075.0
5 -5647.8 -5657.4 -6084.3 -6678.4 -6434.9
6 -3503.9 -3523.3 -3808.0 -4063.0 -4079.8

Table 3: Experimental Parameters.
Kron T S Ns Inducing Pts

1 No 3 40 25 13 × 17
2 Yes* 3 40 25 13 × 17
3 No 4* 40 25 13 × 17
4 No 3 20* 25 13 × 17
5 No 3 40 50* 13 × 17
6 No 3 40 25 25 × 30*

contains the times tagged wild birds arrive at a num-
ber of Radio Frequency Identification (rfid) equipped
bird feeders distributed across Wytham Great Wood,
near Oxford. The dataset contains hundreds of birds
and hundreds of thousands of arrivals at dozens of lo-
cations shown Figure 6. We selected a subset of the
data containing 14,742 arrivals by 274 birds at 37 lo-
cations over a 7 day period.

We model each bird as a separate output and latent
functions are defined over a mixed continuous discrete
co-ordinate space consisting of arrival time and feeder
ID. Although the location identifiers are discrete, the
kernel between feeders reflect their geographic prox-
imity.6 We used six of these continuous-discrete latent
functions, which are shown in Figure 5.

Factorisation reveals likely communities of birds, each
of which has a distinct arrival intensity for each feeder.

6The presence of this discrete dimension means that
one of the integrals used to compute Equation 26 becomes
a finite sum, see §A.8.
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Figure 6: Feeding stations in Wytham Great Wood.

We found that most birds attached strongly to one
community, suggesting that much of the community
structure has been captured.

5 CONCLUSION

We have presented a Bayesian factor model for con-
tinuous Poisson process intensities and an associated
variational inference algorithm. The approach yields
sparse, smooth and interpretable latent factors. We
have demonstrated the model on real world datasets.

This work has many possible extensions and applica-
tions, for example modelling dynamic interaction net-
works. The latter arise when people or computers
communicate, creating ephemeral links that can be
thought of as point processes. We may wish to in-
fer shared structure between activity on each link that
arises from the community structure of the senders and
receivers. lppa can easily be adapted for this purpose
(see Lloyd et al. (2015b) and §A.9).

396



Lloyd, Gunter, Nickson, Osborne, Roberts

Acknowledgements

The authors would like to thank James Hensman for
helpful discussions. Chris Lloyd is funded by a DSTL
National PhD Scheme Studentship. Tom Gunter is
supported by UK Research Councils. Tom Nickson is
supported by an EPSRC/ORCHID PhD Studentship.

References

R. P. Adams, I. Murray, and D. J. C. MacKay.
Tractable Nonparametric Bayesian Inference in
Poisson Processes with Gaussian Process Intensities.
In ICML, 2009.

S. Ambikasaran and E. Darve. The inverse fast multi-
pole method. arXiv pre-print 1407.1572, 2014.

L. U. Ancarani and G. Gasaneo. Derivatives of
any order of the confluent hypergeometric function
F1 1 (a, b, z) with respect to the parameter a or b.

Journal of Mathematical Physics, 49(6), 2008.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirich-
let allocation. JMLR, 3:993–1022, 2003.

A. T. Cemgil. Bayesian Inference for Non-negative
Matrix Factorisation Models. Computational Intel-
ligence and Neuroscience, 2009.

David Donoho and Victoria Stodden. When Does Non-
Negative Matrix Factorization Give Correct Decom-
position into Parts? In NIPS, 2003.

N. Eisenbaum and H. Kaspi. On permanental pro-
cesses. Stochastic Processes and their Applications,
119(5):1401 – 1415, 2009.

S. Flaxman, A. Wilson, D. Neill, H. Nickisch, and
A. Smola. Fast Kronecker Inference in Gaussian
Processes with non-Gaussian Likelihoods. In ICML,
2015.

T. Gunter, C. Lloyd, M. A. Osborne, and S. J.
Roberts. Efficient Bayesian Nonparametric Mod-
elling of Structured Point Processes. In UAI, 2014.

J. Hensman, M. Rattray, and N. D. Lawrence. Fast
Variational Inference in the Conjugate Exponential
Family. In NIPS, 2012.

J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian
Processes for Big Data. In UAI, 2013.

J. B. Hough, M. Krishnapur, Y. Peres, and B. Virg.
Determinantal processes and independence. Proba-
bility Surveys, 2006.

P. Ioannis, S. J. Roberts, I. Rezek, and B. C. Sheldon.
Inferring social network structure in ecological sys-
tems from spatio-temporal data streams. Journal of
The Royal Society Interface, 9(76):3055–3066, 2012.

T. Iwata, A. Shah, and Z. Ghahramani. Discover-
ing Latent Influence in Online Social Activities via
Shared Cascade Poisson Processes. In KDD, 2013.

J. F. C. Kingman. Poisson Processes (Oxford Studies
in Probability). Oxford University Press, 1993.

Y. L. Kom Samo and S. J. Roberts. Scalable Nonpara-
metric Bayesian Inference on Point Processes with
Gaussian Processes. In ICML, 2015.

D. D. Lee and S. H. Seung. Algorithms for Non-
negative Matrix Factorization. In NIPS, 2001.

W. Lian, V. Rao, B. Eriksson, and L. Carin. Modeling
Correlated Arrival Events with Latent Semi-Markov
Processes. In ICML, 2014.

S. Linderman and R. P. Adams. Discovering Latent
Network Structure in Point Process Data. In ICML,
2014.

C. Lloyd, T. Gunter, M. A. Osborne, and S. J.
Roberts. Variational Inference for Gaussian Process
Modulated Point Processes. In ICML, 2015a.

C. Lloyd, T. Gunter, M. A. Osborne, and S. J.
Roberts. Inferring Dynamic Interaction Networks
with N-LPPA. In Networks in the social and infor-
mation sciences, NIPS workshop, 2015b.

A. Matthews, J. Hensman, R. Turner, and Z. Ghahra-
mani. On sparse variational methods and the
kullback-leibler divergence between stochastic pro-
cesses. In AISTATS, 2016.

A. Miller, L. Bornn, R. P. Adams, and K. Golds-
berry. Factorized Point Process Intensities: A Spa-
tial Analysis of Professional Basketball. In ICML,
2014.

J. Moller, A. R. Syversveen, and R. P. Waagepetersen.
Log Gaussian Cox Processes. Scandinavian Journal
of Statistics, 25(3):451–482, 1998.

C. E. Rasmussen and C. K. I. Williams. Gaussian
Processes for Machine Learning. The MIT Press,
2nd edition, 2006.

M. N. Schmidt and M. Morup. Nonparametric
Bayesian Modeling of Complex Networks: an Intro-
duction. IEEE Signal Processing Magazine, 2013.

A. Simma and M. I. Jordan. Modeling Events with
Cascades of Poisson Processes. In UAI, 2010.

Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparamet-
ric Latent Factor Models. In Proceedings of the In-
ternational Workshop on Artificial Intelligence and
Statistics, volume 10, 2005.

A. Wilson, E. Gilboa, A. Nehorai, and J. Cunning-
ham. Fast kernel learning for multidimensional pat-
tern extrapolation. In NIPS, 2014.

397


