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Abstract. A practical introduction to stochastic modelling of reaction-diffusion processes is
presented. No prior knowledge of stochastic simulations is assumed. The methods are explained
using illustrative examples. The article starts with the classical Gillespie algorithm for the stochastic
modelling of chemical reactions. Then stochastic algorithms for modelling molecular diffusion are
given. Finally, basic stochastic reaction-diffusion methods are presented. The connections between
stochastic simulations and deterministic models are explained and basic mathematical tools (e.g.
chemical master equation) are presented. The article concludes with an overview of more advanced
methods and problems.
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1. Introduction. There are two fundamental approaches to the mathematical
modelling of chemical reactions and diffusion: deterministic models which are based
on differential equations; and stochastic simulations. Stochastic models provide a more
detailed understanding of the reaction-diffusion processes. Such a description is often
necessary for the modelling of biological systems where small molecular abundances
of some chemical species make deterministic models inaccurate or even inapplicable.
Stochastic models are also necessary when biologically observed phenomena depend on
stochastic fluctuations (e.g. switching between two favourable states of the system).

In this paper, we provide an accessible introduction for students to the stochastic
modelling of the reaction-diffusion processes. We assume that students have a basic
understanding of differential equations but we do not assume any prior knowledge of
advanced probability theory or stochastic analysis. We explain stochastic simulation
methods using illustrative examples. We also present basic theoretical tools which
are used for analysis of stochastic methods. We start with a stochastic model of a
single chemical reaction (degradation) in Section 2.1, introducing a basic stochastic
simulation algorithm (SSA) and a mathematical equation suitable for its analysis (the
so-called chemical master equation). Then we study systems of chemical reactions in
the rest of Section 2, presenting the Gillespie SSA and some additional theoretical
concepts. We introduce new theory whenever it provides more insights into the par-
ticular example. We believe that such an example-based approach is more accessible
for students than introducing the whole theory first. In Section 3, we study SSAs
for modelling diffusion of molecules. We focus on models of diffusion which are later
used for the stochastic modelling of reaction-diffusion processes. Such methods are
presented in Section 4. We also introduce further theoretical concepts, including the
reaction-diffusion master equation, the Smoluchowski equation and the Fokker-Planck
equation. We conclude with Sections 5 and 6 where more advanced problems, methods
and theory are discussed, giving references suitable for further reading.

The stochastic methods and the corresponding theory are explained using several
illustrative examples. We do not assume a prior knowledge of a particular computer
language in this paper. A student might use any computer language to implement the
examples from this paper. However, we believe that some students might benefit from
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our computer codes which were used to compute the illustrative results in this paper.
The computer codes (in Matlab or Fortran) can be downloaded from the website
http://www.maths.ox.ac.uk/cmb/Education/ which is hosted by the Centre for
Mathematical Biology in the Mathematical Institute, University of Oxford.

2. Stochastic simulation of chemical reactions. The goal of this section is
to introduce stochastic methods for the modelling of (spatially homogeneous) systems
of chemical reactions. We present the Gillespie SSA, the chemical master equation and
its consequences [18, 19]. We start with the simplest case possible, that of modelling a
single chemical reaction, in Section 2.1. We then study two simple systems of chemical
reactions in Sections 2.2 and 2.3.

2.1. Stochastic simulation of degradation. Let us consider the single chem-
ical reaction

A
k−→ ∅ (2.1)

where A is the chemical species of interest and k is the rate constant of the reaction.
The symbol ∅ denotes chemical species which are of no further interest in what fol-
lows. The rate constant k in (2.1) is defined so that k dt gives the probability that a
randomly chosen molecule of chemical species A reacts (is degraded) during the time
interval [t, t + dt) where t is time and dt an (infinitesimally) small time step. In par-
ticular, the probability that exactly one reaction (2.1) occurs during the infinitesimal
time interval [t, t + dt) is equal to A(t)k dt where we denote the number of molecules
of chemical species A at time t simply as A(t). This notational convention will be
used throughout the paper.

Let us assume that we have n0 molecules of A in the system at time t = 0,
i.e. A(0) = n0. Our first goal is to compute the number of molecules A(t) for
times t > 0. To do that, we need a computer routine generating random numbers
uniformly distributed in the interval (0, 1). Such a program is included in many modern
programming languages (e.g. function rand in Matlab): It generates a number r ∈
(0, 1), so that the probability that r is in a subinterval (a, b) ⊂ (0, 1) is equal to b− a
for any a, b ∈ (0, 1), a < b.

The mathematical definition of the chemical reaction (2.1) can be directly used to
design a “naive” SSA for simulating it. We choose a small time step ∆t. We compute
the number of molecules A(t) at times t = i∆t, i = 1, 2, 3, . . . , as follows. Starting
with t = 0 and A(0) = n0, we perform two steps at time t:

(a1) Generate a random number r uniformly distributed in the interval (0, 1).
(b1) If r < A(t)k ∆t, then put A(t+∆t) = A(t)−1; otherwise, A(t+∆t) = A(t).

Then continue with step (a1) for time t + ∆t.

Since r is a random number uniformly distributed in the interval (0, 1), the probability
that r < A(t)k ∆t is equal to A(t)k ∆t. Consequently, step (b1) says that the proba-
bility that the chemical reaction (2.1) occurs in the time interval [t, t+∆t) is equal to
A(t)k ∆t. Thus step (b1) correctly implements the definition of (2.1) provided that
∆t is small. The time evolution of A obtained by the “naive” SSA (a1)–(b1) is given
in Figure 2.1(a) for k = 0.1 sec−1, A(0) = 20 and ∆t = 0.005 sec. We repeated the
stochastic simulation twice and we plotted two realizations of SSA (a1)–(b1). We
see in Figure 2.1(a) that two realizations of SSA (a1)–(b1) give two different results.
Each time we run the algorithm, we obtain different results. This is generally true
for any SSA. Therefore, one might ask what useful and reproducible information can
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Fig. 2.1. Stochastic simulation of chemical reaction (2.1) for k = 0.1 sec−1 and A(0) = 20. (a)
Number of molecules of A as a function of time for two realizations of the “naive” SSA (a1)–(b1)
for ∆t = 0.005 sec; (b) results of ten realizations of SSA (a2)–(c2)(solid lines; different colours show
different realizations) and stochastic mean (2.8) plotted by the dashed line.

be obtained from stochastic simulations? This question will be addressed later in this
section.

The probability that exactly one reaction (2.1) occurs during the infinitesimal time
interval [t, t+dt) is equal to A(t)k dt. To design the SSA (a1)–(b1), we replaced dt by
the finite time step ∆t. In order to get reasonably accurate results, we must ensure
that A(t)k ∆t ¿ 1 during the simulation. We used k = 0.1 sec−1 and ∆t = 0.005 sec.
Since A(t) ≤ A(0) = 20 for any t ≥ 0, we have that A(t)k ∆t ∈ [0, 0.01] for any
t ≥ 0. Consequently, the condition A(t)k ∆t ¿ 1 is reasonably satisfied during the
simulation. We might further increase the accuracy of the SSA (a1)–(b1) by decreasing
∆t. However, decreasing ∆t increases the computational intensity of the algorithm.
The probability that the reaction (2.1) occurs during the time interval [t, t + ∆t) is
less or equal to 1% for our parameter values. During most of the time steps, we
generate a random number r in step (a1) to find out that no reaction occurs in step
(b1). Hence, we need to generate a lot of random numbers before the reaction takes
place. Our next task will be to design a more efficient method for the simulation of
the chemical reaction (2.1). We will need only one random number to decide when
the next reaction occurs. Moreover, the method will be exact. There will be no
approximation in the derivation of the following SSA (a2)–(c2).

Suppose that there are A(t) molecules at time t in the system. Our goal is to com-
pute time t+τ when the next reaction (2.1) takes place. Let us denote by f(A(t), s) ds
the probability that, given A(t) molecules at time t in the system, the next reaction
occurs during the time interval [t+ s, t+ s+ds) where ds is an (infinitesimally) small
time step. Let g(A(t), s) be the probability that no reaction occurs in interval [t, t+s).
Then the probability f(A(t), s) ds can be computed as a product of g(A(t), s) and the
probability that a reaction occurs in the time interval [t+ s, t+ s+ds) which is given
according to the definition of (2.1) by A(t + s)k ds. Thus we have

f(A(t), s) ds = g(A(t), s)A(t + s)k ds.

Since no reaction occurs in [t, t + s), we have A(t + s) = A(t). This implies

f(A(t), s) ds = g(A(t), s)A(t)k ds. (2.2)
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To compute the probability g(A(t), s), let us consider σ > 0. The probability that no
reaction occurs in the interval [t, t + σ + dσ) can be computed as the product of the
probability that no reaction occurs in the interval [t, t + σ) and the probability that
no reaction occurs in the interval [t + σ, t + σ + dσ). Hence

g(A(t), σ + dσ) = g(A(t), σ)[1 − A(t + σ)k dσ].

Since no reaction occurs in the interval [t, t + σ), we have A(t + σ) = A(t). Conse-
quently,

g(A(t), σ + dσ) − g(A(t), σ)

dσ
= −A(t)k g(A(t), σ).

Passing to the limit dσ → 0, we obtain the ordinary differential equation (in the σ
variable)

dg(A(t), σ)

dσ
= −A(t)k g(A(t), σ).

Solving this equation with initial condition g(A(t), 0) = 1, we obtain

g(A(t), σ) = exp[−A(t)kσ].

Consequently, (2.2) can be written as

f(A(t), s) ds = A(t)k exp[−A(t)ks] ds. (2.3)

Our goal is to find τ such that t + τ is the time when the next reaction occurs,
provided that there are A(t) molecules of A in the system at time t. Such τ ∈ (0,∞)
is a random number which has to be generated consistently with the definition of the
chemical reaction (2.1). To do that, we consider the function F (·) defined by

F (τ) = exp[−A(t)kτ ]. (2.4)

The function F (·) is monotone decreasing for A(t) > 0. If τ is a random number
from the interval (0,∞), then F (τ) is a random number from the interval (0, 1). If
τ is a random number chosen consistently with the reaction (2.1), then F (τ) is a
random number uniformly distributed in the interval (0, 1) which can be shown as
follows. Let a, b, a < b, be chosen arbitrarily in the interval (0, 1). The probability
that F (τ) ∈ (a, b) is equal to the probability that τ ∈ (F−1(b), F−1(a)) which is given
by the integral of f(A(t), s) over s in the interval (F−1(b), F−1(a)). Using (2.3) and
(2.4), we obtain

∫ F−1(a)

F−1(b)

f(A(t), s) ds =

∫ F−1(a)

F−1(b)

A(t)k exp[−A(t)ks] ds

= −
∫ F−1(a)

F−1(b)

dF

ds
ds = −F [F−1(a)] + F [F−1(b)] = b − a.

Hence we have verifed that F (τ) is a random number uniformly distributed in (0, 1).
Such a number can be obtained using the random number generator (e.g. function
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rand in Matlab). Let us denote it by r. The previous observation implies that we can
generate the time step τ by putting r = F (τ). Using (2.4), we obtain

r = exp[−A(t)kτ ].

Solving for τ , we obtain the formula

τ =
1

A(t)k
ln

[

1

r

]

. (2.5)

Consequently, the SSA for the chemical reaction (2.1) can be written as follows.
Starting with t = 0 and A(0) = n0, we perform three steps at time t:

(a2) Generate a random number r uniformly distributed in the interval (0, 1).
(b2) Compute the time when the next reaction (2.1) occurs as t + τ where τ is

given by (2.5).
(c2) Compute the number of molecules at time t + τ by A(t + τ) = A(t) − 1.

Then continue with step (a2) for time t + τ.

Steps (a2)–(c2) are repeated until we reach the time when there is no molecule of A
in the system, i.e. A = 0. SSA (a2)–(c2) computes the time of the next reaction
t + τ using formula (2.5) in step (b2) with the help of one random number only.
Then the reaction is performed in step (c2) by decreasing the number of molecules
of chemical species A by 1. The time evolution of A obtained by SSA (a2)–(c2) is
given in Figure 2.1(b). We plot ten realizations of SSA (a2)–(c2) for k = 0.1 sec−1

and A(0) = 20. Since the function A(t) has only integer values {0, 1, 2, . . . , 20}, it is
not surprising that some of the computed curves A(t) partially overlap. On the other
hand, all ten realizations yield different functions A(t). Even if we made millions of
stochastic realizations, it would be very unlikely (with probability zero) that there
would be two realizations giving exactly the same results. Therefore, the details of
one realization A(t) are of no special interest (they depend on the sequence of random
numbers obtained by the random number generator). However, averaging values of
A at time t over many realizations (e.g. computing the stochastic mean of A), we
obtain a reproducible characteristic of the system – see the dashed line in Figure
2.1(b). The stochastic mean of A(t) over (infinitely) many realizations can be also
computed theoretically as follows.

Let us denote by pn(t) the probability that there are n molecules of A at time t
in the system, i.e. A(t) = n. Let us consider an (infinitesimally) small time step dt
chosen such that the probability that two molecules are degraded during [t, t + dt)
is negligible compared to the probability that only one molecule is degraded during
[t, t + dt). Then there are two possible ways for A(t + dt) to take the value n: either
A(t) = n and no reaction occurred in [t, t+dt), or A(t) = n+1 and one molecule was
degraded in [t, t + dt). Hence

pn(t + dt) = pn(t) × (1 − kndt) + pn+1(t) × k(n + 1) dt.

A simple algebraic manipulation yields

pn(t + dt) − pn(t)

dt
= k(n + 1) pn+1(t) − kn pn(t).

Passing to the limit dt → 0, we obtain the so-called chemical master equation in the
form

dpn

dt
= k(n + 1) pn+1 − kn pn. (2.6)
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Equation (2.6) looks like an infinite system of ordinary differential equations (ODEs)
for pn, n = 0, 1, 2, 3, . . . . Our initial condition A(0) = n0 implies that there are never
more than n0 molecules in the system. Consequently, pn ≡ 0 for n > n0 and the
system (2.6) reduces to a system of (n0 + 1) ODEs for pn, n ≤ n0. The equation for
n = n0 reads as follows

dpn0

dt
= −kn0 pn0

.

Solving this equation with initial condition pn0
(0) = 1, we get pn0

(t) = exp[−kn0t].
Using this formula in the chemical master equation (2.6) for pn0−1(t), we obtain

d

dt
pn0−1(t) = kn0 exp[−kn0t] − k(n0 − 1) pn0−1(t).

Solving this equation with initial condition pn0−1(0) = 0, we obtain pn0−1(t) =
exp[−k(n0 − 1)t]n0(1 − exp[−kt]). Using mathematical induction, it is possible to
show

pn(t) = exp[−knt]

(

n0

n

)

{

1 − exp[−kt]
}n0−n

. (2.7)

The formula (2.7) provides all the information about the stochastic process which
is defined by (2.1) and initial condition A(0) = n0. We can never say for sure that
A(t) = n; we can only say that A(t) = n with probability pn(t). In particular, formula
(2.7) can be used to derive a formula for the mean value of A(t) over (infinitely) many
realizations, which is defined by

M(t) =

n0
∑

n=0

n pn(t).

Using (2.7), we deduce

M(t) =

n0
∑

n=0

n pn(t) =

n0
∑

n=0

n exp[−knt]

(

n0

n

)

{

1 − exp[−kt]
}n0−n

= n0 exp[−kt]

n0
∑

n=1

(

n0 − 1

n − 1

)

{

1 − exp[−kt]
}(n0−1)−(n−1){

exp[−kt]
}n−1

= n0 exp[−kt]. (2.8)

The chemical master equation (2.6) and its solution (2.7) can be also used to quan-
tify the stochastic fluctuations around the mean value (2.8), i.e. how much can an
individual realization of SSA (a2)–(c2) differ from the mean value given by (2.8). We
will present the corresponding theory and results on a more complicated illustrative
example in Section 2.2. Finally, let us note that a classical deterministic description of
the chemical reaction (2.1) is given by the ODE da/dt = −ka. Solving this equation
with initial condition a(0) = n0, we obtain the function (2.8), i.e. the stochastic mean
is equal to the solution of the corresponding deterministic ODE. However, we should
emphasize that this is not true for general systems of chemical reactions, as we will
see in Section 2.3 and Section 5.1.
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2.2. Stochastic simulation of production and degradation. We consider
a system of two chemical reactions

A
k1−→ ∅, ∅ k2−→ A. (2.9)

The first reaction describes the degradation of chemical A with the rate constant k1.
It was already studied previously as reaction (2.1). We couple it with the second
reaction which represents the production of chemical A with the rate constant k2.
The exact meaning of the second chemical reaction in (2.9) is that one molecule of
A is created during the time interval [t, t + dt) with probability k2 dt. As before, the
symbol ∅ denotes chemical species which are of no special interest to the modeller.
The impact of other chemical species on the rate of production of A is assumed to be
time independent and is already incorporated in the rate constant k2. To simulate
the system of chemical reactions (2.9), we perform the following four steps at time t
(starting with A(0) = n0 at time t = 0):

(a3) Generate two random numbers r1, r2 uniformly distributed in (0, 1).
(b3)Compute α0 = A(t)k1 + k2.
(c3) Compute the time when the next chemical reaction takes place as t+τ where

τ =
1

α0
ln

[

1

r1

]

. (2.10)

(d3) Compute the number of molecules at time t + τ by

A(t + τ) =

{

A(t) + 1 if r2 < k2/α0;
A(t) − 1 if r2 ≥ k2/α0.

(2.11)

Then continue with step (a3) for time t + τ.

To justify that SSA (a3)–(d3) correctly simulates (2.9), let us note that the probability
that any of the reactions in (2.9) takes place in the time interval [t, t + dt) is equal to
α0 dt. It is given as a sum of the probability that the first reaction occurs (A(t)k1dt)
and the probability that the second reaction occurs (k2 dt). Formula (2.10) gives the
time t + τ when the next reaction takes place. It can be justified using the same
arguments as for formula (2.5). Once we know the time t + τ , a molecule is produced
with probability k2/α0, i.e. the second reaction in (2.9) takes place with probability
k2/α0. Otherwise, a molecule is degraded, i.e. the first reaction in (2.9) occurs. The
decision as to which reaction takes place is given in step (d3) with the help of the
second uniformly distributed random number r2.

Five realizations of SSA (a3)–(d3) are presented in Figure 2.2(a) as solid lines. We
plot the number of molecules of A as a function of time for A(0) = 0, k1 = 0.1 sec−1

and k2 = 1 sec−1. We see that, after an initial transient, the number of molecules A(t)
fluctuates around its mean value. To compute the stochastic mean and quantify the
stochastic fluctuations, we use the chemical master equation which can be written for
the chemical system (2.9) in the following form

dpn

dt
= k1(n + 1) pn+1 − k1n pn + k2 pn−1 − k2 pn (2.12)

where pn(t) denotes the probability that A(t) = n for n = 0, 1, 2, 3, . . . . Let us note
that the third term on the right hand side is missing in (2.12) for n = 0; i.e. we use
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Fig. 2.2. Stochastic simulation of the system of chemical reactions (2.9) for A(0) = 0, k1 =
0.1 sec−1 and k2 = 1 sec−1. (a) A(t) given by five realizations of SSA (a3)–(d3) (solid lines) and
stochastic mean (dashed line). (b) Stationary distribution φ(n) obtained by long time simulation of
SSA (a3)–(d3) (gray histogram) and by formulae (2.21)–(2.22) (red solid line).

the convention that p−1 ≡ 0. The first two terms on the right hand side correspond
to the first reaction in (2.9). They already appeared in equation (2.6). Production
of A is described by the third and fourth term on the right hand side of (2.9). To
derive the chemical master equation (2.12), we can use similar arguments as in the
derivation of (2.6). The stochastic mean M(t) and variance V (t) are defined by

M(t) =
∞
∑

n=0

n pn(t), V (t) =
∞
∑

n=0

(

n − M(t)
)2

pn(t). (2.13)

The stochastic mean M(t) gives the average number of molecules of A at time t,
while the variance V (t) describes the fluctuations. In Section 2.1, we first solved
the chemical master equation (2.6) and then we used its solution (2.7) to compute
M(t). Alternatively, we could use the chemical master equation to derive an evolution
equation for M(t), i.e. we could find M(t) without solving the chemical master
equation. Such an approach will be presented in this section. Multiplying (2.12) by
n and summing over n, we obtain

d

dt

∞
∑

n=0

npn = k1

∞
∑

n=0

n(n + 1) pn+1 − k1

∞
∑

n=0

n2 pn + k2

∞
∑

n=1

n pn−1 − k2

∞
∑

n=0

n pn.

Using definition (2.13) on the left hand side and changing indices n + 1 → n (resp.
n − 1 → n) in the first (resp. third) sum on the right hand side, we obtain

dM

dt
= k1

∞
∑

n=0

(n − 1)n pn − k1

∞
∑

n=0

n2 pn + k2

∞
∑

n=0

(n + 1) pn − k2

∞
∑

n=0

n pn.

Adding the first and the second sum (resp. the third and the fourth sum) on the right
hand side, we get

dM

dt
= −k1

∞
∑

n=0

n pn + k2

∞
∑

n=0

pn. (2.14)
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Since pn(t) is the probability that A(t) = n and A(t) is equal to a nonnegative integer
with probability 1, we have

∞
∑

n=0

pn(t) = 1. (2.15)

Using this fact together with the definition of M(t), equation (2.14) implies the evo-
lution equation for M(t) in the form

dM

dt
= −k1M + k2. (2.16)

The solution of (2.16) with initial condition M(0) = 0 is plotted as a dashed line
in Figure 2.2(a). To derive the evolution equation for the variance V (t), let us first
observe that definition (2.13) implies

∞
∑

n=0

n2 pn(t) = V (t) + M(t)2. (2.17)

Multiplying (2.12) by n2 and summing over n, we obtain

d

dt

∞
∑

n=0

n2pn = k1

∞
∑

n=0

n2(n + 1) pn+1 − k1

∞
∑

n=0

n3 pn + k2

∞
∑

n=1

n2 pn−1 − k2

∞
∑

n=0

n2 pn.

Changing indices n + 1 → n (resp. n − 1 → n) in the first (resp. third) sum on the
right hand side and adding the first and the second sum (resp. the third and the
fourth sum) on the right hand side, we get

d

dt

∞
∑

n=0

n2pn = k1

∞
∑

n=0

(−2n2 + n) pn + k2

∞
∑

n=0

(2n + 1) pn.

Using (2.17), (2.15) and (2.13), we obtain

dV

dt
+ 2M

dM

dt
= −2k1

[

V + M2
]

+ k1M + 2k2M + k2.

Substituting (2.16) for dM/dt, we derive the evolution equation for the variance V (t)
in the following form

dV

dt
= −2k1V + k1M + k2. (2.18)

The time evolution of M(t) and V (t) is described by (2.16) and (2.18). Let us define
the stationary values of M(t) and V (t) by

Ms = lim
t→∞

M(t), Vs = lim
t→∞

V (t). (2.19)

The values of Ms and Vs can be computed using the steady state equations corre-
sponding to (2.16) and (2.18), namely by solving

0 = −k1Ms + k2, and 0 = −2k1Vs + k1Ms + k2.
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Consequently,

Ms = Vs =
k2

k1
.

For our parameter values k1 = 0.1 sec−1 and k2 = 1 sec−1, we obtain Ms = Vs = 10.
We see in Figure 2.2(a) that A(t) fluctuates after a sufficiently long time around the
mean value Ms = 10. To quantify the fluctuations, one often uses the square root of
Vs, the so-called mean standard deviation which is equal to

√
10.

More detailed information about the fluctuations is given by the so-called sta-

tionary distribution φ(n), n = 0, 1, 2, 3, . . . , which is defined as

φ(n) = lim
t→∞

pn(t). (2.20)

This means that φ(n) is the probability that A(t) = n after an (infinitely) long
time. One way to compute φ(n) is to run SSA (a3)–(d3) for a long time and create
a histogram of values of A(t) at given time intervals. Using k1 = 0.1 sec−1 and
k2 = 1 sec−1, the results of such a long time computation are presented in Figure
2.2(b) as a gray histogram. To compute it, we ran SSA (a3)–(d3) for 105 seconds,
recording the value of A(t) every second and then dividing the whole histogram by
the number of recordings, i.e. by 105. An alternative way to compute φ(n) is to use
the steady state version of the chemical master equation (2.12), namely

0 = k1 φ(1) − k2 φ(0)

0 = k1(n + 1)φ(n + 1) − k1nφ(n) + k2 φ(n − 1) − k2 φ(n), for n ≥ 1,

which implies

φ(1) =
k2

k1
φ(0), (2.21)

φ(n + 1) =
1

k1(n + 1)

[

k1nφ(n) + k2 φ(n) − k2 φ(n − 1)
]

, for n ≥ 1. (2.22)

Consequently, we can express φ(n) for any n ≥ 1 in terms of φ(0). The formulae
(2.21)–(2.22) yield an alternative way to compute φ(n). We put φ(0) = 1 and we
compute φ(n), for sufficiently many n, by (2.21)–(2.22). Then we divide φ(n), n ≥ 0,
by

∑

φ(n). The results obtained by (2.21)–(2.22) are plotted in Figure 2.2(b) as a
(red) solid line. As expected, the results compare well with the results obtained by
the long time stochastic simulation.

We can also find the formula for φ(n) directly. We let a reader to verify that the
solution of the recurrence formula (2.21)–(2.22) can be written as

φ(n) =
C

n!

(

k2

k1

)n

(2.23)

where C is a real constant. Using (2.15) and (2.20), we have

∞
∑

n=0

φ(n) = 1. (2.24)

Substituting (2.23) into the normalization condition (2.24), we get

1 =

∞
∑

n=0

C

n!

(

k2

k1

)n

= C

∞
∑

n=0

1

n!

(

k2

k1

)n

= C exp

[

k2

k1

]
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where we used the Taylor series for the exponential function to get the last equal-
ity. Consequently, C = exp[−k2/k1] which, together with (2.23), implies that the
stationary distribution φ(n) is the Poisson distribution

φ(n) =
1

n!

(

k2

k1

)n

exp

[

−k2

k1

]

. (2.25)

Thus the red solid line in Figure 2.2(b) which was obtained numerically by the re-
currence formula (2.21)–(2.22) can be also viewed as the stationary distribution φ(n)
given by the explicit exact formula (2.25).

2.3. Gillespie algorithm. SSAs (a2)–(c2) and (a3)–(d3) were special forms of
the so-called Gillespie SSA. In this section, we present this algorithm for a more com-
plicated illustrative example which will also involve second-order chemical reactions.
Such chemical reactions are of the following form

A + A
k1−→ C, A + B

k2−→ D. (2.26)

In the first equation, two molecules of A react with rate constant k1 to produce
C. The probability that the reaction takes place in the time interval [t, t + dt) is
equal to A(t)(A(t)− 1)k1dt. We define the propensity function of the first reaction as
α1(t) = A(t)(A(t) − 1)k1. Then the probability that the first reaction occurs in the
time interval [t, t+dt) is equal to α1(t) dt. The propensity function which corresponds
to the second equation in (2.26) is defined as α2(t) = A(t)B(t)k1 and the probability
that the second reaction occurs in the time interval [t, t + dt) is equal to α2(t) dt. In
such a case, one molecule of A and one molecule of B react to form a molecule of
D. In general, the propensity function can be defined for any chemical reaction so
that its product with dt gives the probability that the given reaction occurs in the
infinitesimally small time interval [t, t + dt).

We consider that A and B can react according to (2.26). Moreover, we assume
that they are also produced with constant rates, that is, we consider a system of four
chemical equations:

A + A
k1−→ ∅ A + B

k2−→ ∅ (2.27)

∅ k3−→ A ∅ k4−→ B. (2.28)

Let us note that we are not interested in chemical species C and D. Hence, we
replaced them by ∅, consistent with our previous notation of unimportant chemical
species. To simulate the system of chemical reactions (2.27)–(2.28), we perform the
following four steps at time t (starting with A(0) = n0, B(0) = m0 at time t = 0):

(a4) Generate two random numbers r1, r2 uniformly distributed in (0, 1).

(b4) Compute the propensity functions of each reaction by α1 = A(t)(A(t)−1)k1,
α2 = A(t)B(t)k2, α3 = k3 and α4 = k4. Compute α0 = α1 + α2 + α3 + α4.

(c4) Compute the time when the next chemical reaction takes place as t+τ where

τ =
1

α0
ln

[

1

r1

]

. (2.29)
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Fig. 2.3. Five realizations of SSA (a4)–(d4). Number of molecules of chemical species A
(left panel) and B (right panel) are plotted as functions of time as solid lines. Different colours
correspond to different realizations. The solution of (2.33)–(2.34) is given by the dashed line. We
use A(0) = 0, B(0) = 0, k1 = 10−3 sec−1, k2 = 10−2 sec−1, k3 = 1.2 sec−1 and k4 = 1 sec−1.

(d4) Compute the number of molecules at time t + τ by

A(t + τ) =















A(t) − 2 if 0 ≤ r2 < α1/α0;
A(t) − 1 if α1/α0 ≤ r2 < (α1 + α2)/α0;
A(t) + 1 if (α1 + α2)/α0 ≤ r2 < (α1 + α2 + α3)/α0;

A(t) if (α1 + α2 + α3)/α0 ≤ r2 < 1;

(2.30)

B(t + τ) =















B(t) if 0 ≤ r2 < α1/α0;
B(t) − 1 if α1/α0 ≤ r2 < (α1 + α2)/α0;

B(t) if (α1 + α2)/α0 ≤ r2 < (α1 + α2 + α3)/α0;
B(t) + 1 if (α1 + α2 + α3)/α0 ≤ r2 < 1;

(2.31)

Then continue with step (a4) for time t + τ.

SSA (a4)–(d4) is a direct generalisation of SSA (a3)–(d3). At each time step, we
first ask the question when will the next reaction occur? The answer is given by
formula (2.29) which can be justified using the same arguments as formulae (2.5) or
(2.10). Then we ask the question which reaction takes place. The probability that
the i-th chemical reaction occurs is given by αi/α0. The decision which reaction takes
place is given in step (d4) with the help of the second uniformly distributed random
number r2. Knowing that the i-th reaction took place, we update the number of
reactants and products accordingly. Results of five realizations of SSA (a4)–(d4) are
plotted in Figure 2.3 as solid lines. We use A(0) = 0, B(0) = 0, k1 = 10−3 sec−1,
k2 = 10−2 sec−1, k3 = 1.2 sec−1 and k4 = 1 sec−1. We plot the number of molecules
of chemical species A and B as functions of time. We see that, after initial transients,
A(t) and B(t) fluctuate around their average values. They can be estimated from
long time stochastic simulations as 9.6 for A and 12.2 for B.

Let pn,m(t) be the probability that A(t) = n and B(t) = m. The chemical master
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equation can be written in the following form

dpn,m

dt
= k1(n + 2)(n + 1) pn+2,m − k1n(n − 1) pn,m

+ k2(n + 1)(m + 1) pn+1,m+1 − k2nmpn,m

+ k3 pn−1,m − k3 pn,m + k4 pn,m−1 − k4 pn,m (2.32)

for n, m ≥ 0, with the convention that pn,m ≡ 0 if n < 0 or m < 0. The first
difference between (2.32) and the chemical master equations from the previous sections
is that equation (2.32) is parametrised by two indices n and m. The second important
difference is that (2.32) cannot be solved analytically as we did with (2.6). Moreover,
it does not lead to closed evolution equations for stochastic means and variances; i.e.
we cannot follow the same technique as in the case of equation (2.12). The approach
from the previous section does not work. Let us note that the probability pn,m(t) is
sometimes denoted by p(n,m, t); such a notational convention is often used when we
consider systems of many chemical species. We will use it in the following sections to
avoid long subscripts.

The classical deterministic description of the chemical system (2.27)–(2.28) is
given by the system of ODEs

da

dt
= −2k1a

2 − k2 ab + k3, (2.33)

db

dt
= −k2 ab + k4. (2.34)

The solution of (2.33)–(2.34) with initial conditions a(0) = 0 and b(0) = 0 is plotted
as a dashed line in Figure 2.3. Let us note that the equations (2.33)–(2.34) do not
describe the stochastic means of A(t) and B(t). For example, the steady state values
of (2.33)–(2.34) are (for the parameter values of Figure 2.3) equal to as = bs = 10. On
the other hand, the average values estimated from long time stochastic simulations are
9.6 for A and 12.2 for B. We will see later in Section 5.1 that the difference between
the results of stochastic simulations and the corresponding ODEs can be even more
significant.

The stationary distribution is defined by

φ(n,m) = lim
t→∞

pn,m(t).

This can be computed by long time simulations of SSA (a4)–(d4) and is plotted in
Figure 2.4(a). We see that there is a correlation between the values of A and B. This
can also be observed in Figure 2.3. Looking at the blue realizations, we see that the
values of A(t) are below the average and the values of B(t) are above the average,
similarly for other realizations. One can also define the stationary distribution of A
only by

φ(n) =

∞
∑

m=0

φ(n,m). (2.35)

Summing the results of Figure 2.4(a) over m, we obtain φ(n) which is plotted in Figure
2.4(b) as a gray histogram. The red bar highlights the steady state value as = 10 of
system (2.33)–(2.34).

SSAs (a3)–(d3) and (a4)–(d4) were special forms of the so-called Gillespie SSA.
To conclude this section, we formulate the Gillespie SSA in its full generality. Let us
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Fig. 2.4. (a) Stationary distribution φ(n, m) obtained by long time simulation of (a4)–(d4) for
k1 = 10−3 sec−1, k2 = 10−2 sec−1, k3 = 1.2 sec−1 and k4 = 1 sec−1. (b) Stationary distribution of
A obtained by (2.35).

consider that we have a system of q chemical reactions. Let αi(t) be the propensity
function of the i-th reaction, i = 1, 2, . . . , q, at time t, that is, αi(t) dt is the probability
that the i-th reaction occurs in the time interval [t, t + dt). Then the Gillespie SSA
consists of the following four steps at time t.

(a5) Generate two random numbers r1, r2 uniformly distributed in (0, 1).
(b5) Compute the propensity function αi(t) of each reaction. Compute

α0 =

q
∑

i=1

αi(t). (2.36)

(c5) Compute the time when the next chemical reaction takes place as t+τ where
τ is given by (2.29).

(d5) Compute which reaction occurs at time t + τ . Find j such that

r2 ≥ 1

α0

j−1
∑

i=1

αi and r2 <
1

α0

j
∑

i=1

αi.

Then the j-th reaction takes place, i.e. update numbers of reactants and
products of the j-th reaction.
Continue with step (a5) for time t + τ.

The Gillespie SSA (a5)–(d5) provides an exact method for the stochastic simulation
of systems of chemical reactions. It was applied previously as SSA (a2)–(c2) for
the chemical reaction (2.1), as SSA (a3)–(d3) for the chemical system (2.9) and as
SSA (a4)–(d4) for the chemical system (2.27)–(2.28). Our simple examples can be
simulated quickly in Matlab (in less than a second on present-day computers). If
one considers systems of many chemical reactions and many chemical species, then
SSA (a5)–(d5) might be computationally intensive. In such a case, there are ways
to make the Gillespie SSA more efficient. For example, it would be a waste of time
to recompute all the propensity functions at each time step (step (b5)). We simu-
late one reaction per one time step. Therefore, it makes sense to update only those
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Fig. 3.1. (a) Six trajectories obtained by SSA (a6)–(b6) for D = 10−4 mm2 sec−1 and
∆t = 0.1 sec. Trajectories were started at the origin and followed for 10 minutes. (b) Probability
distribution function ψ(x, y, t) given by (3.5) at time t = 10 min.

propensity functions which are changed by the chemical reaction which was selected in
step (d5) of SSA (a5)–(d5). A more detailed discussion about the efficient computer
implementation of the Gillespie SSA can be found e.g. in [16].

3. Diffusion. Diffusion is the random migration of molecules (or small particles)
arising from motion due to thermal energy [3]. As shown by Einstein, the kinetic en-
ergy of a molecule (e.g. protein) is proportional to the absolute temperature. In
particular, the protein molecule has a non-zero instantaneous speed at, for exam-
ple, room temperature or at the temperature of the human body. A typical protein
molecule is immersed in the aqueous medium of a living cell. Consequently, it can-
not travel too far before it bumps into other molecules (e.g. water molecules) in the
solution. As a result, the trajectory of the molecule is not straight but it executes
a random walk as shown in Figure 3.1(a). We plot six possible trajectories of the
protein molecule with six different colours. All trajectories start at the origin and are
followed for 10 minutes. We will provide more details about this figure together with
the methods for simulating molecular diffusion in the rest of this section. Stochastic
models of diffusion which are based on the Smoluchowski equation are introduced in
Section 3.1. In Section 3.2, we introduce a model which is suitable for coupling with
the Gillespie SSA. Both modelling approaches will be used later in Section 4 for the
stochastic modelling of reaction-diffusion processes. Let us note that there exist other
models of molecular diffusion – they will be discussed in Section 6.

3.1. Smoluchowski equation and diffusion. Let [X(t), Y (t), Z(t)] ∈ R
3 be

the position of a diffusing molecule at time t. Starting with [X(0), Y (0), Z(0)] =
[x0, y0, z0], we want to compute the time evolution of [X(t), Y (t), Z(t)]. To do that, we
make use of a generator of random numbers which are normally distributed with zero
mean and unit variance. Such a generator is part of many modern computer languages
(e.g. function randn in Matlab). Diffusive spreading of molecules is characterised by
a single diffusion constant D which depends on the size of the molecule, absolute
temperature and viscosity of the solution [3]. Choosing time step ∆t, we compute
the time evolution of the position of the diffusing molecule by performing two steps
at time t:
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(a6) Generate three normally distributed (with zero mean and unit variance)
random numbers ξx, ξy and ξz.

(b6) Compute the position of the molecule at time t + ∆t by

X(t + ∆t) = X(t) +
√

2D ∆t ξx, (3.1)

Y (t + ∆t) = Y (t) +
√

2D ∆t ξy, (3.2)

Z(t + ∆t) = Z(t) +
√

2D ∆t ξz, (3.3)

Then continue with step (a6) for time t + ∆t.

Choosing D = 10−4 mm2 sec−1 (diffusion constant of a typical protein molecule),
[X(0), Y (0), Z(0)] = [0, 0, 0] and ∆t = 0.1 sec, we plot six realizations of SSA (a6)–
(b6) in Figure 3.1(a). We plot only the x and y coordinates. We follow the diffusing
molecule for 10 minutes. The position of the molecule at time t = 10 min is denoted
as a black circle for each trajectory.

Equations (3.1)–(3.3) are discretized versions of stochastic differential equations
(SDEs) which are sometimes called Smoluchowski equations. Some basic facts about
SDEs can be found e.g. in [2, 14]. A more accessible introduction to SDEs can be
found in [23] which has a similar philosophy as our paper. Reference [23] is a nice
algorithmic introduction to SDEs for students who do not have a prior knowledge
of advanced probability theory or stochastic analysis. We will not go into details of
SDEs in this paper, but only highlight some interesting facts which will be useful
later.

First, equations (3.1)–(3.3) are not coupled. To compute the time evolution of
X(t), we do not need to know the time evolution of Y (t) or Z(t). We will later focus
only on the time evolution of the x-th coordinate, effectively studying one-dimensional
problems. Two-dimensional or three-dimensional problems can be treated similarly.
Second, we see that different realizations of SSA (a6)–(b6) give different results. To get
more reproducible quantities, we will shortly study the behaviour of several molecules.
However, even in the case of a single diffusing molecule, there are still quantities
whose evolution is deterministic. Let ϕ(x, y, t) dxdydz be the probability that X(t) ∈
[x, x + dx), Y (t) ∈ [y, y + dy) and Z(t) ∈ [z, z + dz) at time t. It can be shown that
ϕ evolves according to the partial differential equation

∂ϕ

∂t
= D

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2

)

, (3.4)

which is a special form of the so-called Fokker-Planck equation. Since our random walk
starts at the origin, we can solve (3.4) with initial condition ϕ(x, y, z, 0) = δ(x, y, z)
where δ is the Dirac distribution at the origin. We obtain

ϕ(x, y, z, t) =
1

(4Dπt)3/2
exp

[

−x2 + y2 + z2

4Dt

]

.

In order to visualise this probability distribution function, we integrate it over z to
get probability distribution function

ψ(x, y, t) =

∫

R

ϕ(x, y, z, t)dz =
1

4Dπt
exp

[

−x2 + y2

4Dt

]

. (3.5)

This means that ψ(x, y, t) dxdy is the probability that X(t) ∈ [x, x + dx) and Y (t) ∈
[y, y + dy) at time t. The function ψ(x, y, t) at time t = 10 min is plotted in Figure
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Fig. 3.2. (a) Ten trajectories computed by SSA (a7)–(c7) for D = 10−4 mm2 sec−1, L = 1
mm, X(0) = 0.4 mm and ∆t = 0.1 sec. (b) Numbers of molecules in bins of length h = 25 µm at
time t = 4 min.

3.1(b). It can be obtained also by computing many realizations of SSA (a6)–(b6) and
plotting the histogram of positions of a molecule at time 10 min; such positions were
denoted as black circles for the six illustrative trajectories in Figure 3.1(a).

One important issue which was not addressed previously is that molecules diffuse
in bounded volumes, i.e. the domain of interest has boundaries and suitable bound-
ary conditions must be implemented. In the rest of this paper, we focus on one-
dimensional problems to avoid technicalities. Hence, we effectively study diffusion of
molecules in the one-dimensional interval [0, L]. Then the SSA can be formulated as
follows:

(a7) Generate a normally distributed (with zero mean and unit variance) random
number ξ.

(b7) Compute the position of the molecule at time t + ∆t by

X(t + ∆t) = X(t) +
√

2D ∆t ξ. (3.6)

(c7) If X(t + ∆t) computed by (3.6) is less than 0, then
X(t + ∆t) = −X(t) −

√
2D ∆t ξ.

If X(t + ∆t) computed by (3.6) is greater than L, then
X(t + ∆t) = 2L − X(t) −

√
2D ∆t ξ.

Then continue with step (a7) for time t + ∆t.

The boundary condition implemented in step (c7) is the so-called reflective boundary

condition or zero flux boundary condition. It can be used when there is no chem-
ical interaction between the boundary and diffusing molecules. More complicated
boundary conditions are discussed in [7, 8].

Choosing D = 10−4 mm2 sec−1, L = 1 mm, X(0) = 0.4 mm and ∆t = 0.1 sec, we
plot ten realizations of SSA (a7)–(c7) in Figure 3.2(a). Let us assume that we have
a system of 1000 molecules which are released at position x = 0.4 mm at time t = 0.
Then Figure 3.2(a) can be viewed as a plot of the trajectories of ten representative
molecules. Considering 1000 molecules, the trajectories of individual molecules are
of no special interest. We are rather interested in spatial histograms (density of
molecules). An example of such a plot is given in Figure 3.2(b). We simulate 1000
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molecules, each following SSA (a7)–(c7). At time t = 4 min, we divided the domain
of interest [0, L] into 40 bins of length h = L/40 = 25 µm. We calculated the number
of molecules in each bin [(i − 1)h, ih), i = 1, 2, . . . , 40, at time t = 4 min and plotted
them as a histogram.

Let us note that the deterministic counterpart to the stochastic simulation is a
solution of the corresponding Fokker-Planck equation (diffusion equation in our case)
which, in one dimension with zero flux boundary conditions, reads as follows

∂ϕ

∂t
= D

∂2ϕ

∂x2
where

∂ϕ

∂x
(0) =

∂ϕ

∂x
(L) = 0. (3.7)

The solution of (3.7) with the Dirac-like initial condition at x = 0.4 mm is plotted as
a red solid line in Figure 3.2(b) for comparison.

3.2. Compartment-based approach to diffusion. In Section 3.1, we sim-
ulated the behaviour of 1000 molecules by computing the individual trajectories of
every molecule (using SSA (a7)–(c7)). At the end of the simulation, we divided the
computational domain [0, L] into K = 40 compartments and we plotted numbers of
molecules in each compartment in Figure 3.2(b). In particular, most of the com-
puted information (1000 trajectories) was not used for the final result – the spatial
histogram. We visualised only 40 numbers (numbers of molecules in compartments)
instead of 1000 computed positions of molecules. In this section, we present a different
SSA for the simulation of molecular diffusion. We redo the example from Section 3.1
but instead of simulating 1000 positions of the individual molecules, we are going to
simulate directly the time evolution of 40 compartments.

To do that, we divide the computational domain [0, L] into K = 40 compartments
of length h = L/K = 25µm. We denote the number of molecules of chemical species
A in the i-th compartment [(i − 1)h, ih) by Ai, i = 1, . . . ,K. We apply the Gillespie
SSA to the following chain of “chemical reactions”:

A1

d−→←−
d

A2

d−→←−
d

A3

d−→←−
d

. . .
d−→←−
d

AK (3.8)

where

Ai

d−→←−
d

Ai+1 means that Ai
d−→ Ai+1 and Ai+1

d−→ Ai.

We will shortly show that the Gillespie SSA of (3.8) provides a correct model of
diffusion provided that the rate constant d in (3.8) is chosen as d = D/h2 where
D is the diffusion constant and h is the compartment length. The compartment-
based SSA can be described as follows. Starting with initial condition Ai(t) = a0,i,
i = 1, 2, . . . ,K, we perform six steps at time t:

(a8) Generate two random numbers r1, r2 uniformly distributed in (0, 1).
(b8) Compute propensity functions of reactions by αi = Ai(t)d for i = 1, 2, . . . ,K.

Compute

α0 =

K−1
∑

i=1

αi +

K
∑

i=2

αi. (3.9)

(c8) Compute the time at which the next chemical reaction takes place as t + τ
where τ is given by (2.29).
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(d8) If r2 <
∑K−1

i=1 αi/α0, then find j ∈ {1, 2, . . . ,K − 1} such that

r2 ≥ 1

α0

j−1
∑

i=1

αi and r2 <
1

α0

j
∑

i=1

αi.

Then compute the number of molecules at time t + τ by

Aj(t + τ) = Aj(t) − 1, (3.10)

Aj+1(t + τ) = Aj+1(t) + 1, (3.11)

Ai(t + τ) = Ai(t), for i 6= j, i 6= j + 1. (3.12)

(e8) If r2 ≥ ∑K−1
i=1 αi/α0, then find j ∈ {2, 3, . . . ,K} such that

r2 ≥ 1

α0

(

K−1
∑

i=1

αi +

j−1
∑

i=2

αi

)

and r2 <
1

α0

(

K−1
∑

i=1

αi +

j
∑

i=2

αi

)

.

Then compute the number of molecules at time t + τ by

Aj(t + τ) = Aj(t) − 1, (3.13)

Aj−1(t + τ) = Aj−1(t) + 1, (3.14)

Ai(t + τ) = Ai(t), for i 6= j, i 6= j − 1. (3.15)

(f8) Continue with step (a8) for time t + τ.

The first term on the right hand side of (3.9) corresponds to reactions Ai → Ai+1

(jumps to the right) and the second term corresponds to reactions Ai → Ai−1 (jumps
to the left). The time of the next chemical reaction is computed in the step (c8) using
formula (2.29) derived previously. The decision about which reaction takes place is
done in steps (d8)–(e8) with the help of random number r2. Jumps to the right are
implemented in step (d8) and jumps to the left in step (e8).

We want to redo the example from Section 3.1, i.e. simulate 1000 molecules
starting from position 0.4 mm in the interval [0, L] for L = 1 mm. We use K = 40.
Since 0.4 mm is exactly a boundary between the 16th and 17th compartment, the
initial condition is given by A16(0) = 500, A17(0) = 500 and Ai(0) = 0 for i 6= 16,
i 6= 17. As D = 10−4 mm2 sec−1, we have d = D/h2 = 0.16 sec−1. The numbers Ai(t),
i = 1, . . . ,K, at time t = 4 min, are plotted in Figure 3.3(a) as a histogram. This panel
can be directly compared with Figure 3.2(b). The computational intensity of SSA
(a8)–(f8) can be decreased using the appropriate way to implement it in the computer.
For example, only one chemical reaction occurs per time step. Consequently, only
two propensity functions change and need to be updated in step (b8). Moreover, the
formula (3.9) can be simplifed as follows

α0 =

K−1
∑

i=1

αi +

K
∑

i=2

αi = 2

K
∑

i=1

αi−α1−αK = 2d

K
∑

i=1

Ai(t)−α1−αK = 2dN −α1−αK ,

where N = 1000 is the total number of molecules in the simulation (this number is
conserved because there is no creation or degradation of the molecules in the system).
Hence, we need to recompute α0 only when there is a change in α1 or αK , i.e. whenever
the boundary compartments were involved in the previous reaction.
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Fig. 3.3. Compartment-based SSA model of diffusion. (a) Numbers Ai(t), i = 1, 2, . . . , K, at

time t = 4 min obtained by SSA (a8)–(f8). We use d = D/h2 = 0.16 sec−1, K = 40 and initial
condition A16(0) = 500, A17(0) = 500 and Ai(0) = 0 for i 6= 16, i 6= 17. (b) Ten realizations of the
simulation of an individual molecule by SSA (a8)–(f8).

SSA (a8)–(f8) does not compute the trajectories of individual molecules. However,
we can still compute a plot comparable with Figure 3.2(a). To do that, we repeat
the simulation with 1 molecule instead of 1000. Then, at given time t, exactly one of
numbers Ai(t), i = 1, 2, . . . ,K, is non-zero and equal to 1. This is a position of the
molecule at time t. Ten realizations of SSA (a8)–(f8) with one molecule released at
0.4 mm at t = 0 are plotted in Figure 3.3(b). This panel can be directly compared
with Figure 3.2(a).

Let p(n, t) be the joint probability that Ai(t) = ni, i = 1, . . . ,K, where we
denoted n = [n1, n2, . . . , nK ]. Let us define operators Ri, Li : N

K → N
K by

Ri : [n1, . . . , ni, ni+1, . . . , nK ] → [n1, . . . , ni + 1, ni+1 − 1, . . . , nK ], i = 1, . . . ,K − 1,
(3.16)

Li : [n1, . . . , ni−1, ni, . . . , nK ] → [n1, . . . , ni−1 − 1, ni + 1, . . . , nK ], i = 2, . . . ,K.
(3.17)

Then the chemical master equation, which corresponds to the system of chemical
reactions given by (3.8), can be written as follows

∂P (n)

∂t
= d

K−1
∑

j=1

{

(nj + 1)P (Rjn) − nj P (n)
}

+ d

K
∑

j=2

{

(nj + 1)P (Ljn) − nj P (n)
}

.

(3.18)
The stochastic mean is defined as the vector M(t) ≡ [M1,M2, . . . ,MK ] where

Mi(t) =
∑

n

ni P (n, t) ≡
∞
∑

n1=0

∞
∑

n2=0

· · ·
∞
∑

nK=0

ni P (n, t) (3.19)

gives the mean number of molecules in the i-th compartment, i = 1, 2, . . . ,K. To
derive an evolution equation for the stochastic mean vector M(t), we can follow the
method from Section 2.2 – see derivation of (2.16) from chemical master equation
(2.12). Multiplying (3.18) by ni and summing over n, we obtain (leaving the details
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to the student) a system of equations for Mi of the form

∂Mi

∂t
= d(Mi+1 + Mi−1 − 2Mi), i = 2, . . . ,K − 1, (3.20)

∂M1

∂t
= d(M2 − M1),

∂MK

∂t
= d(MK−1 − MK). (3.21)

System (3.20)–(3.21) is equivalent to a discretization of (3.7) provided that d = D/h2.
Hence, we have derived the relation between the rate constant d in (3.8), diffusion
constant D and compartment length h. The solution of (3.7) with the Dirac-like
initial condition at x = 0.4 mm is plotted for comparison as a red solid line in Figure
3.3(a).

The noise is described by the variance vector V(t) ≡ [V1, V2, . . . , VK ] where

Vi(t) =
∑

n

(ni − Mi(t))
2 P (n, t) ≡

∞
∑

n1=0

∞
∑

n2=0

· · ·
∞
∑

nK=0

(ni − Mi(t))
2 P (n, t) (3.22)

gives the variance of number of molecules in the i-th compartment, i = 1, 2, . . . ,K.
To derive the evolution equation for the vector V(t), we define the matrix {Vi,j} by

Vij =
∑

n

ninj P (n, t) − MiMj , for i, j = 1, 2, . . . ,K.

Using (3.22), we obtain Vi = Vii for i = 1, 2, . . . ,K. Multiplying (3.18) by n2
i and

summing over n, we obtain

∂

∂t

∑

n

n2
i P (n) = d

K−1
∑

j=1

{

∑

n

n2
i (nj + 1)P (Rjn) −

∑

n

n2
i nj P (n)

}

+ d

K
∑

j=2

{

∑

n

n2
i (nj + 1)P (Ljn) −

∑

n

n2
i nj P (n)

}

. (3.23)

Let us assume that i = 2, . . . ,K − 1. Let us consider the term corresponding to j = i
in the first sum on the right hand side. We get

∑

n

n2
i (ni + 1)P (Rin) −

∑

n

n2
i ni P (n) =

∑

n

(ni − 1)2ni P (n) −
∑

n

n2
i ni P (n)

=
∑

n

(−2n2
i + ni)P (n) = −2Vi − 2M2

i + Mi.

First, we changed indices in the first sum Rin → n and then we used definitions (3.19)
and (3.22). Similarly, the term corresponding to j = i−1 in the first sum on the right
hand side of (3.23) can be rewritten as

∑

n

n2
i (ni−1 + 1)P (Ri−1n) −

∑

n

n2
i ni−1 P (n) =

∑

n

(2nini−1 + ni−1)P (n)

= 2Vi,i−1 + 2MiMi−1 + Mi−1.
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Other terms (corresponding to j 6= i, i − 1) in the first sum on the right hand side of
(3.23) are equal to zero. The second sum can be handled analogously. We obtain

∂

∂t

∑

n

n2
i P (n) = d

{

2Vi,i−1 + 2MiMi−1 + Mi−1 − 2Vi − 2M2
i + Mi

}

+ d
{

2Vi,i+1 + 2MiMi+1 + Mi+1 − 2Vi − 2M2
i + Mi

}

. (3.24)

Using (3.22) and (3.20) on the left hand side of (3.24), we obtain

∂

∂t

∑

n

n2
i P (n) =

∂Vi

∂t
+ 2Mi

∂Mi

∂t
=

∂Vi

∂t
+ d(2MiMi+1 + 2MiMi−1 − 4M2

i ).

Substituting this into (3.24), we get

∂Vi

∂t
= 2d

{

Vi,i+1 + Vi,i−1 − 2Vi

}

+ d
{

Mi+1 + Mi−1 + 2Mi

}

(3.25)

for i = 2, . . . ,K − 1. Similarly, we get

∂V1

∂t
= 2d

{

V1,2 − V1

}

+ d
{

M2 + M1

}

, (3.26)

∂VK

∂t
= 2d

{

VK,K−1 − VK

}

+ d
{

MK−1 + MK

}

. (3.27)

We see that the evolution equation for the variance vector V(t) depends on the mean
M, variance V and on non-diagonal terms of the matrix Vi,j . To get a closed system
of equations, we have to derive evolution equations for Vi,j too. This can be done
by multiplying (3.18) by ninj , summing over n and following the same arguments as
before. We conclude this section with some consequences of (3.20)–(3.21) and (3.25)–
(3.27). Looking at the steady states of equations (3.20)–(3.21), we obtain Mi = N/K,
i = 1, 2, . . . ,K, where N is the total number of diffusing molecules. Moreover, the
variance equations imply that Vi = N/K, i = 1, 2, . . . ,K, at the steady state.

4. Stochastic reaction-diffusion models. In this section, we add chemical
reactions to both models of molecular diffusion which were presented in Section 3.
We introduce two methods for the stochastic modelling of reaction-diffusion processes.
The first one is based on the diffusion model from Section 3.2, the second one on the
diffusion model from Section 3.1. We explain both methods using the same example.
Namely, we consider molecules (e.g. protein) which diffuse in the domain [0, L] with
diffusion constant D as we considered in Section 3. Moreover, we assume that protein
molecules are degraded (in the whole domain) and produced in part of the domain,
i.e. we consider the chemical reactions from Sections 2.1 and 2.2 in our illustrative
reaction-diffusion model. The model has a realistic motivation which is discussed in
more detail later in Section 5.2. In Section 4.3, we present another illustrative example
of a reaction-diffusion process incorporating the nonlinear model (2.27)–(2.28).

4.1. Compartment-based reaction-diffusion SSA. We consider molecules
of chemical species A which are diffusing in the domain [0, L], where L = 1 mm,
with diffusion constant D = 10−4 mm2 sec−1. Initially, there are no molecules in
the system. Molecules are produced in the part of the domain [0, L/5] with rate
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Fig. 4.1. One realization of the Gillespie SSA (a5)–(d5) for the system of chemical reactions
(4.1)–(4.3). Gray histograms show numbers of molecules in compartments at time: (a) t = 10 min;
(b) t = 30 min. Solution of (4.9)–(4.10) is plotted as the red solid line.

kp = 0.012 µm−1 sec−1. This means that the probability that a molecule is created
in the subinterval of the length 1 µm is equal to kp dt. Consequently, the probability
that a molecule is created somewhere in the interval [0, L/5] is equal to kpL/5 dt.
Molecules are degraded with rate k1 = 10−3 sec−1 according to the chemical reaction
(2.1).

Following Section 3.2, we divide the computational domain [0, L] into K = 40
compartments of length h = L/K = 25µm. We denote the number of molecules of
chemical species A in the i-th compartment [(i − 1)h, ih) by Ai, i = 1, . . . ,K. Then
our reaction-diffusion process is described by the system of chemical reactions

A1

d−→←−
d

A2

d−→←−
d

A3

d−→←−
d

. . .
d−→←−
d

AK , (4.1)

Ai
k1−→ ∅, for i = 1, 2, . . . ,K, (4.2)

∅ k2−→ Ai, for i = 1, 2, . . . ,K/5. (4.3)

Equation (4.1) describes diffusion and is identical to (3.8). In particular, the rate
constant d is given by d = D/h2. Equation (4.2) describes the degradation of A and
is, in fact, equation (2.1) applied to every compartment. Equation (4.3) describes
the production of A in the first K/5 compartments (e.g. in part [0, L/5] of the
computational domain). The rate constant k2 describes the rate of production per
compartment. Since each compartment has length h, we have k2 = kph.

The system of chemical reactions (4.1)–(4.3) is simulated using the Gillespie SSA
(a5)–(d5). In our case, the propensity functions of reactions in (4.1) are given as
Ai(t)d, the propensity functions of reactions in (4.2) are given as Ai(t)k1 and propen-
sity functions of reactions in (4.3) are equal to k2. Starting with no molecules of A in
the system, we compute one realization of SSA (a5)–(d5) for the system of reactions
(4.1)–(4.3). We plot the numbers of molecules in compartments at two different times
in Figure 4.1.
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Let p(n, t) be the joint probability that Ai(t) = ni, i = 1, . . . ,K, where we use
the notation n = [n1, n2, . . . , nK ]. Let us define operators Ri, Li : N

K → N
K by

(3.16)–(3.17). Then the chemical master equation, which corresponds to the system
of chemical reactions (4.1)–(4.3), can be written as follows

∂p(n)

∂t
= d

K−1
∑

i=1

{

(ni + 1) p(Rin) − ni p(n)
}

+ d

K
∑

i=2

{

(ni + 1) p(Lin) − ni p(n)
}

+ k1

K
∑

i=1

{

(ni + 1) p(n1, . . . , ni + 1, . . . , nK) − ni p(n)
}

+ k2

K/5
∑

i=1

{

p(n1, . . . , ni − 1, . . . , nK) − p(n)
}

. (4.4)

The first two sums correspond to diffusion (4.1), the third sum to degradation (4.2)
and the fourth sum to production (4.3). The stochastic mean is defined as the vector
M(t) ≡ [M1,M2, . . . ,MK ] where Mi is given by (3.19). This gives the mean number
of molecules in the i-th compartment, i = 1, 2, . . . ,K, at time t (averaged over many
realizations of SSA (a5)–(d5)). To derive the evolution equation for the stochastic
mean vector M(t), we can follow the method from Section 2.2 – see derivation of
(2.16) from the chemical master equation (2.12). Multiplying (4.4) by ni and summing
over all nj , j = 1, . . . ,K, we obtain (leaving the details to the student) a system of
equations for Mi in the form

∂M1

∂t
= d(M2 − M1) + k2 − k1M1, (4.5)

∂Mi

∂t
= d(Mi+1 + Mi−1 − 2Mi) + k2 − k1Mi, i = 2, . . . ,K/5, (4.6)

∂Mi

∂t
= d(Mi+1 + Mi−1 − 2Mi) − k1Mi, i = K/5 + 1, . . . ,K − 1, (4.7)

∂MK

∂t
= d(MK−1 − MK) − k1MK . (4.8)

System (4.5)–(4.8) is a discretized version of the reaction-diffusion equation

∂a

∂t
= D

∂2a

∂x2
+ k2χ[0,L/5] − k1a (4.9)

with zero-flux boundary conditions

∂a

∂x
(0) =

∂a

∂x
(L) = 0. (4.10)

Here, χ[0,L/5] is the characteristic function of the interval [0, L/5]. Using initial con-
dition a(·, 0) ≡ 0, we computed the solution of (4.9)–(4.10) numerically. It is plotted
as a red solid line in Figure 4.1 for comparison.

The concentration of molecules in the i-th compartment is defined as M i = Mi/h,
i = 1, . . . ,K. Dividing (4.5)–(4.8) by h, we can write a system of ODEs for M i. It is
a discretized version of the reaction-diffusion equation

∂a

∂t
= D

∂2a

∂x2
+ kpχ[0,L/5] − k1a (4.11)



STOCHASTIC REACTION-DIFFUSION PROCESSES 25

where a ≡ a(x, t) is the concentration of molecules of A at point x and time t. The
equation (4.11) provides a classical deterministic description of the reaction-diffusion
process. Its parameters D, kp and k1 are independent of h. Solving (4.11) is equivalent
to solving (4.9). Consequently, the red solid line in Figure 4.1 can be also viewed as a
plot of ah where a is the solution of the classical deterministic model (4.11) with the
zero-flux boundary conditions.

4.2. Reaction-diffusion SSA based on the Smoluchowski equation. In
this section, we present a SSA which implements the Smoluchowski model of diffusion
from Section 3.1, that is, we follow the trajectories of individual molecules. Diffusion
of each molecule is modelled according to the model (a7)–(c7). We explain the SSA
using the reaction-diffusion example from Section 4.1. Choosing a small time step ∆t,
we perform the following three steps at time t:

(a9) For each molecule, compute its position at time t + ∆t according to steps
(a7)–(c7).

(b9) For each molecule, generate a random number r1 uniformly distributed in
the interval (0, 1). If r1 < k1 ∆t, then remove the molecule from the system.

(c9) Generate a random number r2 uniformly distributed in the interval (0, 1).
If r2 < kpL/5∆t, then generate another random number r3 uniformly dis-
tributed in the interval (0, 1) and introduce a new molecule at position r3L/5.
Continue with step (a9) for time t + ∆t.

The degradation of molecules is modelled by step (b9). Equation (2.1) implies that
k1 dt is the probability that a molecule is degraded in the time interval [t, t + dt)
for infinitesimally small dt. SSA (a9)–(c9) replaces dt by the finite time step ∆t
(compare with SSA (a1)–(b1)) which has to be chosen sufficiently small so that
k1 ∆t ¿ 1. Similarly, the probability that a molecule is created in [0, L/5] in time
interval [t, t + dt) is equal to kpL/5 dt. Consequently, we have to choose ∆t so
small that kpL/5∆t is significantly less than 1. We choose ∆t = 10−2 sec. Then
k1 ∆t = 10−5 and kpL/5∆t = 2.4 × 10−2 for our parameter values k1 = 10−3 sec−1,
kp = 0.012 µm−1 sec−1 and L = 1 mm. Starting with no molecules of A in the sys-
tem, we compute one realization of SSA (a9)–(c9). To visualise the results, we divide
the interval [0, L] into 40 bins and we plot the numbers of molecules in bins at time
10 minutes in Figure 4.2(a). The same plot at time 30 minutes is given in Figure
4.2(b). We used the same number of bins to visualise the results of SSA (a9)–(c9)
as we used previously in the compartment-based model. Thus Figure 4.2 is directly
comparable with Figure 4.1. We also plot the solution of (4.9)–(4.10) as a red solid
line for comparison.

4.3. Reaction-diffusion models of nonlinear chemical kinetics. In the
previous sections, we studied an example of a reaction-diffusion model which did not
include the second-order chemical reactions (2.26). We considered only production
and degradation, i.e. we considered chemical reactions from Sections 2.1 and 2.2.
In this section, we discuss generalisations of our approaches to models which involve
second-order chemical reactions too. Our illustrative example is a reaction-diffusion
process incorporating the nonlinear model (2.27)–(2.28). The second-order chemical
reactions (2.26) require that two molecules collide (be close to each other) before
the reaction can take place. The generalisation of SSA (a9)–(c9) to such a case is
nontrivial and we will not present it in this paper (it can be found in [1]). Application
of the Gillespie SSA (a5)–(d5) is more straightforward and is presented below.
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Fig. 4.2. One realization of SSA (a9)–(c9). Dividing domain [0, L] into 40 bins, we plot the
number of molecules in each bin at time: (a) t = 10 min; (b) t = 30 min. Solution of (4.9)–(4.10)
is plotted as the red solid line.

We consider that both chemical species A and B diffuse in the domain [0, L], where
L = 1 mm, with diffusion constant D = 10−4 mm2 sec−1. Following the method of
Section 4.1, we divide the computational domain [0, L] into K = 40 compartments of
length h = L/K = 25µm. We denote the number of molecules of chemical species
A (resp. B) in the i-th compartment [(i − 1)h, ih) by Ai (resp. Bi), i = 1, . . . ,K.
Diffusion corresponds to two chains of “chemical reactions”:

A1

d−→←−
d

A2

d−→←−
d

A3

d−→←−
d

. . .
d−→←−
d

AK (4.12)

B1

d−→←−
d

B2

d−→←−
d

B3

d−→←−
d

. . .
d−→←−
d

BK (4.13)

Molecules of A and B are assumed to react according to chemical reactions (2.27) in
the whole domain with rate constants k1 = 10−3 sec−1 and k2 = 10−2 sec−1 per one
compartment, that is,

Ai + Ai
k1−→ ∅, Ai + Bi

k2−→ ∅, for i = 1, 2, . . . ,K. (4.14)

Production of chemical species (2.28) is assumed to take place only in parts of the
computational domain [0, L]. Molecules of chemical species A (resp. B) are assumed
to be produced in subinterval [0, 9L/10] (resp. [2L/5, L]) with rate k3 = 1.2 sec−1

(resp. k4 = 1 sec−1) per one compartment of length h, that is,

∅ k3−→ Ai, for i = 1, 2, . . . , 9K/10, (4.15)

∅ k4−→ Bi, for i = 2K/5, . . . ,K. (4.16)

Starting with no molecules in the system at time t = 0, we present one realization
of the Gillespie SSA (a5)–(d5) applied to the chemical system (4.12)–(4.16) in Figure
4.3. We plot the numbers of molecules of A and B at time 30 minutes.
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Fig. 4.3. One realization of the Gillespie SSA (a5)–(d5) for the system of chemical reactions
(4.12)–(4.16). Numbers of molecules of chemical species A (left panel) and B (right panel) in
compartments at time 30 minutes (gray histograms). Solution of (4.17)–(4.19) is plotted as the red
solid line.

We already observed in Section 2.3 that the analysis of the master equation for
chemical systems involving the second order reactions is not trivial. It is not possible
to derive the equation for stochastic means as was done in Section 4.1 for the linear
model. Hence, we will not attempt such an approach here. We also observed in
Section 4.1 that the equation for the mean vector (4.5)–(4.8) was actually equal to a
discretized version of the reaction-diffusion equation (4.9)–(4.10) which would be used
as a traditional deterministic description. When considering the nonlinear chemical
model (4.14)–(4.16), we cannot derive the equation for the mean vector but we can
still write a deterministic system of partial differential equations (PDEs). We simply
add diffusion to the system of ODEs (2.33)–(2.34) to obtain

∂a

∂t
= D

∂2a

∂x2
− 2k1a

2 − k2 ab + k3χ[0,9L/10], (4.17)

∂b

∂t
= D

∂2b

∂x2
− k2 ab + k4χ[2L/5,L], (4.18)

and couple it with zero-flux boundary conditions

∂a

∂x
(0) =

∂a

∂x
(L) =

∂b

∂x
(0) =

∂b

∂x
(L) = 0. (4.19)

Using initial condition a(·, 0) ≡ 0 and b(·, 0) ≡ 0, we can compute the solution of
(4.17)–(4.19) numerically. It is plotted as a red solid line in Figure 4.3 for comparison.
We see that (4.17)–(4.19) gives a reasonable description of the system when comparing
with one realization of SSA (a5)–(d5). However, let us note that solution of (4.17)–
(4.19) is not equal to the stochastic mean.

The equations (4.17)–(4.19) can be also rewritten in terms of concentrations a =
a/h and b = b/h as we did in the case of equations (4.9) and (4.11). Let us note that
the rate constants scale with h as k1 = k1/h, k2 = k2/h, k3 = k3h, k4 = k4h where
k1, k2, k3, k4 are independent of h. Consequently, the equations for concentrations a
and b are independent of h. They can be written in terms of the parameters D, k1,
k2, k3 and k4 only (compare with (4.11)).
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Finally, let us discuss the choice of the compartment length h. In Sections 3.2 and
4.1, we considered linear models and we were able to derive the equations for the mean
vectors (e.g. (4.5)–(4.8)). Dividing (4.5)–(4.8) by h and passing to the limit h → 0,
we derive the corresponding deterministic reaction-diffusion PDE (4.11) which can be
viewed (for linear models) as an equation for the probability distribution function of
a single molecule (i.e. the exact description which we want to approximate by the
compartment-based SSA). Consequently, we can increase the accuracy of the SSA by
decreasing h. Considering the nonlinear model from this section, the continuum limit
h → 0 is not well-defined. The compartment-based SSA is generally considered valid
only for a range of h values (i.e. the length h cannot be chosen arbitrarily small);
conditions which the length h has to satisfy are subject of current research – see e.g.
[24, Section 3.5].

5. Two important remarks. We explained SSAs for chemical reactions, molec-
ular diffusion and reaction-diffusion processes in the previous sections. This final
section is devoted to two important questions:

(a) Why do we care about stochastic modelling? The answer is given in Section
5.1 where we discuss connections between stochastic and deterministic modelling. In
particular, we present examples where deterministic modelling fails and a stochastic
approach is necessary. We start with a simple example of stochastic switching between
favourable states of the system, a phenomenon which cannot be fully understood
without stochastic modelling. Then we illustrate the fact that the stochastic model
might have qualitatively different properties than its deterministic limit, i.e. the
stochastic model is not just “equal” to the “noisy solution” of the corresponding
deterministic equations. We present a simple system of chemical reactions for which
the deterministic description converges to a steady state. On the other hand, the
stochastic model of the same system of chemical reactions has oscillatory solutions.
Finally, let us note that stochasticity plays important roles in biological applications,
see e.g. [32, 6, 30].

(b) Why do we care about reaction-diffusion processes? The answer is given in
Section 5.2 where we discuss biological pattern formation. Reaction-diffusion models
are key components of models in developmental biology. We present stochastic ana-
logues of two classical pattern forming models. The first one is the so-called French
flag problem where we re-interpret the illustrative example from Sections 4.1 and 4.2.
Then we present the reaction-diffusion pattern forming model based on the so-called
Turing instability.

5.1. Deterministic vs. stochastic modelling. The models presented so far
have one thing in common. One could use the deterministic description (given by
ODEs or PDEs) and one would obtain a reasonable description of the system. In
Sections 2.1, 2.2, 3.1, 3.2, 4.1 and 4.2, we studied linear models. We showed that
the evolution equations for the stochastic mean are equal to (the discretized versions
of) the corresponding deterministic differential equations. In Sections 2.3 and 4.3, we
presented nonlinear models. We were not able to derive equations for the stochastic
mean. However, we solved numerically the corresponding systems of deterministic
equations (ODEs (2.33)–(2.34) in Section 2.3 and PDEs (4.17)–(4.19) in Section 4.3)
and we obtained results comparable with the SSAs, i.e. results of the SSAs looked like
“noisy solutions” of the corresponding differential equations. Here, we discuss exam-
ples of problems when SSAs give results which cannot be obtained by corresponding
deterministic models.

Let us consider the model from Section 2.3. Its deterministic description is given
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Fig. 5.1. Simulation of (5.1). One realization of SSA (a5)–(d5) for the system of chemical
reactions (5.1) (blue line) and the solution of the deterministic ODE (5.2) (red line). (a) The number
of molecules of A as a function of time over the first two minutes of simulation. (b) Time evolution
over 100 minutes.

by the system of ODEs (2.33)–(2.34). Such a system has only one nonnegative (stable)
steady state for our parameter values, namely as = bs = 10. It can be observed from
Figure 2.3 that solutions of (2.33)–(2.34) converge to as and bs as t → ∞. This is
true for any nonnegative initial condition. The results of SSAs show fluctuation about
the means, which are roughly equal to as and bs (they are 9.6 for A and 12.2 for B).
However, there are chemical systems which have two or more favourable states, so that
the corresponding ODEs have more than one nonnegative stable steady state. For
example, let us consider the system of chemical reactions for chemical A introduced
by Schlögl [36]

2A
k1−→←−
k2

3A, ∅
k3−→←−
k4

A. (5.1)

The corresponding ODE is given as follows

da

dt
= − k2 a3 + k1 a2 − k4 a + k3. (5.2)

We choose the rate constants as follows: k1 = 0.18 min−1, k2 = 2.5 × 10−4 min−1,
k3 = 2200 min−1 and k4 = 37.5 min−1. Then the ODE (5.2) has two stable steady
states as1 = 100 and as2 = 400 and one unstable steady state au = 220. The
solution of (5.2) converges to one of the steady states with the choice of the steady
state dependent on the initial condition. Let us consider that there are initially no
molecules of A in the system, i.e. A(0) = 0. The solution of (5.2) is plotted in Figure
5.1(a) as a red line. We see that the solution of (5.2) converges to the stable steady
state as1 = 100. This is true for any initial condition A(0) ∈ [0, au). If A(0) > au,
then the solution of (5.2) converges to the second stable steady state as2 = 400. Next,
we use the Gillespie SSA (a5)–(d5) to simulate the chemical system (5.1). Starting
with no molecules of A in the system, we plot one realization of SSA (a5)–(d5) in
Figure 5.1(a) as a blue line. We see that the time evolution of A given by SSA
(a5)–(d5) initially (over the first 2 minutes) looks like the noisy solution of (5.2).
However, we can find significant differences between the stochastic and deterministic
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Fig. 5.2. Self-induced stochastic resonance. (a) One realization of SSA (a5)–(d5) for the
system of chemical reactions (5.3) (blue line) and solution of the deterministic ODEs (red line). (b)
Comparison of the stochastic and deterministic trajectories in the (A, B)-plane. Nullclines of the
deterministic ODEs are plotted as green lines.

model if we observe both models over sufficiently large times – see Figure 5.1(b)
where we plot the time evolution of A over the first 100 minutes. As expected, the
solution of the deterministic model (5.2) stays forever close to the stable steady state
as1 = 100. The number of molecules given by the stochastic model initially fluctuates
around one of the favourable states of the system (which is close to as1 = 100).
However, the fluctuations are sometimes so strong that the system spontaneously
switches to another steady state (which is close to as2 = 400). This random switching
is missed by the deterministic description. If one wants to find the mean switching
time between favourable states of the system, then it is necessary to implement SSAs.
Random switching between states has been found in gene regulatory networks [15, 21].
Theoretical or computational approaches for the analysis of suitable stochastic models
are given in [25, 9].

Our next example is a nonlinear system of chemical equations for which the
stochastic model has qualitatively different behaviour than its deterministic coun-
terpart in some parameter regimes. The presented phenomenon is sometimes called
self-induced stochastic resonance [27]. Following an example from [5], we consider the
system of chemical reactions introduced by Schnakenberg [37]

2A + B
k1−→ 3A, ∅

k2−→←−
k3

A, ∅ k4−→ B, (5.3)

where we choose the rate constants as k1 = 4×10−5 sec−1, k2 = 50 sec−1, k3 =
10 sec−1 and k4 = 25 sec−1. We use the Gillespie SSA (a5)–(d5) to simulate the time
evolution of this system. To do that, let us note that the propensity function of the
first reaction is equal to A(t)(A(t) − 1)B(t)k1. We also derive and solve the deter-
ministic system of ODEs corresponding to (5.3). Using the same initial conditions
[A,B] = [10, 10], we compare the results of the stochastic and deterministic models
in Figure 5.2(a). We plot the time evolution of A(t). We see that the solution of the
deterministic equations converges to a steady state while the stochastic model has os-
cillatory solutions. Note that there is a log scale on the A-axis – numbers of A given
by the (more precise) SSA vary between zero and ten thousand. If we use a linear
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Fig. 5.3. French flag problem. (a) Deterministic model. (b) Stochastic model.

scale on the A-axis, then the low molecular fluctuations would be invisible and the
solution of the SSAs would look as if there were “almost deterministic oscillations”,
although it is the intrinsic noise which makes the oscillations possible. To understand
this behaviour better, we plot the stochastic and deterministic trajectories in the
(A,B)-plane in Figure 5.2(b). We include the nullclines of the deterministic system
of ODEs (green lines). We see that the deterministic system follows a stable nullcline
into the steady state (red circle). The stochastic model also initially “follows” this
nullcline (with some noise) but it is the intrinsic noise which makes it possible for the
stochastic model to leave the stable nullcline and oscillate (again we use a log scale
on the A-axis).

5.2. Biological pattern formation. Reaction-diffusion processes are key el-
ements of pattern forming mechanisms in developmental biology. The illustrative
example from Sections 4.1 and 4.2 was a caricature of more complicated morphogen-
esis applications [38, 33] where one assumes that some prepatterning in the domain
exists and one wants to validate the reaction-diffusion mechanism of the next stage
of the patterning of the embryo. In our example, we considered a chemical A which
is produced in part [0, L/5] of domain [0, L]. Hence, the domain [0, L] was divided
into two different regions (prepatterning) [0, L/5] and [L/5, L]. The simplest idea
of further patterning is the so-called French flag problem [42]. We assume that the
interval [0, L] describes a layer of cells which are sensitive to the concentration of
chemical A. Let us assume that a cell can have three different fates (e.g. different
genes are switched on or off) depending on the concentration of chemical A. Then the
concentration gradient of A can help to distinguish three different regions in [0, L] –
see Figure 5.3. If the concentration of A is high enough (above a certain threshold),
a cell follows the first possible program (denoted blue in Figure 5.3). The “white
program” (resp. “red program”) is followed for medium (resp. low) concentrations of
A. The deterministic version of the French flag problem is presented in Figure 5.3(a).
We consider a solution of (4.9)–(4.10) at time 30 minutes which is the red curve in
Figure 4.1(b) or Figure 4.2(b). The solution of (4.9)–(4.10) is decreasing in space.
Introducing two thresholds, we can clearly obtain three well-defined regions as seen in
Figure 5.3(a). The stochastic version of the French flag problem is presented in Figure
5.3(b). We take the spatial histogram presented in Figure 4.2(b). We introduce two
thresholds (80 and 30 molecules) as before and replot the histogram using the corre-
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Fig. 5.4. Turing patterns. (a) Numbers of molecules of chemical species A in each compartment
at time 30 minutes; (b) the same plot for chemical species B.

sponding colours. Clearly, the resulting “French flag” is noisy. Different realizations
of the SSA would lead to different noisy French flags. The same is true for the SSA
from Figure 4.1(b).

Our second example of patterning in developmental biology are the so-called
Turing patterns [41, 17, 28, 39]. They do not require any prepatterning. Molecules are
subject to the same chemical reactions in the whole domain of interest. For example,
let us consider a system of two chemical species A and B which react according to
the Schnakenberg system of chemical reactions (5.3). Let us choose the values of rate
constants as k1 = 10−6 sec−1, k2 = 1 sec−1, k3 = 0.02 sec−1 and k4 = 3 sec−1.
The corresponding deterministic system of ODEs for (5.3) has one nonnegative stable
steady state equal to as = 200 and bs = 75 molecules. Introducing diffusion to the
model, one steady state solution of the spatial problem is the constant one (as, bs)
everywhere. However, such a solution might not be stable (i.e. might not exist in
reality) if the diffusion constants of A and B differ significantly. We choose DA =
10−5 mm2 sec−1 and DB = 10−3 mm2 sec−1, i.e. DB/DA = 100. To simulate the
reaction-diffusion problem with the Schnakenberg system of chemical reactions (5.3),
we follow the method of Section 4.1. We divide the computational domain [0, L]
into K = 40 compartments of length h = L/K = 25µm. We denote the number of
molecules of chemical species A (resp. B) in the i-th compartment [(i−1)h, ih) by Ai

(resp. Bi), i = 1, . . . ,K. Diffusion is described by two chains of chemical reactions
(4.12)–(4.13) where the rates of “chemical reactions” are equal to dA = DA/h2 for
chemical species A and dB = DB/h2 for chemical species B. Chemical reactions
(5.3) are considered in every compartment (the values of rate constants in (5.3) are
already assumed to be expressed in units per compartment). Starting with a uniform
distribution of chemicals Ai(0) = as = 200 and Bi(0) = bs = 75, i = 1, 2, . . . ,K,
at time t = 0, we plot the numbers of molecules in each compartment at time t =
30 minutes computed by SSA (a5)–(d5) in Figure 5.4. To demonstrate the idea of
patterning, compartments with many molecules (above steady state values as or bs)
are plotted as blue; other compartments are plotted as red. We see in Figure 5.4(a)
that chemical A can be clearly used to divide our computational domain into several
regions. There are two and half blue peaks in this figure. The number of blue peaks
depends on the size of the computational domain [0, L] and it is not a unique number
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in general. The reaction-diffusion system has several favourable states with a different
number of blue peaks. As discussed in Section 5.1, the solution of the corresponding
deterministic model converges to one of the favourable (stable steady) states of the
system. The stochastic model enables stochastic switching between the favourable
states, i.e. between the states with a different number of blue peaks.

6. Discussion. We presented SSAs for systems of chemical reactions and molec-
ular diffusion. Then we presented methods for simulating both reactions and diffusion
at the same time. The algorithms for simulating (spatially homogeneous) systems of
chemical reactions were based on the work of Gillespie [18]. We did not focus on the
computer implementation of the algorithms. We chose simple examples which can
be simulated quickly. If one considers systems of many equations, there are ways
to make the Gillespie SSA more efficient [16]. For example, it would be a waste of
time to recompute all the propensity functions at each time step. We simulate one
reaction per one time step. Therefore, it makes sense to update only those propensity
functions which are changed by the chemical reaction which was selected in step (d5)
of SSA (a5)–(d5).

We only briefly touched on the concept of the Fokker-Planck equation [34] when
we discussed the Smoluchowski description of diffusion. It is worth noting that there
are interesting connections between the chemical master equation (which is equivalent
to the Gillespie SSA) and the Fokker-Planck equation which gives the time evolution
of the probability distribution. Such connections are discussed (through the so-called
chemical Langevin equation) in [20]. The Smoluchowski equation is actually the same
mathematical object as the chemical Langevin equation, i.e. the stochastic differential
equation [2]. An algorithmic introduction to stochastic differential equations can be
found in [23].

We presented two models of diffusion in this paper. One was based on the chain of
“chemical reactions” (3.8) computing the time evolution of the numbers of molecules
in compartments. Coupling this model with the modelling of chemical reactions is
straightforward and presented in Section 4.1; such a compartment-based approach
is used e.g. in [40, 24, 22]. The second model for molecular diffusion was based on
the Smoluchowski equation (3.6). It was an example of the so-called position jump
process, that is, a molecule jumps to a different location at each time step. As a result,
the trajectory of a molecule is discontinuous. The individual trajectories of diffusing
molecules can be also modelled using the so-called velocity jump processes [29], that
is, the position of a molecule x(t) follows the deterministic equation dx/dt = v where
v(t), the velocity of the molecule, changes stochastically. Such stochastic processes can
be used not only for the simulation of diffusing molecules but also for the description
of movement of unicellular organisms like bacteria [10, 11] or amoeboid cells [12].
Velocity jump processes can be also described in terms of PDEs for the time evolution
of the probability distributions to find a particle (molecule or cell) at a given place.
Such equations are not exactly equal to the diffusion equation. However, they can be
reduced in the appropriate limit to the diffusion equation [43, 7]. A classical review
paper on diffusion and other stochastic processes was written by Chandrasekhar [4],
a nice introduction to random walks in biology is the book by Berg [3].

In this paper, we used only reflective boundary conditions, that is, particles hitting
the boundary were reflected back. Such boundary conditions are suitable whenever
there is no chemical interaction between molecules in the solution and the boundary
of the domain. Considering biological applications, it is often the case that molecules
(e.g. proteins) react with the boundary (e.g. with receptors in the cellular mem-
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brane). Then the boundary conditions have to be modified accordingly. It has to be
assumed that some molecules which hit the boundary are reflected and some molecules
are adsorbed by the boundary (e.g. become bound to the receptor or take part in
membrane-based chemical reactions). The probability that a molecule is adsorbed
rather than reflected depends on the chemical properties of the boundary and also on
the SSA which is used for modelling (further details are given in [7, 8]).

Our analysis of SSAs was based on the chemical master equation. We successfully
derived equations for the means and variances in illustrative examples which did
not include second-order reactions. Other first-order reaction networks can be also
analysed using this framework [13]. The nonlinear chemical kinetics complicates the
mathematical analysis significantly. We can write a deterministic description but it
might be too far from the correct description of the system [35]. A review of more
computational approaches for the analysis of SSAs can be found in [26]. Applications
of such methods to stochastic reaction-diffusion processes is presented in [31].
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