COMPUTER SCIENCE AND ITS RELATION TO MATHEMATICS

DONALD E. KNUTH

A new discipline called Computer Science has recently arrived on the scene at
most of the world’s universities. The present article gives a personal view of how
this subject interacts with Mathematics, by discussing the similarities and differences
between the two fields, and by examining some of the ways in which they help each
other. A typical nontrivial problem is worked out in order to illustrate these inter-

actions.

1. What is Computer Science? Since Computer Science is relatively new, I
must begin by explaining what it is all about. At least, my wife tells me that she has
to explain it whenever anyone asks her what I do, and I suppose most people today
have a somewhat different perception of the field than mine. In fact, no two computer
scientists will probably give the same definition; this is not surprising, since it is
just as hard to find two mathematicians who give the same definition of Mathe-
matics. Fortunately it has been fashionable in recent years to have an ‘‘identity
crisis,”” so computer scientists have been right in style.

My favorite way to describe computer science is to say that it is the study of
algorithms. An algorithm is a precisely-defined sequence of rules telling how to pro-
duce specified output information from given input information in a finite number
of steps. A particular representation of an algorithm is called a program, just as
we use the word ‘‘data’ to stand for a particular representation of ‘‘information”’
[14]. Perhaps the most significant discovery generated by the advent of computers
will turn out to be that algorithms, as objects of study, are extraordinarily rich
in interesting properties; and furthermore, that an algorithmic point of view is a
useful way to organize knowledge in general. G. E. Forsythe has observed that
“‘the question ‘What can be automated?’ is one of the most inspiring philosophical
and practical questions of contemporary civilization” [8].

From these remarks we might conclude that Computer Science should have
existed long before the advent of computers. In a sense, it did; the subject is deeply
rooted in history. For example, I recently found it interesting to study ancient manu-
scripts, learning to what extent the Babylonians of 3500 years ago were computer
scientists [16]. But computers are really necessary before we can learn much about
the general properties of algorithms; human beings are not precise enough nor fast
enough to carry out any but the simplest procedures. Therefore the potential
richness of algorithmic studies was not fully realized until general-purpose computing
machines became available,

I should point out that computing machines (and algorithms) do not only com-
pute with numbers; they can deal with information of any kind, once it is represented
in a precise way. We used to say that a sequence of symbols, such as a name, is re-
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presented inside a computer as if it were a number; but it is really more correct
to say that a number is represented inside a computer as a sequence of symbols.

The French word for computer science is Informatique; the German is Infor-
matik; and in Danish, the word is Datalogi [21]. All of these terms wisely imply
that computer science deals with many things besides the solution to numerical
equations. However, these names emphasize the “‘stuft’’ that algorithms manipulate
(the information or data), instead of the algorithms themselves. The Norwegians
at the University of Oslo have chosen a somewhat more appropriate designation
for computer science, namely Databehandling; its English equivalent, ‘‘Data
Processing’” has unfortunately been used in America only in connection with busi-
ness applications, while ‘‘Information Processing” tends to connote library appli-
cations. Several people have suggested the term ‘‘Computing Science’’ as superior
to ‘““Computer Science.”’

Of course, the search for a perfect name is somewhat pointless, since the under-
lying concepts are much more important than the name. It is perhaps significant,
however, that these other names for computer science all de-emphasize the role
of computing machines themselves, apparently in order to make the field more
“legitimate’” and respectable. Many people’s opinion of a computing machine
is, at best, that it is a necessary evil: a difficult tool to be used if other methods fail.
Why should we give so much emphasis to teaching how to use computers, if they
are merely valuable tools like (say) electron microscopes?

Computer scientists, knowing that computers are more than this, instinctively
underplay the machine aspect when they are defending their new discipline. How-
ever, it is not necessary to be so self-conscious about machines; this has been aptly
pointed out by Newell, Perlis, and Simon [22], who define computer science simply
as the study of computers, just as botany is the study of plants, astronomy the study
of stars, and so on. The phenomena surrounding computers are immensely varied
and complex, requiring description and explanation; and, like electricity, these
phenomena belong both to engineering and to science.

When I say that computer science is the study of algorithms, I am singling out
only one of the ‘‘phenomena surrounding computers,’” so computer science actually
includes more. I have emphasized algorithms because they are really the central
core of the subject, the common denominator which underlies and unifies the different
branches. It might happen that technology someday settles down, so that in say
25 years computing machines will be changing very little. There are no indications
of such a stable technology in the near future, quite the contrary, but I believe
that the study of algorithms will remain challenging and important even if the
other phenomena of computers might someday be fully explored.

The reader interested in further discussions of the nature of computer science
is referred to [17] and [29], in addition to the references cited above. :

2. Is Computer Science Part of Mathematics? Certainly there are phenomena
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about computers which are now being actively studied by computer scientists, and
which are hardly mathematical. But if we restrict our attention to the study of
algorithms, isn’t this merely a branch of mathematics? After all, algorithms were
studied primarily by mathematicians, if by anyone, before the days of computer
science. Therefore one could afgue that this central aspect of computer science is
really part of mathematics.

However, I believe that a similar argument can be made for the proposition
that mathematics is a part of computer science! Thus, by the definition of set equality,
the subjects would be proved equal; or at least, by the Schroder-Bernstein theorem,
they would be equipotent.

My own feeling is that neither of these set inclusions is valid. It is alwasy diffi-
cult to establish precise boundary lines between disciplines (compare, for example,
the subjects of ‘‘physical chemistry’” and ‘‘chemical physics’’); but it is possible to
distinguish essentially different points of view between mathematics and computer
science.

The following true story is perhaps the best way to explain the distinction I have
in mind. Some years ago I had just learned a mathematical theorem which implied
that any two n x n matrices 4 and B of integers have a ‘‘greatest common right
divisor’’ D. This means that D is a right divisor of 4 and of B, i.e., A = A’D and
B = B’D for some integer matrices A’ and B’; and that every common right divisor
of A and B is a right divisor of D. So I wondered how to calculate the greatest com-
mon right divisor of two given matrices. A few days later I happened to be attending
a conference where I met the mathematician H. B. Mann, and I felt that he would
know how to solve this problem. I asked him, and he did indeed know the correct
answer; but it was a mathematician’s answer, not a computer scientist’s answer !
He said, ““Let # be the ring of n x n integer matrices; in this ring, the sum of
two principal left ideals is principal, so let D be such that

RA+ AB = AD.

Then D is the greatest common right divisor of 4 and B.” This formula is certainly
the simplest possible one, we need only eight symbols to write it down; and it relies
on rigorously-proved theorems of mathematical algebra. But from the standpoint
of a computer scientist, it is worthless, since it involves constructing the infinite
sets #A and #B, taking their sum, then searching through infinitely many matrices
D such that this sum matches the infinite set ZD . I could not determine the greatest
common divisor of (3 2) and (5 }) by doing such infinite operations. (Incidentally,
a computer scientist’s answer to this question was later supplied by my student
Michael Fredman; see [15, p. 380].)

One of my mathematician friends told me he would be willing to recognize
computer science as a worthwhile field of study, as soon as it contains 1000 deep
theorems. This criterion should obviously be changed to include algorithms as
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well as theorems, say 500 deep theorems and 500 deep algorithms. But even so
it is clear that computer science today does not measure up to such a test, if “‘deep”’
means that a brilliant person would need many months to discover the theorem
or the algorithm. Computer science is still too young for this; I can claim youth
as a handicap. We still do not know the best way to describe algorithms, to under-
stand them or to prove them correct, to invent them, or to analyze their behavior,
although considerable progress is being made on all these fronts. The potential
for 1000 deep results’’ is there, but only perhaps 50 have been discovered so far.

In order to describe the mutual impact of computer science and mathematics
on each other, and their relative roles, I am therefore looking somewhat to the future,
to the time when computer science is a bit more mature and sure of itself. Recent
trends have made it possible to envision a day when computer science and mathe-
matics will both exist as respected disciplines, serving analogous but different roles
in a person’s education. To quote George Forsythe again, ‘“The most valuable
acquisitions in a scientific or technical education are the general-purpose mental
tools which remain serviceable for a lifetime. I rate natural language and mathe-
matics as the most important of these tools, and computer science as a third”’ [9].

Like mathematics, computer science will be a subject which is considered basic
to a general education. Like mathematics and other sciences, computer science
will continue to be vaguely divided into two areas, which might be called ‘theoretical’’
and ‘“‘applied.”” Like mathematics, computer science will be somewhat different
from the other sciences, in that it deals with man-made laws which can be proved,
instead of natural laws which are never known with certainty. Thus, the two
subjects will be like each other in many ways. The difference is in the subject
matter and approach —mathematics dealing more or less with theorems, infinite
processes, static relationships, and computer science dealing more or less with
algorithms, finitary constructions, dynamic relationships.

Many computer scientists have been doing mathematics, but many more math-
ematicians have been doing computer science in disguise. I have been impressed by
numerous instances of mathematical theories which are really about particular algo-
rithms; these theories are typically formulated in mathematical terms that are much
more cumbersome and less natural than the equivalent algorithmic formulation
today’s computer scientist would use. For example, most of the content of a 35-page
paper by Abraham Wald can be presented in about two pages when it is recast into
algorithmic terms [15, pp. 142-144]; and numerous other examples can be given.
But that is a subject for another paper.

3. Educational side-effects. A person well-trained in computer science knows
how to deal with algorithms: how to construct them, manipulate them, understand
them, analyze them. This knowledge prepares him for much more than writing
good computer programs; it is a general-purpose mental tool which will be a definite
aid to his understanding of other subjects, whether they be chemistry, linguistics,
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or music, etc. The reason for this may be understood in the following way: 1t has
often been said that a person does not really understand something until he teaches
it to someone else. Actually a person does not really understand something until
he can teach it to a computer, i.e., express it as an algorithm. ‘“The automatic com-
puter really forces that precision of thinking which is alleged to be a product of any
study of mathematics’® [7]. The attempt to formalize things as algorithms leads
to a much deeper understanding than if we simply try to comprehend things in the
traditional way.

Linguists thought they understood languages, until they tried to explain languages
to computers; they soon discovered how much more remains to be learned. Many
people have set up computer models of things, and have discovered that they learned
more while setting up the model than while actually looking at the output of the
eventual program.

For three years I taught a sophomore course in abstract algebra, for mathematics
majors at Caltech, and the most difficult topic was always the study of ‘“‘Jordan
canonical form”’ for matrices. The third year I tried a new approach, by looking
at the subject algorithmically, and suddenly it became quite clear. The same thing
happened with the discussion of finite groups defined by generators and relations;
and in another course, with the reduction theory of binary quadratic forms. By
presenting the subject in terms of algorithms, the purpose and meaning of the
mathematical theorems became transparent.

Later, while writing a book on computer arithmetic [15], I found that virtually
every theorem in elementary number theory arises in a natural, motivated way
in connection with the problem of making computers do high-speed numerical
calculations. Therefore I believe that the traditional courses in elementary number
theory might well be changed to adopt this point of view, adding a practical moti-
vation to the already beautiful theory.

These examples and many more have convinced me of the pedagogic value of
an algorithmic approach; it aids in the understanding of concepts of all kinds. I
believe that a student who is properly trained in computer science is learning some-
thing which will implicitly help him cope with many other subjects; and therefore
there will soon be good reason for saying that undergraduate computer science
majors have received a good general education, just as we now believe this of under-
graduate math majors. On the other hand, the present-day undergraduate courses
in computer science are not yet fulfilling this goal; at least, I find that many beginning
graduate students with an undergraduate degree in computer science have been
more narrowly educated than I would like. Computer scientists are of course work-
ing to correct this present deficiency, which I believe is probably due to an over-
emphasis on computer languages instead of algorithms,

4. Some interactions. Computer science has been affecting mathematics in many
ways, and I shall try to list the good ones here. In the first place, of course, computers
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can be used to compute, and they have frequently been applied in mathematical

research when hand computations are too difficult; they generate data which suggests

or demolishes conjectures. For example, Gauss said [10] that he first thought of the

prime number theorem by looking at a table of the primes less than one million. In

my own Ph.D. thesis, I was able to resolve a conjecture concerning infinitely many .
cases by looking closely at computer calculations of the smallest case [13]. An

example of another kind is Marshall Hall’s recent progress in the determination of
all simple groups of orders up to one million.

Secondly, there are obvious connections between computer science and mathe-
matics in the areas of numerical analysis [30], logic, and number theory; I need
not dwell on these here, since they are so widely known. However, I should mention
especially the work of D. H. Lehmer, who has combined computing with classical
mathematics in several remarkable ways; for example, he has proved that every set
of six consecutive integers > 285 contains a multiple of a prime = 43.

Another impact of computer science has been an increased emphasis on construc-
tions in all branches of mathematics. Replacing existence proofs by algorithms
which construct mathematical objects has often led to improvements in an abstract
theory. For example, E. C. Dade and H. Zassenhaus remarked, at the close of a
paper written in 1963, ‘“This concept of genus has already proved of importance
in the theory of modules over orders. So a mathematical idea introduced solely
with a view to computability has turned out to have an intrinsic theoretical value
of its own.”’” Furthermore, as mentioned above, the constructive algorithmic approach
often has pedagogic value.

Another way in which the algorithmic approach affects mathematical theories
is in the construction of one-to-one correspondences. Quite often there have been
indirect proofs that certain types of mathematical objects are equinumerous; then a
direct construction of a one-to-one correspondence shows that in fact even more
is true.

Discrete mathematics, especially combinatorial theory, has been given an added
boost by the rise of computer science, in addition to all the other fields in which
discrete mathematics is currently being extensively applied.

For references to these influences of computing on mathematics, and for many
more examples, the reader is referred to the following sampling of books, each of
which contains quite a few relevant papers: [1], [2], [4], [5], [20], [24], [27].
Peter Lax’s article [19] discusses the effect computing has had on mathematical
physics.

But actually the most important impact of computer science on mathematics,
in my opinion, is somewhat different from all of the above. To me, the most signi-
ficant thing is that the study of algorithms themselves has opened up a fertile vein
of interesting new mathematical problems; it provides a breath of life for many
areas of mathematics which had been suffering from a lack of new ideas. Charles
Babbage, one of the ‘‘fathers’’ of computing machines, predicted this already in
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1864: “‘As soon as an Analytical Engine [i.e., a general-purpose computer] exists,
it will necessarily guide the future course of the science. Whenever any result is sought
by its aid, the question will then arise— By what course of calculation can these
results be arrived at by the machine in the shortest time?”” [3]. And again, George
Forsythe in 1958: ““The use of practically any computing technique itself raises
a number of mathematical problems. There is thus a very considerable impact of
computation on mathematics itself, and this may be expected to influence mathe-
matical research to an increasing degree’” [26]. Garrett Birkhoil [4, p. 2] has ob-
served that such influences are not a new phenomenon, they were already significant
in the early Greek development of mathematics.

I have found that a great many intriguing mathematical problems arise when
we try to analyze an algorithm quantitatively, to see how fast it will run on a computer;
a typical example of such a problem is worked out below. Another class . problems
of great interest concerns the search for best possible algorithms in a given class;
see, for example, the recent survey by Reingold [25]. And one of the first mathe-
matical theories to be inspired by computer science is the theory of languages,
which by now includes many beautiful results; see [11] and [12]. The excitement
of these new theories is the reason I became a computer scientist.

Conversely, mathematics has of course a profound influence on computer science;
nearly every branch of mathematical knowledge has been brought to bear some-
where. I recently worked on a problem dealing with discrete objects called *‘binary
trees,”” which arise frequently in computer representations of things, and the solution
to the problem actually involved the complex gamma function times the square of
Riemann’s zeta function [6]. Thus the results of classical mathematics often turn
out to be useful in rather amazing places.

The most surprising thing to me, in my own experiences with applications of
mathematics to computer science, has been the fact that so much of the mathe-
matics has been of a particular discrete type, examples of which are discussed below.
Such mathematics was almost entirely absent from my own training, although
I had a reasonably good undergraduate and graduate education in mathematics.
Nearly all of my encounters with such techniques during my student days occurred
when working problems from this MONTHLY. I have naturally been wondering whether
or not the traditional curriculum (the calculus courses, etc.) should be revised in order
to include more of these discrete mathematical manipulations, or whether computer
science is exceptional in its frequent application of them.

S. A detailed example. In order to clarify some of the vague generalizations
and assertions made above, I believe it is best to discuss a typical computer-science
problem in some depth. The particular example I have chosen is the one which first
led me personally to realize that computer algorithms suggest interesting mathemati-
cal problems. This happened in 1962, when I was a graduate student in mathematics;
computer programming was a hobby of mine, and a part time job, but I had never
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really ever worn my mathematician’s cloak and my computing cap at the same time.
A friend of mine remarked that ‘‘some good mathematicians at IBM’> had been
unable to determine how fast a certain well-known computer method works, and I
thought it might be an interesting problem to look at.

Here is the problem: Many computer applications involve the retrieval of in-
formation by its ‘“‘name’’; for example, we might imagine a Russian-English dic-
tionary, in which we want to look up a Russian word in order to find its English
equivalent. A standard computer method, called hashing, retrieves information by
its name as follows. A rather large number, m, of memory positions within the com-
puter is used to hold the names; let us call these positions Ty, T, -+, T,,. Each of
these positions is big enough to contain one name. The number m is always larger
than the total number of names present, so at least one of the T} is empty. The names
are distributed among the T;’s in a certain way described below, designed to facilitate
retrieval. Another set of memory positions E;, E,, -+, E,, is used for the information
corresponding to the names; thus if T; is not empty, E; contains the information
corresponding to the name stored in T;.

The ideal way to retrieve information using such a table would be to take a given
name x, and to compute some function f(x), which lies between 1 and m; then
the name x could be placed in position T}, and the corresponding information
in E;,. Such a function f(x) would make the retrieval problem trivial, if f(x)
were easy to compute and if f(x) # f(y) for all distinct names x # y. In practice,
however, these latter two requirements are hardly ever satisfied simultaneously;
if f(x) is easy to compute, we have f(x) = f(y) for some distinct names. Further-
more, we do not usually know in advance just which names will occur in the table,
and the function f must be chosen to work for all names in a very large set U of
potential names, where U has many more than m elements. For example, if U
contains all sequences of seven letters, there are 267 = 8,031,810,176 potential names;
it is inevitable that f(x) = f(y) will occur.

Therefore we try to choose a function f(x), from U into {1,2,---,m}, so that
f(x) = f(y) will occur with the approximate probability 1/m, when x and y are
distinct names. Such a function f'is called a hash function. In practice, f(x) is often
computed by regarding x as a number and taking its remainder modulo m, plus one;
the number m in this case is usually chosen to be prime, since this can be shown
to give better results for the sets of names that generally arise in practice. When
f(x) = f(y) for distinct x and y, a “‘collision”’ is said to occur; collisions are resolved
by searching through positions numbered f(x) + 1, f(x) + 2, etc.

The following algorithm expresses exactly how a hash function f(x) can be used
to retrieve the information corresponding to a given name x in U. The algorithm
makes use of a variable i which takes on integer values.

Step 1. Set the value of i equal to f(x).
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Step 2. If memory position T; contains the given name x, stop; the derived
information is located in memory position E;.

Step 3. If memory position T; is empty, stop; the given name x is not present.

STeEP 4. Increase the value of i by one. (Or, if i was equal to m, set i equal
to one.) Return to step 2.

We still haven’t said how the names get into Tj,---, T,, in the first place; but
that is really not difficult. We start with all the T; empty. Then to insert a new name x,
we ‘‘look for’’ x using the above algorithm; it will stop in step 3 because x is not
there. Then we set T; equal to x, and put the corresponding information in E;.
From now on, it will be possible to retrieve this information, whenever the name x
is given, since the above algorithm will find position T; by repeating the actions
which took it to that place when x was inserted.

The mathematical problem is to determine how much searching we should
expect to make, on the average; how many times must step 2 be repeated before
x is found?

This same problem can be stated in other ways, for example in terms of a modified
game of ‘‘musical chairs.”” Consider a set of m empty chairs arranged in a circle.
A person appears at a random spot just outside the circle and dashes (in a clockwise
direction) to the first available chair. This is repeated m times, until all chairs are
full. How far, on the average, does the nth person have to run before he finds a seat?

For example, let m = 10 and suppose there are ten players: 4, B, C, D, E, F,
G, H, I, J. To get a random sequence, let us assume that the players successively
start looking for their seats beginning at chairs numbered according to the first digits
of o, namely 3, 1,4, 15,9, 2, 6, 5, 3. Figure 1 shows the situation after the first
six have been seated.

100 8] @2
9@ @3
SD @4

Vo @

FiG. 1.

A “musical chairs” game which corresponds to an important computer method.
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(Thus player A takes chair 3, then player B takes chair 1, -+, player F takes chair9.)
Now player G starts at chair number 2, and eventually he sits down in number 6.
Finally, players H, I and J will go into chairs 7, 8, and 10. In this example, the
distances travelled by the ten players are respectively 0, 0, 0, 1,0, 0, 4, 1, 3, 7.

It is not trivial to analyze this problem, because congestion tends to occur; one
or more long runs of consecutive occupied chairs will usually be present. In order
to see why this is true, we may consider Figure 1 again, supposing that the next player
H starts in a random place; then he will land in chair number 6 with probability
0.6, but he will wind up in chair number 7 with probability only 0.1. Long runs
tend to get even longer. Therefore we cannot simply assume that the configuration
of occupied vs. empty chairs is random at each stage; the piling-up phenomenon
must be reckoned with.

Let the starting places of the m players be a,a, - a,; we shall call this a hash
sequence. For example, the above hash sequence is 3141592 6 5 3. Assuming
that each of the m" possible hash sequences is equally likely, our problem is to
determine the average distance traveled by the nth player, for each n, in units of
“‘chairs passed.”” Let us call this distance d(m, n). Obviously d(m,1) = 0, since the
first player always finds an unoccupied place; furthermore d(m,2) = 1/m, since
the second player has to go at most one space, and that is necessary only if he starts
at the same spot as the first player. 1t is also easy to see that d(m, m)=0+1+ -+ +
(m—1))/m = $(m—1), since all chairs but one will be occupied when the last player
starts out. Unfortunately the in-between values of d(m,n) are more complicated.

Let u,(m, n) be the number of partial hash sequences a, a, -*- a, such that chair k
will be unoccupied after the first n players are seated. This is easy to determine, by
cyclic symmetry, since chair k is just as likely to be occupied as any other particular
chair; in other words, u;(m,n) = u,(m,n) = -+ = u,(m,n). Let u(m,n) be this
common value. Furthermore, mu(m,n) = u,(m,n) + uy(m,n) + -+ +u,(m,n) =
(m — n)m", since each of the m” partial hash sequences a; a, ---a, leaves m — n chairs
empty, so it contributes one to exactly m — n of the numbers u;(m,n). Therefore

w(m,n) = (m—n)m""*.

Let v(m,n, k) be the number of partial hash sequences aa,-:-a, such that,
after the n players are seated, chairs 1 through k will be occupied, while chairs m
and k + 1 will not. This number is slightly harder to determine, but not really diffi-
cult. If we look at the numbers a; which are < k + 1 in such a partial hash sequence,
and if we cross out the other numbers, the k values which are left form one of the
sequences enumerated by u(k + 1,k). Furthermore the n—k values crossed out
form one of the sequences enumerated by u(m—1—k,n—k), if we subtract k + 1
from each of them. Conversely, if we take any partial hash sequence a, --- @, enumera-
ted by u(k + 1,k), and another one b, -+ b,_, enumerated by u(m—1—k,n—k),
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and if we intermix ay---a, with (b; +k+1)---(b,_y + k+1) in any of the
(») possible ways, we obtain one of the sequences enumerated by v(m, n, k). Here

(+) = mozmr

is the number of ways to choose k positions out of n. For example, let m = 10,
n = 6, k = 3; one of the partial hash sequences enumerated by v(10, 6,3) is 271828.
This sequence splits into aja,a; =212 and (b; +4)(b, +4)(b;+4) =7 8 8,
intermixed in the pattern ababab. From each of the u(4,3) = 16 sequences a;a,a,
that fill positions 1, 2, 3, together with each of the u(6,3) = 108 sequences
(by + 4) (b, + 4)(bs + 4) that fill three of positions 5, 6, 7, 8, 9, we obtain (§) = 20
sequences that fill positions 1, 2, 3, and which leave positions 4 and 10 unoccupied,
by intermixing the a’s and b’s in all possible ways. This correspondence shows that

o(m,n,k) = (Z) ulk + 1, u(m—k—1,n—k),
and our formula for u(m,n) tells us that
o(m,n, k) = (Z)(k+l)k'l(m—n—1)(m—k—1)"""1.

This is not a simple formula; but since it is correct, we cannot do any better. If
k = n = m—1, the last two factors in the formula give 0/0, which should be inter-
preted as 1 in this case.

Now we are ready to compute the desired average distance d(m,n). The nth
player must move k steps if and only if the preceding partial hash sequence a;--- a,_;
has left chairs a, through a, + k—1 occupied and chair a, + k empty. The number
of such partial hash sequences is

vim,n—1,k) + v(m,n—1,k + 1) + v(m,n—1,k + 2) + ---,

since circular symmetry shows that v(m,n—1,k + r) is the number of partial hash
sequences a, ‘- a,_, leaving chairs a, + k and a,—r—1 empty while the k + r
chairs between them are filled. Therefore the probability p,(m, n) that the nth player

goes exactly k steps is
p(m,n) = (Z v(m,n—l,r))/m"'l;
rzk

and the average distance is
d(m,n) = X kp(m,n) = (m—n)ym'™" X k (n R 1) r+ 1) m—r—=1)y"""2
k20 . rzkz0 r

_ (m—nmm'™ Z‘,r(n:1)(r+1)'(m—r—1)”"'2.

2 rz0
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At this point, a person with a typical mathematical upbringing will probably
stop; the answer is a horrible-looking summation. Yet, if more attention were paid
during our mathematical training to finite sums, instead of concentrating so heavily
on integrals, we would instinctively recognize that a sum like this can be considerably
simplified. When I first looked at this sum, I had never seen one like it before; but
I suspected that something could be done to it, since for example, the sum over k
of pm,n) must be 1. Later I learned of the extensive literature of such sums. I
do not wish to go into the details, but I do want to point out that such sums arise
‘repeatedly in the study of algorithms. By now I have seen literally hundreds of ex-
amples in which finite sums involving binomial coefficients and related functions
appear in connection with computer science studies; so I have introduced a course
called ‘‘Concrete Mathematics’’ at Stanford University, in which this kind of mathe-

matics is taught.
Let 6(m, n) be the average number of chairs skipped past by the first n players:

é(m,n) = (d(m,1) + d(m,2) + --- + d(m,n))/n.

This corresponds to the average amount of time needed for the hashing algorithm
to find an item when n items have been stored. The value of d(m, n) derived above
can be simplified to obtain the following formulas:

1 n—1n-2 n—1n—-2n-3 )
+ +...’

d(m,n)=§(2n;ll+3 =t —

1/m-1 n—-1n-2 n—-1n-2n-3
o(m,n) = = + + ..
2 m m m m m m

These formulas can be used to see the behavior for large m and n: for example,
if o = n/m is the ratio of filled positions to the total number of positions, and if
we hold « fixed while m approaches infinity, then d(m, am) increases to the limiting
value Zo/(1—0).

The formula for §(m,n) also tells us another surprising thing:
n—1 n-—1

Smyn) ="~ +

m - o(m,n—1).

If somebody could discover a simple trick by which this simple relation could be
proved directly, it would lead to a much more elegant analysis of the hashing al-
gorithm and it might provide further insights. Unfortunately, I have been unable
to think of any direct way to prove this relation.
When n = m (i.e., when all players are seated and all chairs are occupied), the

average distance traveled per player is

1 /m—1 m—-1m-2 m—1m-2m-3

8(m, m) = —( + + +)
2\ m m m m m m
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It is interesting to study this function, which can be shown to have the approximate
value

o(m, m) ~ \/EST - %

for large m. Thus, the number ©, which entered Figure 1 so artificially, is actually
present naturally in the problem as well! Such asymptotic calculations, combined
with discrete summations as above, are typical of what arises when we study al-
gorithms; classical mathematical analysis and discrete mathematics both play im-
portant roles.

6. Extensions. We have now solved the musical chairs problem, so the analysis
of hashing is complete. But many more problems are suggested by this one. For
example, what happens if each of the hash table positions T; is able to hold two names
instead of one, i.e., if we allow two people per chair in the musical chairs game?
Nobody has yet found the exact formulas for this case, although some approximate
formulas are known.

We might also ask what happens if each player in the musical chairs game starts
simultaneously to look for a free chair (still always moving clockwise), starting at
independently random points. The answer is that each player will move past 6(m, n)
chairs on the average, where d(m,n) is the same as above. This follows from
an interesting theorem of W. W. Peterson [23], who was the first to study the
properties of the hashing problem described above. Peterson proved that the
total displacement of the n players, for any partial hash sequence aa, - a,, is
independent of the order of the a;’s; thus, 314159 2 leads to the same total dis-
placement as 1123459 and 2 9 5 1 4 1 3. His theorem shows that the average
time 6(m, n) per player is the same for all arrangements of the a;, and therefore
it is also unchanged when all players start simultaneously.

On the other hand, the average amount of time required until all n players are
seated has not been determined, to my knowledge, for the simultaneous case. In
fact, I just thought of this problem while writing this paper. New problems flow
out of computer science studies at a great rate!

We might also ask what happens if the players can choose to go either clockwise
or counterclockwise, whichever is shorter. In the non-simultaneous case, the above
analysis can be extended without difficulty to show that each player will then have
to go about half as far. (We require everyone to go all the way around the circle
to the nearest seat, not taking a short cut through the middle.)

Another variant of the hashing problem arises when we change the cyclic order
of probing, in order to counteract the ‘‘piling up’’ phenomenon. This interesting
variation is of practical importance, since the congestion due to long stretches of
occupied positions slows things down considerably when the memory gets full.
Since the analysis of this practical problem is largely unresolved, and since it has
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several interesting mathematical aspects, I shall discuss it in detail in the remainder
of this article.

A generalized hashing technique which for technical reasons is called single
hashing is defined by any m x m matrix Q of integers for which

(i) Each row contains all the numbers from 1 to m in some order;

(ii) The first column contains the numbers from 1 to m in order.
The other columns are unrestricted. For example, one such matrix for m = 4,
selected more or less at random, is

1 3 2 4

21 3 4
0, =

341 2

4 3 2 1

The idea is to use a hash function f(x) to select a row of Q and then to probe the
memory positions in the order dictated by that row. The same algorithm for looking
through memory is used as before, except that step 4 becomes

STEP 4'. Advance i to the next value in row f(x) of the matrix, and return to step 2.

Thus, the cyclic hashing scheme described earlier is a special case of single hash-
ing, using a cyclic matrix like

(123 4
23 41
e
4 1 2 3J

In the musical chair analogy, the players no longer are required to move clock-
wise; different players will in general visit the chairs in different sequences. How-
ever, if two players start in the same place, they must both follow the same chair-
visiting sequence. This latter condition will produce a slight congestion, which is
noticeable but not nearly as significant as in the cyclic case.

As before, we can define the measures d'(m,n) and 6’(m,n), corresponding to
the number of times step 4’ is performed. The central problem is to find matrices Q
which are best possible, in the sense that 6’(m, m) is minimized. - This problem is not
really a practical one, since the matrix with smallest 6’(m, m) might require a great
deal of computation per execution of step 4'. Yet it is very interesting to establish
absolute limits on how good a single-hashing method could possibly be, as a
yardstick by which to measure particular cases.

One of the most difficult problems in algorithmic analysis that I have had the
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pleasure of solving is the determination of d’(m, n) for single hashing when the matrix
Q is chosen at random, i.e., to find the value of d’'(m, n), averaged over all (m—1)!)™
possible matrices Q. The resulting formula is

m—n+1 (1+( not 1—1/(m+2—j) )

m—n+2 " j=21 m[[is (1 = 1/(m(m + 2—i)))

n—1 1 ))
X 1= ———}).
jI—-:I1 ( m(m +2—)
This one I do not know how to simplify at the present time. However, it is possible
to study the asymptotic behavior of d,(m, n), and to show that

d,(m,n) = m —

d(m,m)~Ilnm+y—1.5

for large m, plus a correction term of order (logm)/m . (Here y is Euler’s constant.)
This order of growth is substantially better than the cyclic method, where §(m, m)
grows like the square root of m; and we know that some single-hashing matrices
must have an even lower value for §'(m, m) than this average value §,(m, m). Table 1
shows the exact values of 8(m, m) and 6,(m, m) for comparatively small values of
m; note that cyclic hashing is superior for m < 11, but it eventually becomes much
worse.

Proofs of the above statements, together with additional facts about hashing,
appear in [18].

No satisfactory lower bounds for the value of 6’(m, m) in the best single-hashing
scheme are known, although I believe that none will have 6’(m, m) lower than

(1+~1—)(1+1+~--+ i)—2;
m 2 m

this is the value which arises in the musical chairs game if each player follows a
random path independently of all the others. J. D. Ullman [28] has given a more
general conjecture from which this statement would follow. If Ullman’s conjecture
is true, then a random Q comes within 4 of the best possible value, and a large
number of matrices will therefore yield values near the optimum. Therefore it is
an interesting practical problem to construct a family of matrices for various m,
having provably good behavior near the optimum, and also with the property that
they are easy to compute in step 4’.

It does not appear to be easy to compute &’(m, m) for a given matrix M. The
best method I know requires on the order of m-2™ steps, so I have been able to
experiment on this problem only for small values of m. (Incidentally, such experi-
ments represent an application of computer science to solve a mathematical problem
suggested by computer science.) Here is a way to compute 6’(m, m) for a given
matrix Q = (g;;): If A is any subset of {1,2,---,m}, let “ A ” be the number of ele-



338 D. E. KNUTH [April

ments in 4, and let p(4) be the probability that the first ” A ” players occupy the
chairs designated by A. Then it is not difficult to show that
1
p4) = — X p(Ad—{a)
(L) e s(a)
when A is nonempty, where s(A4) is the set of all pairs (i,j) such that g, eA4 for
1 £ k £ j; consequently

d'(m,n) = | s,

1
M 4 =n-1

m2

5(m,m) = ~ Az | sCA) || p(4).

For example, in the 4 x 4 matrix Q; considered earlier, we have

4 p(4) [[sco] 4 p(4) [ sc]]
& 1 0 {4} 1/4 1
{1} 1/4 1 {1,4} 2/16 2
{2} 1/4 1 {2,4} 2/16 2
{1,2} 3/16 3 {1,2,4} 9/64 4
{3} 1/4 1 {3,4} 4/16 4
{1,3} 3/16 3 {1,3,4} 20/64 7
{2,3} 2/16 2 {2,3,4} 16/64 6
{1,2,3} 19/64 7 {1,2,3,4} 1 16

The first three chairs occupied willmost probably be {1, 3,4} ; the set of chairs {1, 2,4}
is much less likely. The ‘‘score’’ §'(m, m) for this matrix comes to 653/1024, which
in this case is worse than the score 624/1024 for cyclic hashing. In fact, cyclic hashing
turns out to be the best single hashing scheme when m = 4.

When m = 5, the best single hashing scheme turns out to be obtained from the
matrix

(1 2 4 5 3)
3514
4 25
52 31
4 2]
whose score is 0.7440, compared to 0.7552 for cyclic hashing. Note that Q5 is very
much like cyclic hashing, since cyclic symmetry is present: each row is obtained

0s =

2
3
4
LS
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from the preceding row by adding 1 modulo 5, so that the probing pattern is essen-
tially the same for all rows. We may call this generalized cyclic hashing; it is a special
case of practical importance, because it requires knowing only one row of Q instead
of all m? entries.

When m > 5, an exhaustive search for the best single hashing scheme would
be too difficult to do by machine, unless some new breakthrough is made in the
theory. Therefore I have resorted to ‘‘heuristic’” search procedures. For all m < 11,
the best single hashing matrices I have been able to find actually have turned out
to be generalized cyclic hashing schemes, and I am tempted to conjecture that this
will be true in general. It would be extremely nice if this conjecture were true, since
it would follow that the potentially expensive generality of a non-cyclic scheme
would never be useful. However, the evidence for my guess is comparatively weak;

TaBLE 1. Cyclic hashing versus random single hashing

m o(m, m) 5; (m, m)
1 0.0000 0.0000
2 0.2500 0.2500
3 0.4444 0.4630
4 0.6094 0.6426
5 0.7552 0.7973
6 0.8874 0.9330
7 1.0091 1.0538
8 1.1225 1.1626
9 1.2292 1.2616

10 1.3301 1.3523

11 1.4262 1.4360

12 1.5180 1.5138

15 1.7729 1.7183

20 2.1468 1.9911

30 2.7747 2.3888

40 3.3046 2.6774

50 3.7716 2.9037

75 4.7662 3.3181

100 5.6050 3.6135

it is simply that (i) the conjecture holds for m < 5; (ii) I have seen no counterexamples
in experiments for m < 11; (iii) the best generalized cyclic hashing schemes for
m £ 9 are “‘locally optimum’’ single hashing schemes, in the sense that all possible
interchanges of two elements in any row of the matrix lead to a matrix that is no
better; (iv) the latter statement is not true for the standard (ungeneralized) cyclic
hashing scheme, so the fact that it holds for the best ones may be significant.
Even if this conjecture is false, the practical significance of generalized cyclic
hashing makes it a suitable object for further study, especially in view of its additional
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mathematical structure. One immediate consequence of the cyclic property is that
p(4) = p(A + k) for all sets A, in the above formulas for computing d'(m,n),
where ‘A + k>’ means the set obtained from 4 by adding k to each element, modulo
m . This observation makes the calculation of scores almost m times faster. Another,
not quite so obvious property, is the fact that the generalized cyclic hashing
scheme generated by the permutation g¢,qg,:--q, has the same score as that
generated by the ‘‘reflected”’ permutation g}q3---q,, where ¢; = m + 1 —gq;. (It
is convenient to say that a generalized cyclic hashing scheme is ‘‘generated’” by
any of its rows.) This equivalence under reflection can be proved by showing that
p(A)is equalto p'(m + 1 — A).

I programmed a computer to find the scores for all generalized cyclic hashing
schemes when m = 6, and the results of this computation suggested that two further
simplifications might be valid:

() 919293 **9m and gq:9;3 - g, generate equally good generalized cyclic
hashing schemes.

(1) q1 " Gm-29m-19m and gy *** d-2qmdm-1 generate equally good generalized
cyclic hashing schemes.

In fact, both of these statements are true; here is a typical instance where com-
puting in a particular case has led to new mathematical theorems.

In fact, the above results made me suspect that g,---¢,, and
(m+1—-qy)-(m+1—=qg)qk+1 qm

will always generate equally good schemes, whenever both of these sequences are
permutations. If this statement were true, it would include the three previous results
as special cases, for k =2, m —2 and m. Unfortunately, I could not prove it;
and I eventually found a counterexample (by hand), namely g, ---q,,=138 627 54
and k = 4. However, this mistaken conjecture did lead to an interesting purely
mathematical question, namely to determine how many inequivalent permutations
of m objects there are, when g¢,-:--q, is postulated to be equivalent to
(eqq +J) - (6qx + Nax+1 " qm, for e = + 1 and 1 < j, k < m (whenever these are
both permutations, modulo m). We might call these ‘‘necklace permutations,” by
analogy with another well-known combinatorial problem, since they represent the
number of different orders in which a person could change the beads of a necklace from
all white to all black, ignoring the operation of rotating and/or flipping the necklace
over whenever such an operation preserves the current black/white pattern. The
total number of different necklace permutations for m =1, 2, 3, 4, 5, 6, 7 is
1,1, 1, 2, 4, 14, 62, respectively, and I wonder what can be said for general m.

Returning to the hashing problem, the theorems mentioned above make it pos-
sible to study all of the generalized cyclic hashing schemes for m < 9, by computer;
and the following turn out to be the best:
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best permutation 5;,,in (m, m) 5;“,3 (m, m)

1234 0.6094 0.6146
12453 0.7440 0.7514
125346 0.8650 0.8819
1423657 0.9713 0.9866
13487265 1.0676 1.0919
152384679 1.1568 1.1790

The righthand column gives the average 6'(m, m) over all m! schemes. For m = 10
and 11 the best permutations I have found so far are 12864931075 and
1348971121065, with respective scores of 1.2362 and 1.3103. The worst
such schemes for m < 9 are

worst permutation 6;,,ax (m,m)
1324 0.6250
12345 0.7552
135246 0.9132
1234567 1.0091
15374826 1.1719
147258369 1.2638

(This table suggests that the form of the worst cyclic scheme might be obtainable
in a simple way from the prime factors of m.)

Finally I have tried to find the worst possible Q matrices, without the cyclic
constraint. Such matrices can be very bad indeed; the worst I know, for any m,
occur when ¢q;; < g;+1) for all j = 2, e.g.

(123 4 5
13 45
1245
1235
512 3 4J

when m = 5. Using discrete mathematical techniques like those illustrated above,
I have proved that the score for such matrices is

L= VS I\ ]

m
6'(m,m) = (m+3+£) (1 + —1—) —-25m—17 — g—'s,
m m m
which is approximately (e — 2.5)m + 3e — 8 when m is large. We certainly would
not want to retrieve information in this way, and perhaps it is the worst possible
single hashing scheme.
Thus, the example of hashing illustrates the typical interplay between computer
science and mathematics.
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I wish to thank Garrett Birkhoff for his comments on the first draft of this paper.
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MAXWELL’S EQUATIONS
THEODORE FRANKEL

1. Introduction. We shall consider Maxwell’s equations
1--divB=0 2)---divD =0

(3):-curlE = — %—]: (4)~-curlH=j+%lt—)-

in a “‘non-inductive’’ medium; i.e., E = D is the electric field vector, B = H is the
magnetic field vector, o is the charge density, and j is the current density vector.

These equations are usually taken as axioms in electromagnetic field theory.
(1) says that there are no magnetic charges. (2) is Gauss’ law, stating that one can
compute the total charge inside a closed surface by integrating the normal component
of D or E over the surface. (3) is Faraday’s law; a changing magnetic field produces
an electric field. Finally, (4) is Ampere’s law curl H = j modified by Maxwell’s term
0D /ot, stating that currents and changing electric fields produce magnetic fields.
Equations (1) and (2) are relatively simple and easily understood while (3) and (4)
seem much more sophisticated. It is comforting to know then, that in a certain sense,
Faraday’s law (3) is a consequence of (1), while the Ampere-Maxwell law (4) is a
consequence of Gauss’ law (2). The precise statement will be found in Section 4. This
apparently is a “‘folk-theorem’” of physics; I first ran across the statement of it in an
article of J. A. Wheeler ([3], p. 84). The precise statement involves only the simplest
notions of special relativity and the proof of the statement is an extremely simple
application of the formalism of exterior differential forms and could be written down
in a few lines. I prefer to preface the proof with a very brief summary of special
relativity and of how electromagnetism fits into special relativity, mainly because
most (but not all) treatments of this subject motivate their constructions by means of
Maxwell’s equations; from our view point this would be circular and far less
appealing than the approach via the Lorentz force.

2. The Minkowski Space of Special Relativity. Space-time is a 4-dimensional
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