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Optimization-Based Constrained Iterative Learning Control
Sandipan Mishra, Ufuk Topcu, and Masayoshi Tomizuka

Abstract—We consider the problem of synthesis of iterative
learning control (ILC) schemes for constrained linear systems
executing a repetitive task. The ILC problem with affine con-
straints and quadratic objective functions is formulated as a
convex quadratic program, for which there exist computationally
efficient solvers. The key difference between standard convex
optimization and the corresponding constrained ILC problem is
that each iteration in the latter requires an experiment run. We
implement an interior-point-type method to reduce the number of
iterations (and hence the number of experiment runs). We discuss
the system-theoretic interpretations of the resulting optimization
problem that lead to reductions in computational complexity and
compare the performance of the implementation based on the
interior-point method to another approach based on the active
set method on a simulation example. We demonstrate the tech-
nique on a prototype wafer stage system with actuator saturation
constraints and � norm of the tracking error as the objective
function. The key contribution of this paper is the systematic use
of numerical tools from constrained convex optimization in the
ILC design.

Index Terms—Constrained optimization, iterative learning con-
trol (ILC), optimization.

I. INTRODUCTION

I TERATIVE learning control (ILC) is a feedforward control
design technique for repetitive processes. ILC algorithms

use information from earlier trials of the repetitive process to im-
prove the performance in the current trial. The key design issue
in the ILC is the efficient utilization of this information to max-
imize performance of the closed-loop system with as few trials
as possible. Since the initial rigorous formulations of the ILC
problem by Uchiyama [1] and Arimoto [2], research in ILC has
focused on improving performance and robustness guarantees
of the ILC algorithms as well as extensions to nonlinear sys-
tems. Due to its simple design, analysis, and implementation,
ILC has been employed in many applications including reha-
bilitation and industrial robotics, rapid thermal processing, and
wafer stage positioning systems [3]. See [4] and [5] for detailed
surveys of the research on and applications of ILC. It is critical
to note that ILC algorithms are designed with the twofold goal
of removing the effect of repeating disturbances such as cogging
and compensating for plant-model mismatch.
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Analogously to iterative optimization schemes, ILC algo-
rithms use experimental data collected during the trials of the
underlying repetitive process to minimize an objective function
such as tracking error norm. There exist interesting similarities
between the ILC design and iterative optimization algorithms.
These similarities have already been explored by Hatőnen
[6], Owens et al. [7], and Norrlof [8]. In more recent work
[9], robustness and monotonicity of optimization-based ILC
schemes have also been investigated.

While the design of ILC algorithms for unconstrained sys-
tems has seen substantial research, there still remain open ques-
tions in the design for systems with constraints such as satu-
ration bounds, state bounds, and rate limits. Saturation bounds
exist for actuation in most motion control systems [10] and
process control systems, e.g., those with valve actuators [11].
Since ILC is essentially an integrator-type algorithm, accumu-
lation of control effort may result from saturation [12]. In ad-
dition, [12] and [13] showed that, in the presence of saturation
limits, ILC algorithms no longer guarantee convergence to the
minimum. The work in [14] illustrates an interesting example of
the same phenomenon, with application to traffic flow metering.

In [13], Driessen et al. proposed a learning scheme for
multi-input multi-output square systems with bounded input
constraints. Xu et al. [15] used a composite energy-func-
tion-based ILC algorithm without the global Lipschitz con-
dition required by [13]. However, both of these approaches
require that the optimum of the unconstrained ILC problem be
optimal for the corresponding constrained problem. This con-
dition is restrictive and may not be always satisfied, especially
in applications where the system has been under-designed;
for example, a saturating motor current in a motion control
system. Similar hard constraints on control effort are common
in process control [12]. Furthermore, there is no guarantee that
the unconstrained optimal feedforward control effort satisfies
the constraints. Therefore, there is a need to develop ILC
algorithms that explicitly account for physical hard constraints
on the process.

In this paper, we propose an ILC algorithm for linear sys-
tems with linear constraints on the feedforward control effort
while removing the requirement that the global optimum of the
unconstrained problem should lie in the constraint set. Using
a lifted system representation, we formulate the ILC problem
as a quadratic program (an optimization problem with convex
quadratic objective and affine constraints [16]). This formula-
tion captures many ILC design problems including those with
truncated - and -norm objective functions and input satu-
ration, rate, and state constraints. An important feature of this
framework is the availability of efficient computational tools
[16], [17] as well as the possibility of using system-theoretic
interpretations of the underlying optimization problem to re-
duce its computational complexity. We use the barrier method
(a type of interior-point algorithm) [16], [18]–[20] to solve the
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Fig. 1. Block diagram of the (unconstrained) closed-loop system.

proposed ILC problem. This implementation utilizes experi-
mentally collected data for computing the current search direc-
tion which enhances robustness of the algorithm against mod-
eling uncertainties. We demonstrate the method on a prototype
single-degree-of-freedom wafer stage with actuator saturation
bounds. Typically, the primary sources of tracking error for the
wafer stage systems are cogging and plant-model mismatch.

II. CONSTRAINED ILC

A. System Description

Consider the stable closed-loop system in Fig. 1 that executes
a repetitive process with time samples starting at rest condi-
tion at the beginning of each trial. is a discrete time linear
time-invariant (LTI) plant controlled by an LTI feedback con-
troller . The repetitive nature of the process results in a 2-D
system [21] with the time evolution of the within-trial system
and the trial-to-trial evolution

(1)

where , , and are transfer functions from , , and
to , respectively, and denotes the unit delay. Note that

is the feedback control effort, while is the feedforward
control effort. In (1), is the trial index and
is the time index (within trial) and we assume that is bounded
by a known finite number. In order to simplify the notation as
well as the analysis, we use a lifted system description [8], [22]

(2)

where boldface vector notation ( , , , , and )
is used for the lifted versions of the corresponding vec-
tors, e.g., for ,

, while, for the error
signal, ,

, where the
relative degree of the system is . , , and are deter-
mined from the impulse responses of loop transfer functions.
For causal linear time-invariant and , the matrices , ,
and are block lower triangular and block Toeplitz. Hence-
forth, we make the assumption that the overall closed-loop
system is of relative degree 1. However, this assumption may be
relaxed by shifting the error signal forward in time by steps
for systems with relative degree . A detailed development of
this may be found in [23].

While the lifted formulation is attractive from an analysis
point of view, the fact that it assumes finite trial length may re-
sult in undesirable end-of-trial effects. Moreover, the initial and
final rest conditions must be satisfied for the lifted system de-
scription to be valid. The interested reader is referred to [24],
[25] for details regarding the connections between frequency-
domain and lifted-domain analysis of ILC schemes.

B. Iterative Learning Control

ILC aims at choosing the optimal control effort through an
iterative procedure , where

, is the set of admissible feedforward control effort and
is the set of measured error , The learning update law maps
the current feedforward control law and measured error
to based on the intent of the designer while respecting
the physical constraints on (captured by ). Usually, the
intent of the designer is captured by maximization or minimiza-
tion of an objective function, e.g., minimization of the -norm
of the tracking error. Therefore, the ILC problem can be formu-
lated as a constrained optimization problem and the recursion in

can be considered as an iteration of the
iterative procedure that solves this optimization problem. In the
following, we focus on ILC problems that can be formulated in
a specific form of constrained optimization problems, namely
(convex) quadratic programs (QPs) [16] and how well-known
iterative solution techniques for QPs can be used to establish it-
erative learning schemes.

C. Constrained ILC Design as a QP

Consider the convex optimization problem

(3)

where is positive semidefinite, , ,
, , and, for an -dimensional vector, means

that for . We now demonstrate how certain
design objectives and constraints that are widely encountered in
ILC design can be expressed as in (3).

1) Minimization of the Sum of Weighted Squared -Norms of
Tracking Error and Feedforward Control Effort: The norm op-
timal ILC problem [8], [26] minimizes the sum of the weighted

-norms of the tracking error and the feedforward control
effort , where
and are positive (semi-) definite. Note from
(2) that , where
and the norm optimal ILC problem is in the form of (3)
by the choice of , ,

, , and (i.e., unconstrained optimization
problem). The iterative solution to this unconstrained problem
has been studied in ILC literature [8], [27] and is given by

.
2) Minimization of the Sum of Weighted -Norms

of Tracking Error and Feedforward Control Effort: Let
and and consider the opti-

mization problem which
minimizes the sum of the weighted -norms of the tracking
error and the feedforward control effort. This problem can
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Fig. 2. Block diagram of the closed-loop system with actuator saturation at the
plant input.

be rewritten in the form of (3) by setting , ,
, , and

,
where denotes the vector of 1’s of length . Although there
is no analytical, gradient-based ILC scheme for this problem,
it can be reformulated as a QP that can be solved using the
techniques discussed in Section III.

Furthermore, minimization of the sum of the weighted
norm as well as any nonnegative combination of the -, -, and

-norms of the tracking error and feedforward control effort
can be formulated in the form of (3). In addition to the design
objectives considered above, a series of physical constraints can
be translated into affine constraints on and accounted for in
the QP formalism.

3) Input Saturation Constraints: Consider the closed-loop
system in Fig. 2, where saturation (for the signal defined as

, denotes the th compo-
nent of while denotes the th component of the saturation
limit vector) imposes constraints on the feedforward control ef-
fort for as

. These con-
straints can be written in the form , where

, , is the lifted ma-

trix form of the transfer function , and and
are lifted vectors of the signals and

. is determined from the first run
of the process as . It is
important to note that although and depend on , they can
be expressed in terms of the signals measured in the first run of
the process and therefore determination of these terms does not
require the knowledge of .

4) Rate Constraints: Let be the lifted version of the
discrete time signal . Then, the rate of change in is

(up to a scaling constant related to the sampling
time) and more compactly , where ,

, is the lifted version of , and is a
matrix of zeros except for and for

. Consequently, bounds on the rate of change of
, , and can be expressed as affine inequality constraints,

e.g., an upper bound on can be imposed by the constraint
.

III. QUADRATIC PROGRAMMING

The optimization problem in (3) is a QP, an optimization
problem with convex quadratic objective function and affine
inequality constraints [16]. QPs constitute a class of problems
in the family of convex conic programming problems (with
linear programming and semidefinite programming at the
“extremes” of its complexity spectrum [17]) for which there

exist computationally efficient solvers. To name a few, the
active set methods, the gradient projection methods, and inte-
rior-point (penalty and barrier) methods are suitable for QPs
[16], [18]–[20]. We next discuss a variant of the barrier method
following [16, Sec.11.3], and some implementation details for
a specific ILC design problem.

A. Barrier Method

The barrier method, which is a type of interior-point method
[16], [28], is an iterative algorithm for solving inequality
constrained convex optimization problems. For notational
simplicity, let us rewrite (3) as

(4)

Applied to the QP in (4), the barrier method replaces the cost
function by

(5)

where , is the logarithmic barrier function
with if , and and

are the th row of and , respectively. The barrier method
transforms the inequality constrained problem in (4) to an un-
constrained problem in (5) by penalizing constraint violations
through the variable . The larger is the value of , the larger
is the penalty on constraint violation. Subsequently, a sequence
of problems of the form in (5) is solved using an unconstrained
optimization solver, e.g., Newton’s method, starting from the
previous problem’s optimal point for a decreasing sequence of

.1 In a typical application of the barrier method, is decreased
by a constant factor (typically 10) until a sufficient ac-
curacy is reached (a sufficiently small suboptimality level). In
fact, it can be shown that the solution of (5) is no more than
suboptimal with respect to the solution of (3), and this bound
provides a stopping criterion for the barrier method. For the ex-
amples in this paper, we adapted the following barrier method
from [16].

Barrier method: Given strictly feasible for (3) and
, and ; set .

Repeat until
Starting at , compute

; set and .
In the above implementation, can be computed using any
solver for unconstrained optimization problems. We use the
Newton’s method primarily because of its fast convergence
(in fact, the Newton’s method converges quadratically despite
the linear convergence rate of computationally less demanding
first-order methods, see [18]).

Newton’s method: Given in the domain of and toler-
ance
Repeat
— Compute the Newton step by solving

for and

1The barrier method may be applied starting either with feasible or infeasible
initial points [16]. Nevertheless, we focus on feasible starts since infeasible feed-
forward control efforts would require trials (experiments) that are not physically
realizable. See Section IV-B for details.
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Fig. 3. Summary of the iterative procedure.

, where
.

— Quit if .
— Choose the step size by line search on ;

set .
Remark 3. 1: For fixed , the problem in (5) is guaranteed

convergence to the solution when the Newton’s method de-
scribed above is used as the unconstrained solver. Furthermore,
for a sequence of decreasing , we obtain a sequence of that
is no more than suboptimal for the original constrained QP
(see [18] and [16]).

B. Implementation Details

In order to discuss the implementation details of the con-
strained ILC design using an interior-point method, define

and consider the problem

(6)

The design objective here is to determine the feedforward con-
trol effort which minimizes the -norm of the tracking error re-
specting the affine inequality constraints (such as the
saturation constraints). By eliminating the equality constraints,
the problem in (6) is equivalent to the QP2

(7)

Fig. 3 provides a pictorial summary of the ILC design strategy
where each step involves an execution of the process (and
recording for given ) and an iteration of the optimization
scheme (namely Newton step that computes a new feedforward
control effort for the current feedforward control effort and
the corresponding tracking error). Each Newton step requires
solving the set of linear equations (with given , , , ,
and )

(8)

for , where , denotes a
diagonal matrix with the th diagonal entry , and is a vector
with the th entry . However, determining the term requires

2Optimal values of � for (6) and (7) are the same since � is assumed to be
constant.

the knowledge of that is not available and cannot be deter-
mined experimentally. On the other hand, the right-hand side
of (8) can be rewritten as

. As explained in
Section IV, the tracking error can be measured at each iter-
ation although is not measurable. Therefore, the right-hand
side of (8), , can be determined at each iteration
and the ILC design scheme based on the interior-point method
can be applied for the problem in (6).

In summary, we emphasize the fact that the applicability of
the barrier method (with Newton’s method as the unconstrained
optimization solver at each iteration) is contingent on the avail-
ability (either in closed form or as measured) of the Hessian
and the gradient of the augmented objective function and may
depend on the formulation of the optimization problem as well
as the physical constraints.

C. Computational Complexity and Exploiting the Problem
Structure

The computational cost of the barrier method with the
Newton’s method as the unconstrained optimization solver
is dominated by the solution of the linear equality system

for with given and
. This linear equality system can be solved using a

procedure consisting of Cholesky factorization [29] and for-
ward and backward substitutions. In general, this takes
floating-point operations [16, App. C.1.1], where is the
length of the vector . On the other hand, the structure of

offers several sources for computational savings.
1) Bandedness of : If is banded with

a bandwidth3 , the computational complexity reduces to
. For example, for the case discussed in Section III-B,

. Recall from Section II-A
that is lower triangular and Toeplitz. Furthermore, it can
be well-approximated by a banded matrix because of the
exponential stability of the system. Therefore, is
banded. Furthermore, for the saturation constraints as dis-
cussed in Section III-B, is block-diagonal, and therefore

is banded.
2) Sparsity: The sparsity of offers computational

advantages in computing the Cholesky factorization. Although
the computational cost of the Cholesky factorization of sparse

3A matrix � � � is said to have a bandwidth of � if � � � for
�� � �� � � .
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matrices depends in a complicated way on the size of the matrix,
the level and pattern of sparsity, and the algorithm used, it is sig-
nificantly smaller than that for dense matrices [16], and this fact
has been exploited in the implementation of the barrier method
coupled with the Newton’s method discussed in this paper.

In summary, exploiting the structure and the system theo-
retic interpretations of the underlying optimization problem in
the ILC design result in significant reductions in computation-
ally complexity of the techniques for QP based on the barrier
method.

IV. SIMULATION AND EXPERIMENTAL EVALUATION

ILC has been used for wafer stage control by several re-
searchers, notably in [3], [30], and [31]. These investigations
include analysis and design of ILC algorithms using
techniques, input signal shaping for vibration minimization,
and norm-optimal ILC algorithm design. In Section V, we
use a prototype wafer stage system with actuator saturation to
demonstrate the application of the proposed constrained ILC
design procedure.

A. Wafer Stage System Description

The prototype single-degree-of-freedom setup consists of a
wafer stage and a counter-mass driven by linear motors. The
wafer stage position is measured by a laser interferometer
(with a resolution of 5 nm). A detailed description of the
experimental setup may be found in [32]. For the purpose of
this paper, we will focus on the design of the feedforward
signal for the wafer stage system. The wafer stage is modeled
by . Since the stage is mounted
on air bearings, Coulomb friction can be neglected. The peak
motor voltage 2 V is determined by the maximum amplifier
output specifications. The signals that can be measured in this
setup are actuator input , tracking error , and plant output

(see Fig. 2). The external signals are of two types: the refer-
ence signal is known, while the disturbance is unknown but
remains fixed from one trial to another. The feedback controller
PID was designed based on a modified Ziegler-Nichols
tuning method and achieved a closed-loop bandwidth of
100 Hz and stability phase margin of ;

,
where the sampling rate 400 s. The discretized
closed-loop model (without actuator saturation) is

with
and

. The reference
trajectory (position and velocity) to be tracked is a typical for-
ward and reverse scan trajectory, as shown in Fig. 4. The goal
of the ILC design is to determine the feedforward control effort
that minimizes the norm of the error profile over the scan,
while guaranteeing that the saturation bounds on control input
to the plant are not violated. Consequently, the corresponding
optimization problem is of the form of (7) where and are
constructed as discussed in Section II-C for input saturation
constraints.

Fig. 4. Plot of the reference position ���� versus time �.

B. Constructing an Initial Feasible Feedforward Control Effort

The iterative scheme discussed in Section III-A relies on ex-
perimental measurements (e.g., the signal ) and therefore re-
quires an initial (strictly) feasible feedforward control effort,
i.e., satisfying . Although constructing such a
signal may, in general, be challenging, we use an ad hoc pro-
cedure for the results reported hereafter:

Simulate the system with no saturation and feedforward
control effort and define

. The worst case effect of the (unknown)
disturbance on the control effort is

. Let
be such that . Then, set

,
i.e, the feedforward control signal cancels the excess control
effort over saturation. The norm of may be estimated
by analyzing the nature of expected disturbances in the system.
In the absence of such information, a sequence of experiments
with increasing magnitude of may be performed until the
saturation bounds are not violated during the experimental run.

C. Evaluation of Interior-Point Algorithm and Active Set
Algorithm

We now present a comparison of two alternative optimization
techniques in simulation: one using an active set method algo-
rithm and the other using an interior-point algorithm in order to
choose an efficient algorithm (with fewer necessary iterations)
in experimental implementation. The iterative scheme is applied
as discussed in Section III-A (summarized in Fig. 3) by sim-
ulating the repetitive process. Fig. 5 shows the normalized
norm of the tracking error versus the itera-
tion index for the barrier method (left figure) and the active
set method (right figure) based implementations. Note that each
Newton step in the barrier method is computationally more de-
manding compared to a single iteration of the active set method
roughly because the active set method uses only first order in-
formation (gradients) whereas the Newton’s method requires
second order information (gradients and Hessians). On the other
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Fig. 5. Normalized � -norm of the trajectory following error � versus number of trials � for the barrier method (left) and the active set method (right).

hand, the barrier method converges with a smaller number of
total iterations (counted as the total number of Newton steps)
compared to the active set method (9 iterations in the barrier
method versus 490 iterations in the active set method). Consid-
ering the superiority of the interior-point method in terms of the
number of iterations required for convergence, we choose the
interior-point method for experimental implementation.

D. Experimental Results and Discussion

We now present experimental evaluation of the performance
of the ILC scheme based on the interior-point optimization al-
gorithm. We demonstrate the implementation and performance
of the proposed constrained ILC algorithm in comparison to a
box-type ILC algorithm given by

(9)

where is low-pass filter and is the learning gain. The
box-type ILC scheme essentially clips the feedforward control
output generated by the ILC scheme at each iteration. This is
an intuitive solution for a saturation constrained ILC system
(and is next demonstrated to be suboptimal).

1) Box-Type ILC: The learning gain is picked as the ap-
proximate inverse of the closed-loop system model and the filter

is a low pass filter with bandwidth of 100 Hz. In order to allow
some variation in disturbances, is set to 1.9 V. Fig. 7 shows the
normalized -norm of versus the iteration number . Fig. 6
shows the initial and final [obtained at the convergence of the
scheme in (9)] error profiles. After the algorithm converges, the
peak of the trajectory following error is 370 m (Fig. 6), while
the normalized -norm is 79 m.

2) Constrained ILC Based on the Interior-Point Method: The
ILC scheme based on the interior-point method is implemented
as described in Section III. As for the box type ILC, is set to
1.9 V. Fig. 8 shows the trajectory following error plots for itera-
tions 1, 5, 15, and 20. Fig. 10 shows the decay of the normalized

-norm of the trajectory following error versus the iteration
number. For , the peak of the trajectory following error
becomes less than 85 m (Fig. 9), while the normalized -norm
is 6 m. Fig. 12 shows the optimal (i.e., for ) feedfor-
ward control effort. Note that the feedforward effort slows down

Fig. 6. Tajectory following error � versus the time for � � �, 15.

Fig. 7. Normalized � -norm of � versus the trial number � for the box-type
ILC design in (9).

the system at the beginning of the acceleration phase so that the
saturation bounds are not violated and then increases the speed
of the system midway through the acceleration phase when sat-
uration is no longer an issue. During the constant velocity phase
the feedforward signal compensates for the viscous friction in
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Fig. 8. Trajectory following errors � versus the time for trials � � �, 5, 15,
and 20.

Fig. 9. Trajectory following error for trial � � ��.

Fig. 10. Normalized � -norm of � versus trial number �.

the bearings. The ILC effort is small during the constant ve-
locity phase, primarily because the feedback controller has suf-
ficient bandwidth to remove any disturbances and ensure good
tracking. Fig. 13 illustrates that the total control effort is always
within the saturation bounds for all iterations. Furthermore, the

Fig. 11. Peak following error �� � versus trial number �.

Fig. 12. Feedforward ILC effort � for iterations 0 and 20.

Fig. 13. Maximum total control effort versus trial number �. Note that the con-
trol effort stays within the saturation bounds ��2 V�.

control effort remains conservatively small for the first few it-
erations since the weight on staying feasible is large. However,
in later iterations, the control effort peak approaches the satu-
ration bounds in order to extract higher performance. Contrary
to the control effort, the error normalized -norm and infinity
norm (shown in Figs. 10 and 11) are larger for earlier iterations,
but as we extract more performance and are less conservative on
the saturation bounds, the error norm decreases. This highlights
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Fig. 14. Trajectory following error after convergence for the single-experiment
ILC and multiple experiment ILC cases, in the presence of model uncertainty.

the (possible) nonmonotonicity of the proposed algorithm. Note
that the normalized -norm of the trajectory following error for
the box-type scheme in (9) is 79 m whereas it is 6 m for the
scheme based on the interior-point method. Therefore, although
the box-type ILC scheme converges, the converged signal may
be suboptimal.

E. ILC and Offline Optimization

Looking at the problem in (6), one may suggest that even
though the signal (i.e., the supervector ) is unknown, with
one single run of the experiment, we can determine (as

) and compute the optimal feedforward control effort
through an offline optimization. However, this computed signal
would be guaranteed optimality only if was exact. In fact,
in the presence of modeling uncertainties this procedure leads
to a suboptimal solution. This suboptimality is demonstrated
in Fig. 14 for the plant given in Section IV-A with a hypo-
thetical model uncertainty, where the tracking errors along a
cycle are shown for the single experiment and multiple exper-
iment cases (one experiment at each iteration, with a total of
nine iterations). The resulting error profiles from a single ex-
periment and multiple experiments illustrate that the iterative
nature of the learning process yields better robustness to model
uncertainty. Therefore, integrating offline computation and ex-
perimental data is essential for ensuring the robust performance
of the optimization-based ILC algorithm presented here. The
trial-to-trial robustness of ILC has been one of its most attrac-
tive features (the interested reader is referred to [33]).

V. CONCLUSION

This paper developed optimization-based ILC schemes for
constrained linear systems executing a repetitive task. Casting
the constrained ILC problem as an optimization problem en-
ables the use of numerical tools from optimization theory. In
particular, the ILC problem for constrained linear systems with
quadratic objective functions and linear constraints is equivalent
to a convex quadratic program (QP), for which there exist com-
putationally efficient solvers. We provided QP formulations for

linear systems executing repetitive processes with truncated -
and -norm objective functions and input saturation and rate
constraints.

The key difference between standard convex optimization
and the corresponding constrained ILC problem is that each
iteration in the ILC design problem requires an experiment run.
Therefore, we used an interior-point method (specifically the
barrier method) to reduce the number of iterations (hence the
number of experiment runs). The performance of the imple-
mentation based on the interior-point method was compared to
another approach based on the active set method on a simulation
example where the interior-point method required much smaller
number of iterations compared to the active set method. We
implemented ILC scheme based on the interior-point method
on a prototype wafer stage system with actuator saturation
constraints and -norm of the tracking error as the objective
function. The convergence of the algorithm took less than 20
iterations, justifying the use of the optimization-based scheme.

The primary contribution of this paper is the synergistic use
of numerical tools for constrained convex optimization in the
ILC design framework with several relevant and interesting ex-
tensions. State constrained ILC problems can be included in the
general class of systems considered in the paper with simple
modifications to the proposed method. The robustness to mod-
eling uncertainties has been one of the most attractive features
of conventional ILC schemes. Hence, understanding the robust-
ness properties of the optimization-based ILC algorithms will
be critical to determining their practical relevance. Furthermore,
approaching the constrained ILC problem in a formal optimiza-
tion framework may lead to interesting extensions in the inter-
section of the ILC and model predictive control in cooperation
of both the experimental data (typically used in ILC) and the
predictions (typically used in model predictive control). This ex-
tension is subject to current research.
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