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1. Introduction 
To use this template, you will need to (1) apply the 

embedded styles to each paragraph-level item in your 
manuscript or (2) use the specifications shown in Table 1 
to format your manuscript, with this template as a visual 
guide. Information about paper submission is available 
from the Journal website. 

A system is a large scale when its dimensions are so 
high, such that conventional techniques of modeling, 
analysis control, design and computation fail to give 
accurate solutions with reasonable computational efforts. 
Thus, Model reduction of a high order system is an 
important problem in analysis, as well as in controller 
synthesis of a practical system [1]. To reduce large system 
to its low-order many techniques are available in literature 
using time domain and frequency domain methods 
[2,3,4,5]. 

In a frequency domain, one important order reduction 
method is Pade approximation reported in [4,6,7]. It is 
reported that the Pade approximation method does not 
guarantee the stability of the reduced-order model; 
therefore, many other alternative methods, such as the 
Mihailov stability criterion [8], Routh approximation [6,9], 
stability equation method [10,11,12], Routh stability array 
method [11,13] and Hurwitz polynomial approximation 
[14] have been reported time to time. Shamash [15] have 
considered the effect of including Markov parameters 
along with time moments to ensure the initial time 
response. A modified version Routh Pade approximation 
method is reported in [3]. The stability equation method 
application is presented in [16] and Routh array method as 
in [17]. Stability preservation using differentiation method 

is presented in [18] and extended to MIMO systems in 
[19].  

Soloklo and Farasangi in 2013 [1], have introduced the 
multiobjective weighted sum approach for model 
reduction by Routh Pade approximation using Harmony 
search algorithm. The advantage of stability equation 
method along with genetic algorithm (GA) is used to 
reduce the order of a system in [20]. A 10th order two 
input and two output linear time invariant power system 
model is reduced using PSO in [21]. Other evolutionary 
methods based reduced order model is reported in [22] , 
H∞ Model Reduction in [23,24,25] and Hankel singular 
based in [26,27]. Moreover, the application of model order 
reduction methods has been applied in the field of power 
system [9,28,29,30]. The application of bat algorithm for 
model order reduction is presented in [31]. 

The organizations of the contents are as problem 
formulation in section 2, review on Cuckoo Search 
algorithm and the modifications made in it are included in 
section 3, the test systems considered for the reduction and 
comparison to existing reduced models are incorporated in 
section 4 and the concluding remarks are made in section 
5, followed by references. 

2. Problem Formulation 
Consider a higher order system of order n and is 

represented by equation (1).  
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Where, ai and bi are constants for i=1,2,…,n. 
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If r represents a reduced order as of lesser order than n, 
then, the reduced order model of the system in equation (1) 
is represented as in equation (2). The important and 
principal requirement of the reduced order model is to 
posses all important specifications of the original system. 
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Where, cr and dr are unknown constants and are to be 
determined by using cuckoo search algorithm subjected to 
minimization of integral square error defined in equation 
(3). Error denotes difference of the unit step responses by 
original system and the reduced model to a unit-step 
function as shown in Figure 1. 
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Figure 1. Scheme for optimization of free coefficients of reduced order 
model 

3. Cuckoo Search Algorithm 
The literature on cuckoo search is expanding rapidly. 

There has been a lot of attention and recent studies using 
cuckoo search with a diverse range of applications. 
Walton et al. improved the algorithm by formulating a 
modified cuckoo search algorithm [32], while Yang and 
Deb extended it to multi-objective optimization problems 
[33]. 

As the Cuckoos lay their eggs in the nest of other birds 
and respective host birds take care of the cuckoo’s chicks 
[34]. It is mainly inspired by the obligate brood parasitism 
of cuckoos by laying their eggs in the nests of other host 
birds. The infringing cuckoos are in direct contest with the 
host birds. The host bird discovers the eggs of other birds 
and may throw these out of nest or may construct another 
nest elsewhere. The Parasitic cuckoos generally selects a 
nest in which the host bird just laid its own eggs [34]. The 
Cuckoo eggs generally hatch somewhat earlier than their 
host eggs [35]. As soon as, cuckoo chick is hatched starts 
to evict y blindly propelling the eggs out of the nest to 
reduce the share of food. Cuckoo chick starts to mimic the 
voice call of host chicks to gain more opportunity of 
feeding [34]. 

An algorithm provides a set of output variables on 
application of input variables. An optimization algorithm 
generates/produces a new set of solution 1tx + to a given 
problem from a given solution tx at time t or iteration. 

 1 { , ( )}t tx A x p t+ =  (4) 

Where, the new solution vector 1tx + is nonlinearly 
mapped through A to given d-dimensional vector tx . Let 
the variables of the problem are k and are represented as 

kppptp ,...,,)( 21=  which may be time dependent and can 
be tuned by A. Let an optimization problem is S with 
states as ψ then according to predefine criterion D, the 
optimal solution osx  selects the desired states as ϕ  as in 
equation (5). 

 ( )( ) { ( )}A t
osS S xψ ϕ→  (5) 

Thus, the final found/converged state ϕ  represents to 
an optimal solution osx of the problem of interest. Here, 
the system states are selected in the design space by 
running the optimization algorithm A. Thus, the 
performance of the algorithm is depended /controlled by 
the initial solution 0tx = , the parameters p, and stopping 
criterion D. 

3.1. Procedural Steps 
The cuckoo search algorithm is based on the brood 

parasitism of some cuckoos such as the ani and Guira and 
is enhanced by use of Levy flights [36], not just by simple 
isotropic random walks. The Cuckoos are special birds not 
only because of the beautiful sounds but also because of 
their aggressive reproduction strategy. Cuckoos engage 
the obligate brood parasitism by laying their eggs in the 
nests of other host birds. The ani and Guira as the species 
of cuckoos used to lay their eggs in other bird’s nests and 
they may remove others’ eggs to increase the hatching 
probability of their own eggs. It is necessary to make 
assumptions as followings: 
Assumptions 
• At a time each cuckoo lays one egg and dumps it 

in a randomly selected nest 
• The nests with high-quality eggs are selected and 

being carried over to the next generations 
• The available number of nests (of hosts) is kept 

fixed (as n), and the probability of cuckoo egg 
detection by the host bird is fixed as [0,1]aP ∈ . 
As above, the host bird may get rid of the egg or 
may even abandon the nest to build a new nest i.e. 
a fraction Pa of the n host nests that are replaced 
by new nests [34]. 

Further, as an implementation, it should be assumed 
that the solution refers to an egg in a nest, and each 
cuckoo can lay only one egg. Thus, there is no distinction 
between cuckoo, egg or nest because as each nest consists 
one egg which corresponds to one cuckoo. CS algorithm 
uses a combination of a local random walk (for local 
search) and the global random walk (for global search) 
and is controlled by a switching parameter Pa.  

3.1.1. Local Random Walk  
Let two different solutions selected by random 

permutation are as t
jx and t

kx , Heaviside function as 

( )aH P −∈ , random number drawn from a uniform 
distribution as ∈ , and the step size as ‘s’. Then, the local 
random walk can be represented as. 
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 1 ( ) ( )t t t t
i i a j kx x s H P x xα+ = + ⊗ −∈ ⊗ −  (6) 

Here, 0α >  is the step size related to the scales of the 
problem of interests. It is generally selected as 1α = .The 
product “⊕” means entry-wise walk during multiplications. 

3.1.2. Global Random Walk  
The global random walk is carried out by using Levy 

flights in which the step-lengths are distributed according 
to a heavy-tailed probability distribution [34]. On completion 
of large number of steps the random walk tends to a stable 
distribution as compared to its origin. The final solution 
can be represented by equation (7) as following. 

 1 ( , )t t
i ix x L sα λ+ = +  (7) 

Where, 
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The equation (7) is the stochastic representation for a 
random walk. The random walk is a Markov chain; whose 
next location directly depends on the current location and 
the transition probability. An appropriate value of new 
solutions generated by randomization and their locations 
should be far enough from the best solution (current) to 
make sure not be trapped in a local optimum [35,37]. The 
local search exists about to 1/4 of the search time (with Pa 
= 0.25), while global search exists for 3/4 of the total 
search time.  

3.1.3. Levy Distribution 
Levy flights are characterized by infinite mean and 

variance therefore, CSA can explore the search space 
more efficiently as compared to standard Gaussian process. 
Thus, CSA guaranteed global convergence and highly 
efficient [37,38,39]. 

In Lévy flight the step-lengths are distributed according 
to the probability distribution as in equation (9), which 
provides a random walk while the random step length is 
drawn from a Levy distribution [35]. 

 ( ) , (1 3)Levy u t λ λ−= < ≤  (9) 

3.1.4. Improved Cuckoo Search 
As above the α introduced in the CSA is to find locally 

improved solutions, while Pa and λ to find global solution. 
Pa and α parameters play a vital role in tuning of solution 
vectors. In original CSA, Pa and α are kept fixed and 
cannot be altered during new generations, therefore, the 
number of iterations kept large to get optimal solutions. 
With large value of Pa and small value of α, the 
convergence speed is high but unable to find required 
solutions. To mitigate the problem of adjusting the value 
of Pa and α, these are considered as variables in improved 
CSA. The values of Pa and α must be large enough to 
make capable the algorithm to increase the diversity of 
solution vectors during early generations and decreased in 
final generations to result in a better fine-tuning of 
solution vectors [34]. Thus, Pa and α are dynamically 
changed with the number of generation and expressed in 

equations (10) – (12), where NI and gn are the number of 
total iterations and the current iteration, respectively [34]. 

 max min
max

( )
.gn a a

a a
P P

P P gn
NI
−

= −  (10) 

 max( ) .exp ( . )gn c gnα α=   (11) 

 ( )min max/Ln
c

NI
α α

=  (12) 

The performance of the algorithm may deteriorate by an 
increase in the maximum value of α as in [34], therefore, 
the suitable values are 0.005 ≤ Pa ≤ 1.0 and 0.05 ≤ α ≤ 0.5. 
The considered values of Pa and α are 0.25 and 0.25, 
respectively. 

4. Results and Discussions  

4.1. Example-1: SISO System 
Considering a fourth order single input and single 

output (SISO) system [20,40,41] and is described by the 
transfer function as in equation (13). The second order 
ROM as proposed is represented by equation (14) with 
free coefficients as N1 and N2. The range of these free 
coefficients are considered as 0.1 ≤ N1 ≤ 1.0 and 0.1 ≤ N2 
≤ 2.0, thus the lower and upper bounds are defined in CSA 
accordingly in vector format. The other necessary 
parameters of CSA as number of nests i.e. different 
solutions (n) as 25, discovery rate of alien eggs (Pa) as 
0.25 and maximum iterations as 200 are selected to 
compute the free coefficients of equation (14). The 
computed coefficients N1 and N2 are obtained as 0.8130 
and 0.7945, respectively and resulting equation (15) and 
the variation of these free coefficients for 200 iterations by 
CSA is shown in Figures 2(b) - 2(c). The performance of 
CSA during coefficient computation in terms of fitness 
function value for 200 iterations is shown in Figure 2(a). 

0 50 100 150 200

0

1

2

3

4

Iterations

Fm
in

(a)

 

 

0 100 200
0.6

0.7

0.8

Iterations

C
oe

f-N
1

(b)

 

 

0 100 200
0.78

0.8

0.82

Iterations

C
oe

f-N
2

(c)

 

 

Fmin: 0.0047

N1: 0.8130

N2: 0.7945

 
Figure 2. Performance of Cuckoo search algorithm for test system - 1 for 
(a) Plot of fitness function, (b) Variation of free coefficient N1, and (c) 
Variation of free coefficient N2 

The reduced second order model by Desai [41] using 
Routh approximation and Big Bang Big Crunch is 
represented by equation (16). In this method the 
numerator coefficients are determined by Big Bang Big 
Crunch algorithm and the denominator elements are 
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determined by Routh approximation. The original system 
is reduced to second order, where in [20], the denominator 
is reduced using stability equation method and the 
numerator coefficients are found using Genetic algorithm 
and represented in equation (17). Another approach 
proposed by Boby and Philip in [42], where in 
denominator found by dominant pole method and the 
numerator by Big Bang Big Crunch algorithm and 
represented by equation (18). 
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Step response of original system, proposed reduced, 
and other published reduced models are compared in 
Figure 3 and other performance parameters as overshoot, 
rise time, settling time and performance indices such as 

integral time multiplied absolute error (ITAE), integral 
absolute error (IAE) and integral square error (ISE) are 
enlisted in Table 1 and defined in [43,44,45]. All three 
performance indices (PIs) for proposed reduced order 
model (ROM) are lesser in magnitude as compared to 
other published ROMs [20,40,41], proving superior 
performance. In Desai and Prasad, 2013[11], the 2nd order 
reduced model of the considered system in equation (13) 
is 2(0.8 0.686) / ( 1.47 0.686)s s s+ + +  with ISE value 
3.5×10-4 which is greater than the proposed 2.15×10-4; 
proving effectiveness of the proposed methodology. 
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Figure 3. Step response of Original system, 2nd order reduced (Proposed) 
and other comparing reduced models 

Table 1. Performance parameters of original test system -1 and reduced models (proposed ROM and as in [20,40,41]) 

Para-meters Original [20,40,41] Pro-posed Desai [41] Parmar [20] Boby [42] 

Over-shoot 0 0 0.2738 1.3007 0.2738 

Rise Time 2.2602 2.2767 2.2787 2.189 2.2787 

Settling Time 3.9307 3.6120 3.6199 3.222 3.6199 

ISE - 2.15E-4 2.17E-4 1.64E-3 1.7E-3 

ITAE - 0.1758 0.1770 0.5226 0.2575 

IAE - 0.0430 0.0447 0.1147 0.0933 

4.2. Example-2: SISO System 
Considering a test system of order six as in [1] and 

presented in equation (19). Considering second order 
reduced order model as in equation (20), where, N1,and N2 
are the free parameters to be optimized by CSA while the 
denominator is obtained using Routh approximation as in 
[41,46]. The parametric bound as lower and upper value 
for CSA are considered as 0.1 ≤ N1 ≤ 1and 0.1 ≤ N2 ≤ 1.0 
respectively. The performance of CSA in optimization for 
200 iterations is shown in Figure 4. The fitness function 
variation over 200 iterations is shown in Figure 4(a), 
while the free coefficient variation is shown in Figure 4(b) 
for N1 and Figure 4(b) for N2. The resulting value of 
fitness function at completion of 200 iterations is 0.0791 
and the values of N1 and N2 parameters are 0.0910 and 
0.0109, respectively. Thus resulting 2nd order reduced 
model (proposed) is represented in equation (21). 
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Figure 4. Performance of Cuckoo search algorithm for test system - 2 for 
(a) Plot of fitness function, (b) Variation of free coefficient N1, and (c) 
Variation of free coefficient N2 
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The other second order reduced models as typical Pade 
approximant [1] and Multi objective Harmony search 
algorithm [1] based are as in equation (22) and equation 
(23), respectively. 
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Table 2. Performance parameters of original test system-2 and 
reduced models 

Para-meters Original [1] Proposed Pade [1] Soloklo[1] 

Over-shoot 0 0.0193 7.46 7.61 

Rise Time 22.7 21.4609 15.1 14.3 

Settling Time 40 36.0165 50.4 53 

ITAE - 30.4949 585.0442 138.72 

IAE - 0.5987 12.7028 4.906 

ISE - 0.0052 2.8887 0.5377 
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Figure 5. Step response of Original system, 2nd order reduced (Proposed) 
and other comparing reduced models as in [1] 

The Step response of Original system, 2nd order reduced 
(Proposed) and other comparing reduced models of [1] as 

in equation (19) and equations (21) - (23) is shown in 
Figure 5. The step response information and PIs based 
performance is summarized in Table 2, where in, the 
proposed ROM possesses least value of the PI values 
resulting to superior performance. 

4.3. Example-3: SISO System 
Considering a test system as boiler system of order nine 

as in [47] and presented in equation (24). Here, the desired 
third order reduced model is represented by equation (25). 
The parameter bounds for free coefficients in CSA are as 
120 ≤ N1 ≤ 160, 4000 ≤ N2 ≤ 4500 and 4400 ≤ N3 ≤ 5000 
for 200 iterations and the denominator is determined by 
typical Routh approximation as in [41,46]. The performance 
of Cuckoo Search algorithm for determining free coefficients 
is shown in Figure 6(a) in terms of fitness function plot 
and coefficients in Figures 6(b) - 6(d). Using optimized 
parameters, the third order reduced model by CSA is 
shown in equation (26). The other third order model as in 
[1] as typical Pade and HSA based multi-objective are 
represented in equations (27) - (28), respectively. 

The step signal based response of these systems is 
shown in Figure 7. The step response by proposed method 
is able to mimic the original system more appropriately as 
compared to others. The other comparing parameters as 
overshoot, rise time, settling time and performance indices 
as ISE (Integral square error), ITAE (Integral time 
multiplied absolute error) and IAE (Integral absolute error) 
of these step responses are determined and enlisted in 
Table 3. The performance parameters with proposed 
reduced model in terms of ISE, ITAE and IAE are having 
least values as compared to other methods, proving 
superior performance. 
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Figure 6. Performance of Cuckoo search algorithm for test system - 3 for 
(a) Plot of fitness function, (b) Variation of free coefficient N1, (c) 
Variation of free coefficient N2, and (c) Variation of free coefficient N3 
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Figure 7. Step response of Original system, 2nd order reduced (Proposed) 
and other comparing reduced models as in [1] 

Table 3. Performance parameters of original and reduced models 
Para-meters Original [47] Proposed Pade [1] Soloklo [1] 
Over-shoot  0 0 0 0 

Rise Time 0.543 0.5613 0.0918 0.612 
Settling Time  2.28 2.2520 2.39 2.36 
ITAE - 0.2374 53.9939 21.622 

IAE - 0.0719 3.0904 1.2432 
ISE - 0.0027 0.3561 0.0269 

4.4. Example-4: MIMO system 
Let us consider a Multi-Input Multi-Output (MIMO) 

system as in [41,48] of sixth order having the following 

transfer matrix as in equations (29) - (30). The system in 
sub-system format is represented in equations (31) - (34). 
The proposed second order reduced model is represented 
by equation (35). 
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The 6th order denominator of the system is reduced to 
2nd order model by applying Routh approximation method 
as in [41] and is being represented by equation (36).  

 2
2 ( ) 1.5480 0.7091D s s s= + +  (36) 

Since, the denominator of equations (31) - (34) is same; 
therefore, the denominator would remain same. The 
numerators are different, would be determined by using 
Cuckoo search algorithm. The general form of numerator 
with free coefficient can be represented as N1s+N2. The 
performance of CSA in terms of fitness function is shown 
in Figure 8 and the plot of the free coefficients for N11(s), 
N12(s), and N21(s) and N22(s) is shown in Figure 9. The 
optimized numerators are shown in equation (37) - (40) 
and the resulting reduced MIMO system is represented by 
equation (41).  

 11( ) 0.0672 0.7086N s s= +   (37) 

 12 ( ) 0.5223 0.2831N s s= +  (38) 
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 21( ) 0.4552 0.3543N s s= +  (39) 

 22 ( ) 1.1398 0.7083N s s= +  (40) 

 2 2
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0.4552 0.3543 1.1398 0.7083

( )
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s s
s s

G s
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+ +
 (41) 

The reduced second order transfer matrix by Prasad [48] 
is given as in equation (42). 
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The reduced second order transfer matrix by Desai [41] 
is given as in equation (43). 

 2 2

0.9475 0.7091 0.4892 0.2837
0.455 0.3546 1.126 0.7091

( )
1.548267 0.7091

s s
s s

R s
s s

+ + 
 + + =

+ +
 (43) 

The reduced second order transfer matrix by Parmar [20] 
is given as in equation (44). 

 2 2
( )
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0.8503087 0.4617562
0.6171331 0.2466069
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0.3086095 0.6171125
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The step response for original system, proposed 
reduced model and other published reduced models 
[20,41,48] are shown in Figures 10 - 13 and the 
corresponding performance indices (ITAE, IAE and ISE) 
are shown in Table 4 – Table 7. The step response for G11 
as in Figure 10, shown the best mimic operation as 
compared to others while in Figure 11 (for G12, G21 and 
G22) is Vishwakarma and Prasad. As the performance 
indices are quantitative representation of the responses 
and minimum value represents the best performance. By 
observation of Table 4 – Table 7, the all PIs (ITAE, IAE 
and ISE) found to be minimum with the proposed reduced 
model. It is found that the proposed method is able reduce 
manual calculative complexity as in the pole-clustering 
and other method. 
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Figure 8. Fitness function for optimization of free coefficients using 
CSA for denominator by Routh approximation method 
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Figure 9. Plot of free coefficients N1 and N2 for Gr(11), Gr(12), Gr(21) 
and Gr(22) sub-systems of proposed reduced models using CSA. 

Table 4. Performance indices (IAE, ITAE and ISE) for step response 
of different reduced models of G11(s) 

Methods 
R11(s) 

IAE ITAE ISE 
Proposed 0.35 0.5411 0.000825 
Desai [41] 1.25 2.9822 0.00672 
Prasad [48] 1.21 2.6621 0.001515 
Parmar [20] 1.31 3.4544 0.014498 
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Figure 10. Step response of Original system, G11(s) and different 
reduced models. 
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Figure 11. Step response of Original system, G12(s) and different 
reduced models 
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Table 5. Performance indices (IAE, ITAE and ISE) for step response 
of different reduced models of G12(s) 

Methods 
R12(s) 

IAE ITAE ISE 
Proposed 0.1665 0.5 6.006E-3 
Desai [41] 0.1559 0.37 0.005918 
Prasad [48] 0.0168 3E-2 7.845E-5 
Parmar [20] 0.2169 0.70 0.008744 
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Figure 12. Step response of Original system, G21(s) and different 
reduced models. 
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Figure 13. Step response of Original system, G22(s) and different 
reduced models 

Table 6. Performance indices (IAE, ITAE and ISE) for step response 
of different reduced models of G21(s) 

Methods 
R21(s) 

IAE ITAE ISE 
Proposed 0.0763 0.2594 1.005E-3 
Desai [41] 0.0766 0.2387 0.000958 
Prasad [48] 0.0342 0.0717 0.000299 
Parmar [20] 0.1288 0.4807 0.002538 

Table 7. Performance indices (IAE, ITAE and ISE) for step response 
of different reduced models of G22(s) 

Methods 
R22(s) 

IAE ITAE ISE 
Proposed 0.196 0.7638 0.005123 
Desai [41] 0.191 0.6182 0.005896 
Prasad [48] 0.125 0.2207 0.004681 
Parmar [20] 0.315 1.1704 0.015741 

5. Conclusion 
The Cuckoo Search algorithm based model order 

reduction is designed with minimization of ISE pertaining 
to a unit step input for optimization of numerator free 
coefficients. The denominator of the original systems for 
SISO and MIMO systems are reduced using Routh 
approximation method. The optimization process is for 
bounded constraints varying as per examples and the order 
of reduction. The performance of the Cuckoo Search 
algorithm based reduced order model for different systems 
is compared to Routh approximation and Big Bang Big 
Crunch, Dominat Pole clustering and Big Bang Big 
Crunch, Stability equation and Genetic algorithm, typical 
Pade and HSA based multi-objective ROM and 
outperforms in terms of performance indices as ITAE, 
IAE and ISE. 
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