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Figure 1: We present an algorithm that distributes colours randomly using a human-centric definition of randomness. Left:
Colours distributed using Matlab’s random-number generator. Middle: Result of our algorithm. Notice that our algorithm does
not produce any distinctive patterns. Right: An image similar to one of Damien Hirst’s spot paintings.

Abstract
Apparently-random distributions of colours in a discrete setting have been used by many artists and craftsmen in
the past century. Manual colourisation is a tedious and difficult process. Automatic colourisation, on the other
hand, tends not to not look ‘random’ to a human, as randomly-generated clusters and patterns stimulate human
perception and break the appearance of randomness. We propose an algorithm that minimises these apparent
patterns, making the distribution of colours look as if they have been distributed randomly by a human. We show
that our approach is superior to current solutions, especially for small numbers of colours. Our algorithm is easily
extendible to non-regular patterns in any coordinate system.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications; I.3.m [Com-
puter Graphics]: Miscellaneous—Visual Arts; J.5 [Arts and Humanities]: Fine Arts.

1. Introduction

Abstract art is usually based on some object or complex
structure that is simplified or abstracted. Of most relevance
to this work is where coloured grids, dots, or regions are
used by artists to flatten out the complexity of the real. As
Rosalind Krauss put it, ‘in the spatial sense, the grid states
the autonomy of the realm of art. Flattened, geometricised,
ordered, it is antinatural, antimimetic, antireal. It is what art
looks like when it turns its back to nature’ [Kra85].

Random colour sampling in the spatially discrete space
was used in the early twentieth-century by numerous artists
such as Jean Arp, Sophie Tauber and Vilmos Huszár. The
grid represents order and structure; colourising the cells in
this discrete spatial grid introduces randomness and chaos.
The artist controls the amount of structure and chaos: the
more regular the patterns, the more structure we get – and
vice versa.

A related type of art is the colour chart. Here, a small
subset of the colour spectrum is laid out in either a struc-
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tured fashion, like colour palettes in paint programs, or in a
random fashion as shown in Figure 4. Gerhard Richter and
Ellsworth Kelly are amongst the most prominent artists in
this genre.

A recent variation on this is Damien Hirst’s series of spot
paintings. Random circles of colours with a fixed radius are
distributed in some regular pattern. The colours are chosen
‘randomly’ by the artist. However, this is a human interpre-
tation of randomness. Naïve machine simulations of Hirst’s
work demonstrate clusters of spots of similar colours; Hirst’s
actual paintings have no such clusters [Dod09].

A related problem, albeit in craft rather than art, is tiling
a wall in a seemingly ‘random’ pattern with coloured tiles
of a small number of colours. The Flickr group ‘Interesting
Pixel Patterns’† collects photographs of such patterns of pix-
els or tiles on a regular grid. Looking at these photographs,
we notice that ‘Tetris’-like clusters are deliberately avoided
(unlike the left column of Figure 4). It is remarkably diffi-
cult to achieve a pattern that appears random to a human as
humans are good at spotting patterns. True random selection
of each tile’s colour therefore does not lead to an effective
tiling; the selection must be moderated by a human.

Our problem is thus that we wish to produce ‘random’
selections of colours that emulate what a human perceives
as random, rather than a truly random distribution.

Wei (2010) [Wei10] proposed algorithms for multi-class
blue-noise sampling, that is, sampling using multiple classes
of objects that are distributed in a blue-noise fashion, both
within each individual class and between their unions. The
algorithms can be applied to both continuous and discrete
spaces. Our initial assumption was that, owing to their
demonstrated success in the continuous space, these algo-
rithms would serve to solve our problem. Unfortunately, the
proposed algorithms are not suitable for discrete sampling
using a small number of colours. Since they use a Euclidean
distance metric, where adjacent horizontal and vertical cells
are closer than diagonal adjacent cells, these algorithms tend
to generate obvious diagonal lines of the same colour,

Our algorithm, described in Section 3, takes an alterna-
tive approach. It picks an empty cell and computes an en-
ergy for each potential colour; the colour with the lowest
energy is then chosen. Our energy function is based on
a human-centric definition of randomness (Section 2). We
show significant improvements over Wei’s blue noise algo-
rithms (Section 4).

The results produced by our algorithm include Hirst-like
regular spot paintings (Figure 1), abstract colour charts (Fig-
ure 4), hexagonal grids (Figure 6), and non-regular dot pat-
terns such as Fermat’s spiral (Figure 9). Our algorithm is

† http://www.flickr.com/groups/1302071@N22/

easily extendible to higher dimensions (see our supplemen-
tary video). Finally, we show that our algorithm is applicable
to the problem of randomly tiling coloured tiles (Figure 7).

2. What do we mean by ‘random’?

Randomness can be defined as ‘happening, done, or cho-
sen by chance rather than according to a plan or pattern’
[Cam08]. For a colour distribution to appear ‘random’ to a
human being it cannot contain any region with clearly visi-
ble patterns or clusters that deviate from the remainder of the
distribution. These regions will attract the viewers attention
and thus break the feel of randomness.

Human visual perception is exceptionally well-trained to
recognise patterns. Gestalt psychologists convincingly illus-
trate this through visual experiments. We can, for example,
draw certain objects or shapes with just a few lines, and we
will instantly recognise and visualise the complete outline of
the object. Gestalt theorists argue that perceptual processes
are dynamic rather than passive and the perceptual world is
organised into patterns or configurations. The claim that ‘the
whole is greater than the sum of its parts’ [Kof35] is an im-
portant tenet for the Gestalt psychologist.

The Gestalt theorists argues that there must be a general
underlying principle behind these phenomena. Wertheimer
(1912) pioneered this notion with his ‘laws of grouping’
such as proximity, continuation and similarity [Wer12]. In
this work, we focused on the proximity and similarity cues:
dots that look similar and are close together are grouped to-
gether. This is clearly visible in Figure 1 (left) where hori-
zontally adjacent similar cells ‘stick’ out.

The ideas illustrated by Gestalt theory are used widely by
artists. Due to the inherent complexity of the real world, it
is impossible to capture it in its entirety. Artists must there-
fore provide simplified representations of the objects they
depict. Arnheim (1956) provides an extensive review of this
concept [Arn56]. Since humans are trained to identify pat-
terns, these are expected in art. Hirst’s spot paintings, on the
other hand, do not consist of any easily-identifiable patterns.
We could therefore argue that these distributions look more
random according to human perception than distributions
made by a random-number generator. As Hirst’s works do
not consist of any of the Gestalt groups, it is difficult to find
interpretation other than ‘just random coloured dots’. One
might hence argue they do not possess any æsthetic value.
The art critic Peter Schjeldahl analyses Hirst’s spot paintings
as follows: ‘. . . the pleasantly disorienting effects of colours
that appear to be distributed at random: bright or muted and
warm or cool, all ajumble. . . . His work comprehends all
manner of things about previous art except, crucially, why
it was created’ [Sch12]. However, we leave this argument to
the philosopher.
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Following our chosen Gestalt principles, we define ran-
domness as the minimisation of certain features that are ob-
vious to the human perceptual system:

• regular patterns
• clusters of the same colour
• horizontal, vertical or diagonal runs of the same colour

In a regular grid, where each cell has eight neighbours, pro-
ducing a distribution that has no adjacent similar cells when
sampling four colours or fewer is impossible. There must
therefore be a balance between the various patterns. Also,
longer patterns are more noticeable to human perception.
These must hence be penalised more than smaller patterns.
We also assume that vertical and horizontal patterns are more
noticeable to the human perceptual system than diagonal
patterns. This latter assumption is based upon informal ex-
periments during the development of our algorithm.

Our initial experiments revealed that we can identify all
of the above features by looking only for straight-line runs
of the same colour in the four principal directions (horizon-
tal, vertical and the two diagonals). This obviously identi-
fies such runs. It also identifies the strongest of the regular
patterns, the checkerboard, through combination of the two
diagonal directions through a given cell. And it also identi-
fies clusters of the same colour by combinations of all four
directions through a given cell.

3. Random discrete colour sampling

Given a set of colours and a number of empty cells, our al-
gorithm picks a random empty cell in each iteration and fills
it with the colour of minimal energy (Equation 1). If there
are multiple colours with the minimal energy, we pick one
of these randomly. Note that we use a random-number gen-
erator when picking cells and colours randomly. The energy
for each colour is based on cells of the same colour in the
local neighbourhood. That is, we count nearby cells of the
same colour that form linear runs, horizontally, vertically or
diagonally where the linear runs align with the current cell.
We compute an energy as follows:

E(c,x) = ∑
p∈{H,V,D1,D2}

ωp · cp(c,x)n · Pp +1
T +1

, (1)

where c is the sample colour and x is the position of the
current cell. The remaining terms of Equation 1 are:

• H and V represent horizontal and vertical patterns, and
D1 and D2 are diagonal patterns orientated like and ,
respectively.

• Pp is the number of adjacent cells with similar colour in
the direction defined by the pattern p.

• T is the total number of adjacent cells with the same
colour, that is T = PH +PV +PD1 +PD2 .

• cp(c,x) is the count of a pattern p around location x for the
colour c. If, for example, we are considering horizontal
patterns (p=H) at the empty cell in the one-dimensional
array [blue, red,empty, red, red,pink, red], and the current
colour is c = red, the counter returns 3. Note that the
counter stops when a different colour is encountered. The
rightmost red is therefore not counted.

• n controls the balance between square clusters and elon-
gated patterns. A large n results in few elongated clusters
but more square clusters. Conversely, a small n results in
more similar adjacent cells in exchange for fewer square
clusters. We use n = 5 for the results given in this paper.

• ωp are weights for the various patterns. For example, large
values of ωV and ωH , and small values of ωD1 and ωD2 re-
sult in more diagonal patterns but fewer vertical and hor-
izontal patterns, which tends to produce a ‘checkerboard
effect’. Figure 2 shows how these weights affect the re-
sults visually.

ωH =ωV =50, ωD{1,2}=1 ωH =ωV =1, ωD{1,2}=50

Figure 2: Effect of the weights ωp. Left: Higher weights for
vertical and horizontal patterns produce diagonal patterns
(i.e. checkerboard patterns). Right: Higher weights for di-
agonal patterns produce maze-like patterns.

3.1. Energy minimisation with sample control

Even though we do not explicitly control the frequency of
each colour, our tests show that we do get an even amount of
each colour. Sometimes, however, we might want an exact
number of samples for each colour. If we are tiling a kitchen
for example, we usually only have a given number of each
type of kitchen tile. We therefore extend our energy func-
tion by adding a weight, ωc for each colour. That is, we first
compute the energy using Equation 1 and then normalise and
scale this using the weight for the given colour:

E′(c,x) = ωc ·
(

1− E(c,x)
maxC E(C,x)

)
, (2)

where maxC E(C,x) is the colour with the highest energy,
C is the set of all input colours, and ωc is updated in each
iteration by

ωc = 1− nc

nt(c)
, (3)

c© 2012 The Author(s)
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where nc is the current count for the colour c and nt(c) is
its target sample count, as specified by the user. The colour
with the highest scaled energy, E′, is then picked.

3.2. Penalising similar colours

Hirst’s spot paintings do not duplicate colours: every spot’s
colour is unique. However, he uses colours that are very sim-
ilar, which tend not to be adjacent. Hirst’s apprehension of
randomness then, is the same as ours. To this end, we extend
our energy minimisation algorithm to a continuous range of
colours by penalising perceptually similar colours. This is
particularly useful when sampling larger amounts of colours
and we are bound to use similar-looking colours.

We need to be able to measure perceptual similarities be-
tween colours. Using the RGB colour space for this is im-
practical as there are large correlations between the axes.
Instead, we use the lαβ space [RCC98]. This is based on
human perception where any change in the colour space cor-
responds to the same change in appearance. That is, the rela-
tive perceptual difference between two colours in lαβ space
can be approximated using their Euclidean distance.

Similar colours are penalised by putting an additional
weight between the colours when counting the patterns in the
cp function of Equation 1. For this purpose, we use a colour
similarity function, Ω(c1,c2), based on the lαβ colour space.
We embed this in the counter, cp, by adding difference be-
tween neighbouring colours to the current colour in the di-
rection of the pattern p. Using the same example as before,
where we are counting horizontal patterns in the empty cell
in the array [blue, red,empty, red, red,pink, red], and the cur-
rent colour of consideration is red, comparing with Ω might
result colour similarities of [0,1,_,1,1,0.8,1]. Then, the re-
sult of cH(red,empty) is: 1+1+1+0.8+1 = 4.8. Note that
the counter still stops on a ‘different’ colour, that is when
Ω(c1,c2) = 0.

We define the similarity of two colours c1 and c2 using
their colour difference (as measured using the Euclidean dis-
tance ‖c1− c2‖ in lαβ space), which is then passed through
a Gaussian function Gσ(x) = exp(−x2/2σ

2) to achieve a
smooth falloff as colour distance increases. In addition, we
truncate the colour similarity of colours that are sufficiently
different. Specifically, we use

Ω(c1,c2) =

{
Gσ (‖c1− c2‖) if ‖c1− c2‖ ≤ a
0 otherwise

(4)

with values σ = 10 and a = 100 for the results in this paper.

3.3. Non-rectangular patterns

Our original energy in Equation 1 assumes that the canvas
is a rectangular grid, defined in a Cartesian frame. This sim-
plification restricts us to only vertical, horizontal or diagonal
patterns. We now generalise our concept of patterns such that

we can sample in non-rectangular discrete spaces, and in any
coordinate system. First, we redefine our energy function by
accepting a set of searchable discrete patterns, Γ:

E(c,x) = ∑
p∈Γ

ωp · cp(c,x)n · Pp +1
T +1

. (5)

A searchable pattern is defined by its forward and backward
search directions, denoted by−→s and←−s , respectively, which
are lists of coordinates relative to a position x. For example,
the 2D horizontal pattern H at x=(x,y) is defined as:

←−s =

(
−1 −2 · · · −x+1
0 0 · · · 0

)
(6)

−→s =

(
1 2 · · · m− x
0 0 · · · 0

)
(7)

where m is the maximum x-coordinate in the 2D grid. In
Section 4 we show numerous examples using this concept,
such as sampling in the polar coordinate system, sampling
using parametric functions, and sampling in 3D space-time.

4. Results

We compare the results of our new algorithm against Wei’s
state-of-the-art ‘hard disk’ and ‘soft disk’ algorithms. For the
results produced in this paper, we use Wei’s recommended
relative radius of ρ ≥ 0.67 for the hard disk approach. For
the soft disk results, we sample 50 samples in each itera-
tion. The results produced using our algorithm have equal
weights for all patterns (i.e. ωp = 1) and n = 5 for up to
four colours. When sampling more than four colours, we ob-
served that vertical and horizontal patterns are more notice-
able than diagonal patterns, and therefore set ωH =ωV = 50,
ωD1 =ωD2 = 1 and n= 2 to suppress them. All results are
computed using square grids of 20× 20 cells. The reported
results are averaged over 100 runs for our and Wei’s hard
disk algorithms, and 10 runs for the soft disk algorithm, as it
is too slow to run 100 times.

Figure 3 shows the performance in terms of minimising
larger patterns. Here we see that our algorithm produces
fewer adjacent cells of the same colour, a more balanced dis-
tribution between horizontal/vertical and diagonal patterns,
and fewer large patterns than Wei’s techniques. The soft disk
sampling algorithm produces more clusters than the other
algorithms. This is very noticeable and thus breaks the feel
of randomness. These differences are confirmed visually in
Figure 4. Please refer to the supplementary material for more
examples.

The multi-dimensional nature of the statistical measures
make evaluation challenging. We tackle this by computing a
score for each given number of colours, defined by the av-
erage sum over the various counts for each pattern, where
larger patterns are penalised:

score =
1
|Γ| · ∑p∈Γ

∑
i

i · ci,p, (8)

c© 2012 The Author(s)
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Figure 3: Results of pattern analysis: each of the six graphs
shows the number of patterns of consecutive same-colour
cells observed for each length. In every cell, nearby cells for
each considered pattern are counted using cp(c,x). Here,
each pattern only searches in one direction, so that adjacent
cells are not double-counted. Then, the total number of ad-
jacent cells with the same colour is the sum of cp(c,x) for
all cells x and patterns p. The columns compare different
orientations of features and the rows show results for differ-
ent numbers of colours. In almost all cases, our approach
produces fewer patterns than the other techniques.

where i ∈ {2,3, . . .} ranges over the possible lengths of pat-
terns, and ci,p counts all instances of i same-colour adjacent
cells within a pattern p. Figure 5 shows the results for this
scheme for up to eight colours. Our algorithm consistently
produces the best results, although Wei’s hard disk algorithm
produces comparable results when sampling more colours.

Table 1 compares run times on a computer with an In-
tel Quad 2.40 GHz CPU with 8 GB RAM. All algorithms
are naïvely implemented in MATLAB. Note that Wei’s algo-
rithms can be sped up considerably using faster data struc-

pseudo-random Wei (2010) our algorithm
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Figure 4: Colour chart created using random sampling,
Wei’s hard disk algorithm and our algorithm for 2–4
colours.
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Figure 5: Results using the score described by Equation 8.

tures [Wei10]. By looking at the algorithmic differences,
however, our algorithm is bound to be faster. Wei’s hard disk
algorithm uses a dart-throwing approach, which is relatively
slow, like other rejection sampling approaches. Wei’s soft
disk algorithm, on the other hand, appears to have a constant
run time. This is because the run time depends only on the
number of samples taken in each iteration and not the num-
ber of colours. Our algorithm on the other hand, is simple
yet fast: it simply picks an empty cell and colours it with the
‘best’ colour. This results in a dramatic difference compared
to the run times of the two other algorithms.

Figure 1 shows coloured grids in the style of Damien

c© 2012 The Author(s)
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# colours 2 3 4 5 6 7 8

Hard disk 61 91 110 130 140 170 130

Soft disk 230 230 230 230 230 230 230

Ours 0.082 0.11 0.13 0.16 0.18 0.21 0.23

Table 1: Run times of Wei’s soft and hard disk algorithms
and our algorithm. All run times are given in seconds to two
significant digits, computed on 20×20 grids and averaged
over multiple runs.

Hirst’s spot paintings. Since we only use three colours in the
middle picture, producing a randomly-looking distribution
is not trivial. Using our definition of ‘randomness’, however,
we get good results: there are no clusters of the same colour
and no horizontal, vertical or diagonal patterns that ‘stick’
out. In the right picture of Figure 1, similar colours are pe-
nalised in lαβ space, and we observe that light colours are
separated as they are deemed to ‘look’ similar.

Using our generalisation, we can easily extend our Hirst-
like plots to 3D (x,y, t). This is shown in the supplementary
video. We add an additional pattern to our existing set of ver-
tical, horizontal and diagonal patterns, which searches one
step in time, both forward and backward:

←−s =

 0
0
−1

 and −→s =

 0
0
1

 . (9)

We set the weights for this pattern to 50, so that we most
likely do not get two adjacent dots of the same colour at the
same position between two time steps.

The square grid, or tiling, used throughout this paper is
one of the three regular tilings of the plane [GS86]. The other
two are the triangular tiling and the hexagonal tiling. In Fig-
ure 6 we colour an hexagonal tiling by searching for patterns
in 12 directions instead of 8, as in our square grid examples.

Figure 6: Colouring a hexagonal tiling using our algorithm
(right) searching in 12 directions (left).

Our random colour sampling approach can be applied to
distributing coloured tiles, as shown in Figure 7. Creating

random distributions using just four colours, as shown in the
example, is surprisingly hard. We encourage the reader to try
this on a piece of paper. Most likely, some apparent patterns
will stand out immediately.

Standard kitchen tiles Coloured kitchen tiles

Figure 7: Coloured kitchen tiles using our algorithm. The
original image (left) was recoloured with Adobe Photoshop
using a colour chart created by our program as a template.

In Figure 8 we plot points in the polar coordinate system.
The patterns are defined similar to the patterns used in the
regular Cartesian frame. That is, we search along the r and
θ axis and two spiral-shaped directions (similar to the diag-
onal directions in the Cartesian frame). In Figure 9 we plot
Fermat’s spiral using the golden angle (137.508◦) [Vog79],
inspired by Hirst’s Valium. Both of these examples show the
limitations of our algorithm. In the former example, we no-
tice how we avoid patterns along the defined directions. No-
ticeable blocks of adjacent dots of the same colour are how-
ever produced as there are more potential patterns other than
those four that are defined. The latter example is even harder
as there are no obvious search directions. In Figure 9, we
compare every fifth plotted point with each other as these
might be grouped together. However, as we can see from
the figure, it contains a fair amount of patterns, so this is
not sufficient. Thus, further work on making the algorithm
amenable to discretised continuous functions and sampling
in the continuous space is needed.

5. Conclusion and Future Work

We present an algorithm for producing ‘random’ distribu-
tions of colours in a discrete space. By a ‘random’ distri-
bution, we mean a distribution which minimises apparent
patterns. We present, also, a human-centric measure of ran-
domness. This human-centric definition of randomness is
justified by the fact that the perceptual world is organised
into patterns or configurations and not any particular mathe-
matical notion which drives any random-number generator.
Our algorithm is well suited for practical applications such
as tiling kitchen tiles, as the designer is able to set the ex-
act number of samples of each colour. Additionally, similar
looking colours will not be grouped together when sampling
from a larger set of colours. Finally, we show superior re-
sults compared to current solutions, both in terms of number
of apparent patterns and run times.

c© 2012 The Author(s)
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Figure 8: Colour sampling in the polar coordinate system.

Figure 9: Colour sampling using Fermat’s spiral.

We use a random-number generator when selecting which
cell to colourise. Even though we colour the chosen cell with
the ‘best’ colour, we might end up with an unlucky order-
ing of cells, when we are forced to insert a colour which
creates an avoidable long pattern. Using a more elaborate
approach when picking cells, for example in a Poisson-disk
manner, might produce fewer elongated patterns. Also, our
energy minimisation is a local one and we might end up with
an uneven distribution of colours globally. That is, the dis-

tributions produced by our algorithm might not possess the
blue-noise property. Extending our approach to a global op-
timisation is a promising direction for future work, as this
would enable blue-noise constraints to be incorporated.

Evaluating random discrete colour distributions quantita-
tively using our human-centric definition is justifiable since
we can easily measure the number of apparent patterns of
similar colours in a discrete grid. Our measure of success
(the score of Equation 8), however, is rather similar to our
energy function, and we can therefore expect that our algo-
rithm performs better. Additionally, our take on randomness
is based on Gestalt theory, which is a collection of obser-
vations about human perception; however, any attempt to
formalise these hypotheses has been proven to be invalid
[Hen84]. To this end, it would be interesting to carry out
a qualitative study of the various approaches to distributing
colours. Furthermore, this study could include extensions
to our current definition of randomness to incorporate ad-
ditional Gestalt cues, such as closure and past experience.
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