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Abstract: We present the formulation of a mathematical theory and models of mass
screening of populations for contagious and non-contagious diseases. We describe the
stochastic processes underlying the progression of a disease in a population when mass
screening programs and compliance regimens are instituted. The resulting models are
useful for the analysis of the optimal design of mass screening programs for a country
or agency which is attempting to control or eradicate a contagious or non-contagious
disease. In the model non-contagious diseases are shown to be special cases of contagious
diseases when certain parameters of distributions are held constant.

Résumé: Nous présentons une théorie mathématique et des modéles de dépistage de
masse dans des populations pour des maladies contagieuses et non-contagieuses. Nous
décrivons les processus stochastiques rendant compte de la progression d‘une maladie
dans une population quand des programmes de dépistage de masse et des régimes
obligatoires sont institués. Les modéles qui en résultent peuvent servir a l'analyse de
la conception optimale des programmes de dépistage de masse pour un pays ou une
institution qui s'efforce de contrdler ou d’éliminer une maladie contagieuse ou non-
contagieuse. Dans le modéle, les maladies non-contagieuses sont traitées comme des
cas particuliers de maladies contagieuses dans lesquelles certains paramétres ou cer-
taines distributions sont gardés constants.
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1. INTRODUCTION

A population -- either of human beings, inanimate objects, plants or
animals -- are constantly subject to randomly occurring diseases. Whether
these diseases are acute or chronic in nature, they may exist and develop
within a person, at least for a time, without any manifest symptoms. Early
detection of such diseases is usually desirable as this may ameliorate or
increase the chance of curing the disease, as well as reduce the chance
that the asymptomatic population will contract the disease in the case when
the disease is contagious. Modern techno1ogical‘advancement in medical and
biological diagnosis has resulted in the introduction of various test proce-
dures to detect different diseases. Periodic administration of these test
procedures to large groups of the population, i.e., mass screening programs,
may thus be advisable. Currently such mass screening programs are under
discussion for the detection and control of HIV (Human Immuno Deficiency
Virus), which most often leads to the disease AIDS. They are often used
for hepatitus A, B, nonA-nonB, tuberculosis, syphilis, and other infectious
diseases.

Mbnitoring mass screening programs, however, is an expensive task. The
cost of mass screening includes easily quantifiable economic costs such as
those of the labor and materials needed to administer the testing. Other
cost components may be more difficult to quantify. For example, the cost may
include the inconvenience and possible discomfort necessitated by the test;
the cost of false positives which entails both emotional distress and the need
to do unnecessary follow-up testing; and even the risk of physical harm to the
testee, e.g., the cumulative effect of X-ray exposure or unnecessary surgery.

To the policy maker, mass screening programs have to be designed in light
of the tradeoff of the expenses of testing which increases both with the
frequency of test applications and with the cost of the type of test used
against the benefits to be achieved from detecting the defect in an earlier
stage of development. Such a design must determine which kind of testing
technology to be used, as different technologies may have different relia-
bility characteristics and costs. In addition, the frequency of testing must
be decided. Moreover, because different subpopulations may have different
susceptibility to the disease, the problem of optimal allocation of a fixed
testing budget among subpopulations must be considered. Also behavioral
problems of attendance at the testing location and compliance with treatment
after disease discovery must be included in the analysis.
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As will be discussed in the next section, while there exists a Titerature
concerning the theory of screening, there has not been a comprehensive study
on the analysis of a conceptual model of mass screening to consider the above
design issues. Most of the past research efforts utilize an approach to
develop screening models based on a single individual's decision for screen-
ing rather than a large group(s) of individuals. An individual through his
lifetime is subject to different probabilities of incurring the disease and
screening schedules are consequently evaluated for an individual. In cases
when the .society {health agency such as a health department, government
bureau, or a prepaid group practice) will bear the cost of administering
screening programs and when a health agency, or society at large, has only a
fixed and limited amount of resources to be used for mass screening, screen-
ing tests are not provided continuously throughout the year, but rather
periodically. The question of which tests to use and when, which personnel
to administer the tests and what utility functions of the group, subgroups
or society should be maximized have not been analytically addressed when one
considers the different etiology of diseases and different test capabilities
and effects. ,

Most previous works have focused on non-contagious diseases such as
cancer. In view of the potential benefit of detecting the existence of
contagious diseases in reducing the risk of asymptomatic but susceptible
groups in the population, models of screening for contagious diseases and
their analyses will be of value to those decision makers responsible for
administering such programs.

The purpose of this paper is to describe the development of a general
model of mass screening for both contagious and non-contagious diseases with_
special emphasis on appropriate objectives, false positive and false negative
rates of test, subgroup compiiance and susceptibil¥ty characteristics, disease
etiology and the resource allocation of fixed budgets.

2. LITERATURE REVIEW

Pierskalla and Voelker [16], and McCall [13] have provided comprehensive
reviews of maintenance models for the control and surveillance of deterio-
rating systems in general. Rather than detail the very large literature on
maintenance, in this section we focus on those past efforts which have a
bearing on the problem of mass screening.

Kirch and Klein [9] address explicitly a mass screening application
. that seeks an inspection schedule to minimize expected detection delay (the
time from disease incidence until its detection). The methodology is then
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applied to determining'examination schedules for breast cancer detection
[Kirch and Klein, 10J. McCall [14] considers the problem of scheduling dental
examinations, where cavities are assumed to occur according to a Poisson
process.

Lincoln and Weiss [12] study the statistical characteristics of detection
delay under the assumption that the times of examinations form a renewal
process and that the probability of detecting the defect is a function of the
defect's age. Zelen and Feinleib [27] and Feinleib and Zelen [8] have studied
the statistical characteristics of the lead time (the time a disease is
detected by screening to the time it is self-detected or symptomatic) provided
by a screening program.

Much research has also been done in the etiology and progress of a
disease and its relationship to screening effectiveness. Both the reliability
of test and the lead time gained from detection can be modelled as a function
of the state of the disease rather than the time since the defect's incidence
(for example: Prorok [18 and 191, Thompson and Doyle [23], Shwartz and
Galliher [20], Thompson and Disney [24], and Voelker [25]). Blumenson [4]
develops a mathematical model to evaluate a screening strategy, termed
"compromise screening strategy," which consists of two stages of screening
examinations with different harmful effects as well as accuracies. The model
has also been applied to evaluate different screening intervals for breast
cancer detection (Bross and Blumenson [5]). More recently, Shwartz [22] has
developed a mathematical model of breast cancer and used it to evaluate the
benefits of screening (Shwartz [21]1). Again the rate of disease progression
is explicitly included in affecting the probability of the disease detection.

Eddy [7], well aware of the complexity of relationships among test relia-
bilities, disease development, and prognosis of the disease, has constructed
a breast cancer screening model by focusing on two attributes that carry
information about the effectiveness of the screening tests: the mammogram
interval and the patient interval. By modelling these two intervals as random
variables, Eddy is able to derive analytical expressions for the sensitivity
{true-positive rate) and spécificity {true-negative rate} of test procedures,
utilizing repeatedly the Bayesian statistical approach. The design of
screening strategies to optimally allocate fixed resources, however, has only
been briefly discussed. Eddy's work is important as it is one that has been
implemented by health agencies.

The above mentioned studies concentrate on incorporating the process of
disease progress in their models to evaluate screening programs. Almost all
of these studies, however, take a longitudinal view of an individual. An
individual through his lifetime is subject to different probabilities of
incurring the disease and screening schedules are evaluated (these also with
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respect to an individual). For many diseases an important alternative
approach is to take the society's or a group practice point of view. Hence,
instead of screening program schedules for an individual, mass screening
programs must be considered.

The only research on mass screening are the works by Pierskalla and
Voelker [17] and Voelker and Pierskalla [26]. Analytical models of a mass
screening program are developed and analyzed for both the cases where the test
procedures are perfect or imperfect. Optimal allocation of a fixed budget to
different sub-populations are given in the perfect test case, whereas optimal
decision rules concerning the best choice and frequency test is derived for
the imperfect case. ’

Finally, to date, the theory of mass screening for contagious diseases
has been generally overlooked. From a societal viewpoint, screening for such
contagious diseases as tuberculosis of persons in urban ghetto areas and
venereal diseases in the sexually active may have very significant benefits
for the individuals, but also for their disease-free contacts and for new-
borns. However, such mass screening programs are costly, so models must be
developed to trade-off the costs and benefits for their most cost-effective
implementations.

3. A GENERAL MODEL OF MASS SCREENING

In this section, we develop a mathematical model that describes the
stochastic processes of the progression of a disease within a population when
mass screening programs are instituted. We first describe the epidemic
progression of the disease without mass screening, followed by the progression
under mass screening. We shall first consider the case when there is only one
type of mass screening technology. The model can be easily extended to cases
with multiple screening technologies.

For contagious diseases, there may be two distinct stages of the disease
that can be identified once a population unit has contracted the disease:
the latent and infectious periods. After a unit has contracted a contagious
disease, a certain amount of biological development frequently is necessary
before it in turn can be passed on to others. This interval is usually termed
the "latent period."” At the end of the latent period, the infected unit
becomes contagious for another period of time, called the "infectious period."
The infectious period ends when symptoms of the disease are recognizable and
the unit is isolated or removed from the population, or the unit leaves the
system by death or other causes. The sum of the latent and infectious periods
is called the "incubation period" (see Bailey [1]). We later consider the
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case where the infectious unit is not removed from the population but contin-
ues to infect others based on a decreasing "compliance" function over time.
There are contagious diseases where the latent period is negligible:
for example, scarlet fever and diphtheria. There are also diseases where the
latent period may be substantial, such as AIDS. While the assumption that the
Jatent period is negligible could lTead to models that are simpler and more
tractable for analysis, we shall retain, in the general model, the existence
of a latent period for the disease.

(1) Notation

w1(t) ¢ number of population units in subgroup i who are infected but
are in the latent period of the disease at time t;

X;(t) number of population units in subgroup i who are infected
and are infectious at time t;

Yi(t) : number of susceptibles in subgroup 1 at time ¢t;

Ay ¢ natural incidence rate of the disease for subgroup 1i;

By§ : rate of leaving the system as an infected unit in the
infectious state of the disease for subgroup i (either by
death, self-cure, or removal or fsolation after disease is
detected without mass screening);

Byi : rate of leaving the system as an infected unit in the latent
state of the disease for subgroup 1i;

Byi ¢ rate of leaving the system as a susceptible for subgroup i;

£; : rate of transition from the latent stage to the infectious
stage for units in subgroup 1i;

ay : birth rate of subgroup i;

Yij : rate of transmission of the disease from a contagious unit

in subgroup Jj to a susceptible in subgroup 1i;

Population subgroups could be homosexuals, alcoholics, men or women in
certain age groupings, hospital employees, hospital workers who handle human
blood in some manner (drawings, handling, processing), employees on AIDS
treatment units, etc.

(ii) Assumptions for the etiology of the disease

(1) Both the latent period aﬁd the infectious periods are exponentially
distributed.

(2) The incidence rates, the rates of transmission of the disease, and
the rates of transition from the latent period to the infectious
period are stationary over time, and are independent of each other.
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{3) The probability of an increase in the number of infected people at
time t s directly proportional to the number of units in the
infectious period of the disease and the number of susceptibles at
time t.

{4) Once a unit leaves the infectious period, it will never become a
susceptible unit again.

{5) There is negligible transition of units from one subgroup to another

over time.

The assumption that the latent and the infectious periods are exponen-
tially distributed is a common one in most models (for example, see McKendrick
[15], Bartlett [3], Bartholomew [2], and Bailey [1]). Assumption (3) is also
one that is generally used in most stochastic models in epidemics, dated as
far back as McKendrick [15] (see also the reviews of Dietz [6] and Bailey
(11).

Assumption (4) is not as restrictive as it seems. First, it is reason-
able that a unit isolated upon discovery of the disease can be assumed to have
a very small probability of contracting the disease again from another infec-
tious unit. Moreover, some diseases, e.g. measies, usually confer life-long
immunity from further attack. Assumption (5) implies that the classification
into subgroups of the population is stable over time. This would be the case,
for example, if the subgroups refer to male and female.

(ii1) Etiology of the disease without mass screening

Consider times t and t + At, where At » 0.

Let AXi, AYi and Awi denote the changes in X1, Yi and wi between
times t and t + At. Then, by assumptions (1), (2), (3), and {5), the
stochastic processes underlying the dynamics of Xi, Yi and W; can be
described by the following equations:

PrisW; = +1} = AY(t) At + } TR Yi(t) at (1)
PrioW; = -1} = (pNi + 51) Ni(t) At , (2)
PriaX; = +1} = g; W;{t) At , {3)
PrisX; = -1} = py; X;(t) ot , | (4)
Pris¥; = +1} = a; Y;(t) At , (5)
PriaY; = -1} = [my; + 2y + § Yij Xj(t)] Yi(t) at . (6)
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By assumption {1), it can be seen that the above formulation gives 1/5i
and 1/“X1 as the means of the latent and infectious periods respectively.

For cases when the size of the population is very large, we can ignore
the consideration of Y, {equations (5) and (6)), and simplify (1) as

Pr{aW; = +1} =y At + ) Vi Xj(t) At , (7)
J
where A; and Yy; are the appropriately adjusted rates.

-{iv) The model with mass screening

Suppose now that at a given point in time, mass screening is given to
all units in the population. We have seen, in the literature review, that
the effectiveness of a screening test in detecting the disease is usually a
function of the state of the disease at the time when the test is given. For
simplicity, we assume that here it is a function of whether the disease is in
the latent or the infectious period.

Define

Ny = probability that an 1hfected unit of subgroup i 1in the

latent period would not be detected by the screening test;

Nyy = probability that an infected unit of subgroup i 1in the

infectious period would not be detected by the screening test.

In general, g 2 My
The following additional assumptions on the screening test will also be
used:

(6) The screening test is uniformly effective for population units in
the same stage of the disease {latent vs. infectious).

(7) The use of mass screening will have no impact on the rate of trans-
mission from an infected unit to a susceptible, and the spontaneous
incidence rate of the disease.

(8) The use of mass screening will have no effect on the distribution
of the latent and infectious periods.

(9) Screening takes place in a negligible interval of time.

Suppose that mass screening is undertaken at time T. Then, the numbers
of units in the various groups just before screening (say, T-c, where e + 0),
are given by W;(T-e), X;{T-e) and Yi(T-e). As screening does not affect
the state of susceptibles {(even though false positives could be given by the
test), Yi's remain unchanged before and after the test. After the test,
Ni(T+s) and Xi(T+e) are thus binomially distributed, i.e.,
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Ni(T+e)|Ni(T-e) is binomial with parameter Ni(T—e) and nys

d
" Xi(T+e)|X1(T-e) is binomial with parameter Xi(T-e) and ny; -
Furthermore
E[W (T+e)] = my; EW(T-€)] , : (8)
EDX;(T+€)] = my; ELX;(T-e)] , A (9)
VarlW,(T+e)] = mi (1 = mys) EDUG(T-)] + ms Var[Wy(T-e)1 , (10)
VarlX; (T+e)] = ngy (1 = my) EDXq(T-€)] + rigy Var[x;(T-e)] . (11)

To prove {8).and (9) is straight forward. For (10} and (11), we make use
of the relationship that, for any two random variables Z1 and Z,,

Putting Z; = W;(T-e) and Z, = Ni(T+e) in (12) gives (10), and
Z; = X;(T-e) and 7, = X;(T+e} in (12) gives (11).

After mass screening, the stochastic process of the etiology of the
disease resumes to equations (1) to (6), with Ni(T+a) and Xi(T+e) being the
initial values of W; and Xi respectively.

{v) The probiem of compliance

After mass screening, we have assumed that the units in the population
identified as having the disease are then isolated or treated so that they
are no longer infectious. In real 1life, this may not always be the case.

For example, for diseases like Hepatitis B and AIDS, the common isolation
mechanism is for the patient to exercise self-control and lead a disciplined
1ife to avoid passing the disease to others. Other diseases may require the
patients to be treated over an extended time horizon. In this situation, it
is possible that a patient may not comply with the prescribed treatment after
some time. By doing so, he or she is no longer in isolation from suscepti-
bles, and would begin to transmit the disease if still infectious.

For the evaluation of any mass screening program, it is important to
incorporate the behavioral aspects of compliance into the decision processes.
The effectiveness of a screening program could be severely hampered by
noncompliance of patients identified by screening. While such a behavioral
aspect has not been considered in past studies on the economic design of mass
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screening efforts, we shall attempt to model its effect on the progression of
the disease.

For modelling purposes, we assume that the length of time that a patient
complies with the prescribed treatment given to him or her is exponentially
distributed with mean I/pi, for population subgroup i. Hence, the proba-
bility that a patient in subgroup i would comply for a period of time =
periods or longer is given by

T
Cils) =1 -/ ps expl-pyt) dt . {13)
0

It is clear that Ci(‘) is exponentially decreasing in <. The function
Ci(r) can be viewed as the compliance function of subgroup i. In what fol-
Tows, we shall distinguish the compliance functions of units in the latent and
the infectious periods of the disease, as there may be behavioral differences
between units in these two states of the disease.

Define

Vw1(t) : number of infected units in subgroup i in the latent period

of the disease who have been identified by a previous screening

test, and who are currently complying with the treatments at
time t;

Vyj(t) : same as above for units in the infectious period of the
disease;

l/pHi : mean of the length of compliance time for units of subgroup i
in the latent period of the disease;

1/pXi : mean of the length of compliance time for units of subgroup i
in the infectious period of the disease;

Bywi : rate of leaving the system of units in Vwi;
Byx§ : rate of leaving the system of units in VXi;
Eyi : rate of transition from the latent stage to the infectious

stage for units in subgroup 1 who have been complying with
treatments after being identified in mass screening.

The stochastic process of the etiology of the disease would have to be
modified now. First, consider mass screening at time T as before. Then,

Tee) = Vi (T-e) + Z,.(T) (14)

Vi {

where Z,.{(T} and ZXi‘T) are the number of infected units identified in
the screening test at T 1in the latent and infectious periods respectively.
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It is clear that

Zys (TN (T-e) = W (T-e) - [W (Te) W (T-€)] , (16)

and
ZXi(T)lXi(T-e) = Xi(T-e) - [x1(1+e)lxi(r-e)] . {17)

We recall that Wi(T+e)}IW;(T-¢) and Xi(T+e)}Xi(T—e) are binomially
distributed with parameters Hi(T~e), ny; and Xi(T-e), Ny s respectively.

Based on (14) to {17), we obtain

E[Zy3(T = (1 - nyy) E[N1(T-e)] s (18)

E[Zyy(M] = (1 - mnyy) E[X3(T-€)] (19)

VarlZyg (M) = mys(1 - nyg) EDN(T-e)] + (1m0 )2 Var[u (T-e)] , (20)
and

Var[ZXi(T)] = ny;(1 - “Xi) E[Xi(T-e)] + (l-nXi)z Var[Xi(T-e)] . (21)

Equations (20) and (21) are obtained using {12), in a similar way as the
derivation of (10) and (11).

Second, after mass screening, the stochastic process follows the follow-
ing equations describing the etiology of the disease,

PriaVy; = +1} = 0, (22)
PrioVis = <13 = Quyyq * Ey; * o) Vyslt) ot (23)
Priavy; = +1} = £yq V;(t) At , (28)
PriaVys = -1} = {uyy; *+ o) Vyg(t) at, (25)
PriaW; = +1} = Ay Y;(t) ot + § Yij xj(t) Y;(t) at

+ oy Vyilt) at, (26)
Priawy = -1} = (uy + &5) Wylt) at, (27}
PriaX; = +1} = g; W (t) At + pyy Vyy(t) ot , (28)
Pr{aX; = -1} = uys X;(t) At (29)
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+1})

(]}

Pr{AYi -1}

Ly Ay Lorgg X500 vy(0) at (31)

{vi} A Model for Non-Contagious Diseases

For diseases that are not contagious, a special case of the model in
the last section can be used. First, we do not have to distinguish between
Ni and X;, as the meaning of latent and infectious period does not exist
for non-contagious diseases. Llet wi denote the number of infected units,
and ignore Xi' It is clear that, for non-contagious diseases, Yij = 0.
Therefore, the stochastic process describing the epidemics of the disease,
based on {1) to (6), can be written as

PriaW; = +1} =1; Y;(t) at (32)
PriaW; = -1} = p,q Wi(t) at (33)
Pr{aY; = +1} = a; at (34)
Pr{aY¥; = -1} = py; Y;(t) at . (35)

When the size of the population is large, we can simplify the process by

Pr‘{AN1 = +1}

A At {36)

Pr{AH1

Similar modifications can be made to the contagious model with compliance
(equations {22) to (31)). Compliance may still be an important factor in
determining the optimal tests to use and the optimal testing frequency--
particularly when compliance affects the benefits and costs of testing.

Voelker and Pierskalla [1980] and Pierskalla and Voelker [1978] have
analyzed the mass screening model with non-contagfous diseases as described by
(36) and (37).

4. SUMMARY

In this paper we have described the stochastic processes underlying the
progression of a disease when mass screening is used and when the compliance
rate of patients identified by the screening tests may be less than 100%.
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The model formulated, however, is extremely complicated, and may be
mathematically intractable. There are two approaches that could be taken from
this point onwards. First, we can resort to the use of simulation to analyze
the operating characteristics of mass screening programs, which can then be
used for economic analysis to tackle the issues outlined in the introduction.
Second, in many cases, simplifying assumptions can be made so as to facilitate
mathematical analysis. The appropriateness of these simplifying assumptions,
however, is an empirical question that depends on circumstances and specific
diseases. These two approaches are investigated in later papers. In lLee
and Pierskalla [11], the special case of diseases with no latent period is
studied. Currently work is ongoing to simulate the contagious diseases
Hepatitis B and AIDS, under the general framework of this paper.
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