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Abstract
Wireless sensor networks can revolutionize soil ecology

by providing measurements at temporal and spatial granu-
larities previously impossible. This paper presents an ex-
perimental soil monitoring network that we developed and
deployed in a Baltimore urban forest as a first step towards
realizing this vision. Each network node measures soil mois-
ture and temperature every minute and stores the measure-
ments in local memory. Raw measurements are periodically
retrieved by a sensor gateway and inserted to a database in
which a calibrated version is also derived and stored.

At a high level, this was a successful test deployment ex-
posing high level variations of soil factors. However, we
encountered a number of challenging technical problems:
need for low-level programming at multiple levels, calibra-
tion across space and time, and cross-reference of measure-
ments with external sources. These problems must be ad-
dressed before sensor networks can fulfill their potential as
experimental instruments that can be deployed by scientists
without major effort or cost.

1 Introduction
Lack of field measurements, collected over long peri-

ods and at biologically significant spatial granularity, hin-
ders scientific understanding of the effects of environmental
conditions to the soil ecosystem. The recent emergence of
Wireless Sensor Networks (WSNs) promises to address the
ecologists’ predicament through a fountain of measurements
from low-cost wireless sensors deployed with minimal dis-
turbance to the monitored site.

During the Fall of 2005 we set out to evaluate the validity
of this claim through a proof-of-concept WSN we built and
deployed at an urban forest. The end-to-end system we de-
veloped includes motes that collect environmental parame-
ters such as soil moisture and temperature, static and mobile
gateways that monitor the health of the network and period-
ically download collected measurements through a reliable
transfer protocol, a database that stores collected measure-
ments, access tools that allow us to analyze the data, a web
site that serves the data and tools to the Internet so that oth-
ers can use the data, and tools to monitor the network.

The notable aspects of our system are:(1) Unlike previ-
ous WSNs,all the measurements are temporarily stored on
each mote’s local flash and are periodically retrieved with a
reliable transfer protocol [2].(2) We implemented sophis-
ticated calibration techniques that translate raw sensor mea-
surements to high quality scientific data.(3) The database
and WSN are accessible via the Internet, providing access
to the collected data through graphical and Web Services in-
terfaces.

We acknowledge that this system is only one link in the

long chain of steps from collecting raw measurements to sci-
entifically important results, but it shows great promise in
improving ecology science and also ecologist’s productiv-
ity. However, today the project has one ecologist and sev-
eral supporting computer scientists, a ratio we are working
to reverse.

2 The Need for Monitoring in Soil Ecology
Soil is the most spatially complex stratum of a terrestrial

ecosystem, harboring an enormous variety of plants, mi-
croorganisms, invertebrates, and vertebrates. These organ-
isms are not passive inhabitants of the soil; their movement
and feeding activities significantly influence the soil’s phys-
ical and chemical properties. Because soil is an important
water reservoir in terrestrial ecosystems and, thus, an im-
portant component for surface and groundwater hydrology
models [3], interest in the behavior of soil biota spans mul-
tiple scientific disciplines.

It has been observed that soil organisms are patchily dis-
tributed in all three dimensions. Such variations can be
either due to biological mechanisms or they are the result
of differences in the physical environment, because many
soil invertebrates are sensitive to such abiotic factors assoil
moisture, temperature and light. For this reason, any field
study on soil biota requires soil temperature, soil moisture,
and other physical measurements.

These data are usually collected by a technician visiting
the field site once a week, month, or season, and taking a few
spatial measurements that would be subsequently averaged.
These techniques are labor-intensive, and do not capture the
underlying spatial and temporal variations at a biologically
meaningful scale. Moreover, frequent visits to a site disturb
the habitat and may distort the results.

2.1 Requirements
WSNs promise inexpensive, hands-free, low-cost and

low-impact data collection – an attractive alternative to man-
ual data logging, in addition to providing considerably richer
data. However, to be of scientific value, the data collection
system design should be driven by the experiment’s require-
ments, rather than by technology limitations. Following this
principle, we present a list of key requirements that soil ecol-
ogy sensor networks must satisfy:
Measurement Fidelity: All the raw measurements should
be collected and persistently stored. Should the scientist
later decide to analyze the data in a different way, to com-
pare it to another dataset, or to look for discrepancies and
outliers, the original data must be available. Furthermore,
given the communal nature of field measurement locations,
other scientists might use the data in the future in ways un-
foreseen at the time when the original measurements were



Figure 1: Architecture of the end-to-end data collection
system.

taken. Generally speaking,techniques that distill measure-
ments for a specific purpose, potentially discard data that
are important for future studies.
Measurement Accuracy and Precision: To support eco-
logical research, temperature data should have accuracy of
at least 0.5◦C, and volumetric moisture data should be given
within 1%. While temperature variation of half a degree
does not directly affect soil animal activity, soil respiration
exponentially increases with temperature, so half a degree
makes a big difference. Therefore,raw measurements need
to be precisely calibrated, to give scientists high confidence
that measured variations reflect changes in the underlying
processes rather than random noise, systematic errors or
drift.
Fusion with External Sources: Comparing measure-
ments with external data sources is crucial. For instance,
soil moisture and temperature measurements must be corre-
lated with air temperature, humidity, and precipitation data.
Animal activity is determined by these factors as much as
by soil temperature and moisture. In the case of hydrology
models, one can only make sense of soil moisture if precip-
itation data is available. In addition to “traditional” external
data sources, data from other WSNs can be integrated with
the results collected from the local WSN. For this reason,
collected data should be exported using a controlled vocab-
ulary and well defined schemas and formats.

3 System Architecture
3.1 Data Collection Subsystem

The data collection subsystem includes the motes and the
base station illustrated in Figure 1. We use MicaZ motes
from Crossbow Inc. [6]. Each mote is connected to an
MTS101 data acquisition board providing ambient light and
temperature sensors in addition to ports for up to five ex-
ternal sensors [9]. We attach two sensors to these ports: a
Watermark soil moisture sensor and a soil thermistor, both
available from Irrometer [7]. We chose the Watermark soil
moisture sensor, because it responds well to rain events,
closely follows the soil wetting-drying cycle [14], and be-
cause it is inexpensive – an important issue for large WSNs.
Each mote along with the data acquisition board is enclosed
in a waterproof case and is powered by two AA batteries.

Motes sample data every minute and store them on a cir-
cular buffer in their local flash. We use the on-board flash
memory so we can retrieve all observed data even over lossy
wireless links – in contrast tosample-and-collectschemes
such as TinyDB which can lose up to 50% of the collected
measurements [17]. Because a mote collects 23KB per day,
the MicaZ 512KB flash measurements will be overwritten
if data is not retrieved after 22 days. In practice, the sensor

measurements were downloaded from the motes weekly or
at least once every two weeks. To ensure reliable delivery,
the base station requests the mote’s stored data using a sim-
ple, NACK-based sliding window ARQ protocol, and stores
the retrieved measurements in the database. We cannot pro-
vide more details about the transfer protocol due to space
restrictions. A detailed description, including an analysis of
its performance is provided in the associated technical report
[16].

In order to keep track of the status of the motes, each of
them broadcasts its status, containing the number of samples
collected and the current battery voltage, every two minutes.
To ensure that that the basestation get the message it is sent
multiple times during a one second interval. During this pe-
riod the basestation can initiate a download.

3.2 Database
Database Design The database design, visualized in Fig-
ure 2, follows naturally from the experimental design and
the WSN. The experimental layout is broken into Patches
which contain Nodes (motes). There are types of Nodes and
types of Sensors that are described in the Type tables in Fig-
ure 2. Each Node has a descriptive record in the Nodes table.
Each Node has one or more Sensors. Each sensor has a ta-
ble entry describing the details of that object. The Event
table records state changes of the experiment such as battery
changes, maintenance, site visits, replacement of a sensor,
etc. Global events are represented by pointing to a NULL
patch or a NULL node. Measurements are recorded in the
Raw and Derived (calibrated) tables. External weather data
is recorded in the WeatherInfo table. Various support tables
contain lookup values used in sensor calibration.

The database, implemented in Microsoft SQL Server
2005, benefits from theskyserver.sdss.org database
we built for Astronomy applications [12]. It inherited a
self-documenting framework that uses embedded markup
tags in the comments of the DDL scripts to characterize
the metadata (units, descriptions, enumerations, etc.) for
the database objects, tables, views, stored procedures, and
columns. A set of stored procedures generate an HTML
rendering of the hyperlinked documentation (seeSchema
Browseron our website [1]).

Figure 2: Sensor Network Database Schema.

Data Loading The hardware configuration (Patch, Node,
Sensor) and sensor calibrations are preloaded before data
collection begins. When new motes or sensors are added,
new records are added to those tables. When new types
of motes or sensors are added, those types are added to the
database type tables.

To date we have loaded 1.6M readings of 3-5 sensors
per node, for a total of 6M data points. Raw measure-
ments arrive from the base station as ASCII files in comma-



separated-list format. The data are first loaded into a tem-
porary table, where duplicates are removed. Next, the data
are copied into the RawData table. Converting the raw
data to scientifically meaningful values requires a multi-step
pipeline shown in Figure 3 and performed automatically for
all the sensors within the database as a stored procedure.
The conversions apply to all new RawData values and pro-
duce entries in the Derived table.

The interface boards on some sensors had a loose connec-
tion for a while. As a result, some RawData measurements
were invalid. These intervals are represented in a BadData
table, and the corresponding rows in the Derived table are
marked as “bad”.

Background weather data from the BWI air-
port is harvested monthly in CSV format from
wunderground.com and loaded into the Weather-
Info table. This data includes temperature, precipitation,
humidity, pressure and weather events (rain, snow, thunder-
storms, etc.).

Calibration Knowing and decreasing the sensor uncer-
tainty requires a thorough calibration process. To alleviate
errors due to sensor variation we test them for both preci-
sion and accuracy. Moisture sensor precision is tested with
eight sensors in buckets of wet sand measuring their resis-
tance every ten minutes while varying the temperature from
0◦C to 35◦C over 24 hours. We found that six sensors gave
similar readings, but two did not. This process indicates that
such outliers need to be identified and replaced before de-
ployment.

We also performed a preliminary check with the soil ther-
mistors and found they are relatively precise (±0.5◦C), yet
consistently returned values 1.5◦C below a NIST approved
thermocouple. The 1.5◦C bias does not present a large prob-
lem because we convert resistance to temperature using the
manufacturer’s regression technique. Furthermore, thereis
a 10 kΩ reference resistance connected in series with the
moisture sensors on each mote. Because the resistance’s
value directly factors into the estimation of the sensor re-
sistance, the bias is individually measured, recorded in the
database, and used during the conversion from raw to de-
rived temperature.

The temperature sensors can be calibrated relatively eas-
ily as their output is only a function of temperature. On
the other hand, moisture sensors require a two-dimensional
function that relates resistance to both soil moisture and tem-
perature. We calibrate each moisture sensor individually by
taking resistance values at nine points (three moisture con-
tents each at three temperatures), and using these values to
calculate individual coefficients to an already published re-
gression form [13].

Data Access and Analysis We use several stored proce-
dures and user defined functions to access the data in various
aggregated forms. These functions are accessible through
Web-form interfaces that present tabulated values for all the
sensors on a given node or for one sensor type across all
nodes. We also provide a Web Services interface to display
the node locations on a map, where the values of a particular
sensor displayed in color. The time series data can also be
displayed in a graphical format, using a .NET Web Service.
This is an area that needs considerably more work – soil sci-
entists do not want to learn SQL and they often want to see
graphical and spatial displays rather than tables of numbers.
Beyond better reporting, we plan to use database OLAP and
data mining tools.

Figure 3: Calibration workflow converting raw to derived
science data.

In addition to analyzing the low level readings looking
for unusual cases, ecologists analyze aggregations and av-
erages of the sensor data. We are implementing a datacube
of the measurements so that spatial and temporal averaging
and correlation functions can be displayed more easily and
quickly. These aggregates pivot on several dimensions: po-
sition on the hillside, depth in the soil, shade vs. in the open,
etc.

4 Results

On September 19, 2005, we deployed 10 motes into an ur-
ban forest environment nearby an academic building on the
edge of the Homewood campus at Johns Hopkins University.
The motes are configured as a slanted grid approximately
2m apart from each other. A small stream runs through the
middle of the grid; its depth is dependent on recent rain
events. The motes are positioned along the landscape gra-
dient and above the stream so that no mote is submerged.

A wireless base station connected to a PC with Internet
access resides in an office window facing the deployment.
Originally this base station was expected to directly collect
samples from the motes. Once the motes were deployed,
however, we quickly determined that some motes could not
be reliably and consistently reached by our base station (the
percentage of received status messages over several months
was between 28-33%). Our temporary solution to this prob-
lem was to travel to the perimeter of the deployment site and
collect the measurements using a laptop connected to a mote
acting as base station.

As we mentioned earlier, we were able to download all
the data collected by the motes using our reliable transfer
protocol. However, due to an unexpected hardware behavior
(writing to flash can fail sometimes and should be attempted
several times in order to succeed) some motes stopped tak-
ing samples. Except the periods between such a failure and
the subsequent restart of the failed mote as well as some
data lost due to human errors during the download process
all data were retrieved successfully.
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Figure 4: Air and soil temperature over six weeks. Each
point represents six hour averages. Tsoil: soil temper-
ature at 10 cm depth; Tsurf: air temperature at soil sur-
face; Thi and Tlow: maximum and minimum tempera-
tures, respectively, for the Baltimore Metropolitan Area.

4.1 Ecology Results
During the 147 of days of deployment the sensors col-

lected over 6M data points. A subset of the temperature and
moisture data are shown on Figures 4 and 5 respectively.
Temperature changes in the study site are in good agreement
with the regional trend verifying our results. An interesting
comparison can be made between air temperature at the soil
surface and soil temperature at 10cm depth. While surface
temperature dropped below 0◦C several times, the soil it-
self was never frozen. This might be partially due to the
vicinity of the stream, the insulating effect of the occasional
snow cover, and heat generated by soil metabolic processes.
Several soil invertebrate species are still active even a few
degrees above 0◦C, and, thus, this information is helpful for
the soil zoologist in designing a field sampling strategy.

Precipitation events triggered several cycles of quick wet-
ting and slower drying. In the initial installation, saturated
Watermark sensors were placed in the soil and the gaps were
filled with slurry. We found that about a week was necessary
for the sensor to equilibrate with its surrounding. Although
the curves on Fig 5 reflect typical wetting and drying cy-
cles, they are unique to our field site. It is because the shape
of the soil water characteristic curve depends on soil type,
primarily on texture and organic matter content [10].

We deliberately placed the motes on a slope, and our data
reflect the existing moisture gradient. For instance mote 51
(Fig. 5) placed high on the slope showed greater fluctuations
then mote 58, which was closer to the stream. We occa-
sionally performed synoptic measurements with Dynamax
Thetaprobe sensors to verify our results.

Not every sensor worked smoothly, and there were some
missing data. However, we are confident, that differences
among individual sensors reflect real spatiotemporal hetero-
geneity. With this information soil ecologists will be able
to predict better where and when microbial and invertebrate
activity occurs. This activity is tightly coupled with biogeo-
chemical processes,e.g.soil respiration, which is an impor-
tant, but largely unknown component of the global carbon
cycle. Continuous in situ monitoring of the soil will im-
prove our estimates on the contribution of the soil biota to
these large scale processes.

4.2 Energy Consumption
We power the motes using inexpensive AA Alkaline bat-

teries with capacity of 2100mAh. During a 2 minutes cycle,
a mote keeps the radio on for 1 second (drawing 23mA),
samples the sensors twice (once per minute with each sam-
ple lasting half a second and drawing 0.6mA of current), and
stays in low power mode for the rest of the time (0.16mA).
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Figure 5: Soil moisture readings over six weeks
recorded by five nodes. Each point represents six hour
averages. Bars on the bottom indicate precipitation
events in the Baltimore Metropolitan Area. Highest col-
umn (Feb 5) corresponds to 25.4 mm rain.

Based on this profile, the average current draw is then
0.35mA

After 70 days operation the supplied voltage dropped
from 3V to 2.6V. Considering that the cutoff voltage of a
single battery is 0.8V and using the linear discharge model
to approximate the remaining battery capacity, as suggested
in [5], a drop of 0.4V (0.2V per battery) corresponds to con-
sumption of 600mAh. This is very close to the 595mAh
computed using the average current drawn by the mote1.
This calculation holds even for smaller scales: the voltage
drop during one week is almost 0.02V (as observed through
our online monitoring tools [11]) corresponding to an ex-
pense of 60mAh using the linear battery model. For the
same period, our average current model estimates energy
consumption of 59.47mAh, a 0.8% difference. The high ac-
curacy of of this model indicates that it can be used as a
planning tool for estimating the lifetime of a network for a
given sampling frequency, or conversely for determining the
highest possible sampling frequency given a network life-
time goal.

The MicaZ specification recommends operation voltage
range from 2.7V to 3.6V but from our tests we determined
that motes can reliably operate down to 2.2V when the flash
memory stops responding. We also found that the MCU and
the radio work down to 2.17-2.10V. Because the current bat-
teries were installed at the end of November, we expect the
nodes will stop recording data in mid April and will stop
sending status messages a few weeks later.

5 Discussion
Developing, deploying, and managing the testbed demon-

strated several lessons about the state of sensor networks and
about barriers to using them as an effective and economical
research platform for domain scientists. While some of our
observations have been repeated in the literature (e.g., [15]),
many of them are new.

We learned, as previously reported, that reprogramming
is essential for long-term network deployments. In our case,
we discovered two major software faults after the network
was initially deployed. The first bug was related to putting
the MCU to sleep mode, while the second one was related to
occasional errors when writing to the mote’s flash memory.
In both cases, we had to retrieve the motes and reprogram
them in the lab. Had we used a tool such as Deluge, we
would be able to reprogram the motes in the field, decreas-

1The difference can be explained by the power consumed duringdata
downloads, a factor not included in our analysis.



ing the length of the outage [4]. An unexpected side-effect
of reprogramming the motes was that the waterproof cases
started leaking after they were opened and close a few times.
This unexpected failure argues for designing the hardware in
such a way that the case is never opened after the network
has been deployed (e.g. by using cable connectors so that
sensors can be unplugged without opening the case).

Contrary to the promise of cheap WSNs, sensor nodes
are still expensive. We estimated the cost per mote includ-
ing the main unit, sensor board, custom sensors, enclosure,
and the time required to implement, debug and maintain
the software to be around $1,000, equivalent to the price
of a mid-range PC! Calibrating each of the sensors costs
more than the sensors themselves – and is not a novice task.
While equipment costs will eventually be reduced through
economies of scale, there is clearly a need for standard-
ized connectors for external sensors and in general a need
to minimize the amount of custom hardware necessary to
deploy a sensor network. Unfortunately, sensor and mote
vendors seem to want proprietary interfaces to encourage
lock-in. We had to manually calibrate each of the sensors
prior to deployment to derive the coefficients for the regres-
sion form (cf. Section 3.2). These coefficients are subse-
quently used to automatically translate raw measurements
to calibrated values within the database. We could poten-
tially avoid the initial manual step by using higher quality
and, thus, more accurate sensors but this would only add to
the per-mote cost.

We also found that low-level programming is (still) a
necessary and challenging task when building sensor net-
works. Not only did we have to write low-level device
drivers for the soil temperature and humidity sensors, but
also for power control, as well as for calibration procedures.
Moreover, using acquisitional processors such as TinyDB
[8] was not an option in our case given the requirement to
collectall the data.

Even-though the download strategy we used was suffi-
cient for our purposes, it can be further improved to be more
efficient in the face of losses. Furthermore, we will need an
efficient, in terms of speed and energy, routing infrastruc-
ture that allow us to retrieve the data using multiple hops for
larger deployments.

Finally, there is a need for network design and deploy-
ment tools that instruct scientists where to place gateways
and sensor relay points. These tools will replace the current
trial and error, labor-intensive process of manual topology
adjustments that disturbs the deployment area.

6 Concluding Remarks
A wireless sensor network is only the first component in

anend-to-endsystem that transforms raw measurements to
scientifically significantdata and results. This end-to-end
system includes, calibration, interface with external data
sources (e.g. weather data), databases, web-services inter-
faces, analysis, and visualization tools.

While the WSN community has focused its attention on
routing algorithms, self-organization, and in network pro-
cessing among other things, environmental monitoring ap-
plications2 require quite different emphasis: reliable deliv-
ery of the majority (if not all) of the data and metadata, high
quality measurements, and reliable operation over long de-
ployment cycles. We believe that focusing on these prob-
lems will lead to interesting new avenues in WSN research.

2Sometimes derided asacademically dull applications, a characteriza-
tion with which the ecologist in our team does not agree.
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paper. Răzvan Musăloiu-E. is supported through a partner-
ship fund from the JHU Applied Physics Lab. Josh Cogan is
partially funded through the JHU Provost’s Undergraduate
Research Fund.

References
[1] Life Under Your Feet. Available at http:

//lifeunderyourfeet.org/.
[2] R. Cardell-Oliver. ROPE: A Reactive, Opportunistic Protocol

for Environment Monitoring Sensor Networks. InProceed-
ings of the 2nd EmNets Workshop, May 2005.

[3] R. Cardell-Oliver, K. Smettem, M. Kranz, and K.Mayer. A
Reactive Soil Moisture Sensor Network: Design and Field
Evaluation.International Journal of Distributed Sensor Net-
works, pages 149–162, 2005.

[4] Deluge: TinyOS Network Programming. Available
at http://www.cs.berkeley.edu/∼jwhui/
research/projects/deluge/.

[5] Energizer. Cylindrical Alkaline Batteries - Applica-
tion Manual. http://data.energizer.com/PDFs/
alkaline appman.pdf.

[6] J. Hill and D. Culler. Mica: A Wireless Platform for Deeply
Embedded Networks.IEEE Micro, 22(6):12–24, Nov. 2002.

[7] Irrometer Company, Inc. http://www.irrometer.
com/.

[8] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The Design of an Acquisitional Query Processor for Sensor
Networks. InProceedings of SIGMOD 2003, June 2003.

[9] MTS/MDA Sensor and Data Acquisition Board
User’s Manual. Available at http://www.
xbow.com/Support/Support pdf files/
MTS-MDA Series Users Manual.pdf.

[10] R. Munoz-Carpena. Field devices for monitoring soil
water content. Bulletin 343, Dept. of Agricultural
and Biological Engineering, Univ. of Florida, IFAS Ex-
tension. Available athttp://edis.ifas.ufl.edu/
current.html, 2004.

[11] Mote Status of the Olin Deployment.http://hinrg.
cs.jhu.edu/olin/status.

[12] The Sloan Digital Sky Survey SkyServer. Available at
http://skyserver.sdss.org/, 2002.

[13] C. Shock, J. Barnum, and M. Seddigh. Calibration of Wa-
termark Soil Moisture Sensors for irrigation management. In
Proceedings of the International Irrigation Show, Irrigation
Association, 1998.

[14] C. Shock, E. Feibert, and S. Jaderholm. A Compari-
son of Six Soil Moisture Sensors. Malheur Experiment
Station, Oregon State University Ontario, OR. Available
at http://www.cropinfo.net/AnnualReports/
2001/Popsensortest01.htm.

[15] R. Szewczyk, A. Mainwaring, J. Anderson, and D. Culler.An
Analysis of a Large Scale Habitat Monitoring Application. In
Proceedings of SenSys 2004, Nov. 2004.

[16] A. Terzis, R. Musaloiu-E., J. Cogan, K. Szlavecz, A. Sza-
lay, J. Gray, R. Burns, and S. Small. Life Under your Feet:
A Wireless Sensor Network for Soil Ecology. Technical re-
port, HiNRG, Johns Hopkins University Technical Report,
May 2006.

[17] G. Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, P. Buon-
adonna, S. Burgess, D. Gay, W. Hong, T. Dawson, and
D. Culler. A Macroscope in the Redwoods. InProceedings of
the Third ACM Conference on Embedded Networked Sensor
Systems (SenSys), Nov. 2005.


