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Abstract: Many tools that target parallel and distributed
environments must co-locate a set of daemons with the dis-
tributed processes of the target application. However, effi-
cient and portable deployment of these daemons on large
scale systems is an unsolved problem. We overcome this
gap with LaunchMON, a scalable, robust, portable, secure,
and general purpose infrastructure for launching tool dae-
mons. Its API allows tool builders to identify all processes
of a target job, launch daemons on the relevant nodes and
control daemon interaction. Our results show that Launch-
MON scales to very large daemon counts and substantially
enhances performance over existing ad hoc mechanisms.

1 Introduction

Runtime tools, such as debuggers and performance pro-
filers, are essential to high performance computing. How-
ever, several obstacles limit the availability of such tools
to one or few platforms and slow the development of new
tools. The TDP project [20] noted that the myriad sched-
uler, job launch, and process control interfaces add severe
costs to porting tools to high-end computing environments.
On such systems, operating system services and the re-
source manager (RM) play a critical role in the launching
of daemons and their interactions with system resources.
Thus, we must port tools to local RMs for efficient ex-
ecution or even just correct functionality. The variety of
RMs, including Condor [23], LoadLeveler [16], LSF [19],
SLURM [15], and YOD [6], exacerbate this effort. With-
out a common infrastructure for tool daemon launching, the
task of porting m tools to n environments becomes an m×n
effort. Tool developers must implement this capability for
each tool/environment combination, often leading to diffi-
cult to maintain, ad hoc implementations.

TDP addressed portability but not the issue of scale.
With the trend towards systems with 105 or 106 proces-
sors [2], efficient daemon launching is essential. Over-
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heads that previously were merely discouraging are becom-
ing prohibitive. As system scales increase, initialization ac-
tivities can become bottlenecks that prevent user adoption,
particularly for interactive tools like debuggers. Often, such
tools must locate their daemons on the same compute nodes
as the target application’s processes [4, 5, 24, 12, 17, 20].
Further, tools for extreme scale jobs often leverage scalable
communication infrastructures [5, 22] that require commu-
nication daemons on additional compute resources beyond
the target program’s allocation.

We seek to help tool developers create highly portable
and scalable tools through a standard framework that lever-
ages native system services for tool daemon launching. We
present the key abstractions and mechanisms for a scalable
and portable job (and tool) launch facility, and then describe
the design and implementation of LaunchMON, a system
that embodies these abstractions and mechanisms. Launch-
MON can be viewed as a partial TDP implementation that
abstracts native RM interfaces and services. Using Launch-
MON, tools can automatically run on existing (or future)
HPC systems that implement the widely available services
upon which we base LaunchMON.

This work makes five primary contributions. First, we
develop the essential abstractions for a scalable launch fa-
cility. Such abstractions must be useful to tool developers
and compatible with the variety of facilities on existing sys-
tems, which we cannot assume will change to accommodate
tool developers. Thus, LaunchMON provides the mapping
to a uniform interface. Second, we present a design and im-
plementation, for cluster and supercomputer environments,
that embodies these abstractions. Third, several case stud-
ies show how LaunchMON supports existing tools and the
creation of new ones. Fourth, one of our new tools is it-
self a contribution: Jobsnap provides the first portable and
scalable mechanism for users to gather information for each
MPI task normally captured through the /proc [21] inter-
face. Last, our experiments and LaunchMON performance
model demonstrate that it achieves the goals of portable and
scalable tool daemon launching, with overheads an order of
magnitude less than existing ad hoc solutions.



LaunchMON builds on the concepts of previous tool and
launch research. OpenRTE [8] proposed a common execu-
tion environment that allows the same source code to run on
different HPC platforms. However, it primarily targets MPI
applications and did not capture the distinct needs of HPC
tools. For example, OpenRTE does not provide a mecha-
nism to launch a tool daemon and attach it to an application
process. The tool daemon protocol (TDP) [20] focused on
codifying essential tool daemon activities into a standard
API but did not address scalability. The message queue de-
bugging interface [10] and the Automatic Process Acquisi-
tion Interface (APAI) [1, 6, 13] provide standard interfaces
for debuggers to interact with MPI application tasks, but not
for launching tool daemons.

In the following section, we discuss typical strategies for
tool daemon launching employed by current tools. Sec-
tion 3 describes LaunchMON’s design and implementation
in detail. Next, we present and validate a detailed perfor-
mance model of LaunchMON’s daemon launching mech-
anism in Section 4. Section 5 covers the integration of
LaunchMON with existing tools and its use to build Job-
snap, including its impact on the performance of those tools.

2 Ad Hoc Tool Daemon Launching Practices

Tool developers currently rely on ad hoc mechanisms for
tool daemon launching. Most frequently, tools combine ba-
sic mechanisms like ssh or rsh with manual protocols to
launch the necessary daemons. This approach generally
fails to leverage the services of the RM, which can aid in
the co-location of tool daemons. Thus, it requires signifi-
cant porting efforts to systems that do not support rsh/ssh
(e.g., BlueGene/L (BG/L) [3] or the Cray XT3 [25]). More
importantly, these ad hoc solutions often have high over-
head. While this does not restrict their functionality, which
is often the core focus of the tool developer, it renders them
impractical for realistic scenarios. For example, tools that
use rsh-like methods must call a protocol to spawn each
daemon sequentially, easily leading to an implementation
prohibitively slow for launching hundreds of daemons and
even worse for larger scales.

Instead of explicitly starting daemons during tool startup,
some tools, like DPCL [11], use persistent daemons for all
tool sessions, which requires that the daemons are always
active on all nodes, which wastes system resources. The
persistent daemons usually run as root, which makes them
difficult to deploy, to install and to maintain in large scale
production environments. They also represent a security
risk, since they act as root on behalf of non-privileged users.
Hackers routinely exploit such configurations, for example
in FTP, Telnet, or RSH servers, even though these services
are more thoroughly tested than most tool infrastructures.
Better support for on-demand tool daemon launching would

alleviate the need for persistent daemons.
In addition to co-located daemons, large scale tools in-

creasingly rely on hierarchical infrastructures, such as Tree-
Based Overlay Networks (TBŌNs) like MRNet [22], which
use additional communication daemons. These additional
daemons, which require separately allocated nodes, must
also be launched efficiently. Current infrastructures manu-
ally allocate these nodes and then rely on ad hoc launch-
ing mechanisms. Efficient daemon launching is even more
important since the front-end process deploys its children
daemons, which in turn deploy their children and so on.

Most modern systems provide low-level components that
eliminate many of these problems. RMs provide native
interfaces and runtime services that can scalably launch
tool daemons on a large number of nodes [6, 7, 15, 26].
Most RMs also provide a native Automatic Process Acqui-
sistion Interface (APAI) that debuggers use to acquire the
necessary information about the parallel target application.
APAI provides access to a Remote Process Descriptor Ta-
ble (RPDTAB) that includes the host name, the executable
name and the process ID of each MPI task.

These services, however, are insufficient to develop
portable and scalable tools. The interfaces are usually
platform and RM specific and are often difficult to use.
For example, tools typically access APAIs as a debugger,
which entails significant software complexity. Also, tools
require other services that are not directly offered by the
native interfaces, such as additional node allocations or
inter-daemon communication. To overcome these problems
and to fill this important tool development gap, we devel-
oped the LaunchMON infrastructure that abstracts the na-
tive, platform specific RM and APAI interfaces for general
purpose tools and provides a new set of services needed to
implement scalable, daemon-based tools.

3 Distributed LaunchMON Architecture

HPC tools are inherently distributed software systems
that often include different front end, back end and inter-
mediate communication components. Thus, we decompose
LaunchMON to provide functionality for each tool com-
ponent type. Figure 1 shows LaunchMON’s four compo-
nents: (1) the LaunchMON Engine; (2) the front end API
(LaunchMON FE API); (3) the back end API (LaunchMON
BE API); and (4) the middleware API (LaunchMON MW
API). The LaunchMON FE and BE APIs provide informa-
tion about application processes and scalably launch tool
daemons on remote nodes. Similarly, the LaunchMON FE
and MW APIs enable scalable launching and connection of
TBŌN daemons. The LaunchMON Engine interacts with
the RM to determine when, where and how to perform the
services of the other components. A compact application
layer network protocol, LMONP, enables interactions be-
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Figure 1. Architecture of LaunchMON

tween all of LaunchMON’s components.

3.1 LaunchMON Engine

The essence of LaunchMON is its ability to interact with
a wide array of RMs. To capture the required job infor-
mation through APAI, the LaunchMON Engine, which pro-
vides this functionality, must trace the job’s RM process.
This typically requires debugger capabilities as well as a
co-location with the target RM process. In addition, the
LaunchMON Engine acts as a proxy for LaunchMON’s
other components, which generally cannot be co-located
with the RM process, by translating a series of commands
between them and the RM.

The LaunchMON engine is designed using a very mod-
ular class hierarchy that encapsulates all key components
as separate abstract entities. We can use this to port it to
new platforms by simply parameterizing and inheriting key
abstract classes, filling in details of the computer architec-
ture, the OS, and the RM of the new target machine, while
keeping the core structure.

The central component is an independent Driver class
that organizes its main operations: it first calls the Event
Manager, which is responsible for polling the target RM
process via an OS interface. Upon detecting a status update
for this process, the Event Manager passes this native event
back to the Driver, which then calls upon the Event De-
coder to convert the event into a higher level LaunchMON
event. The Driver next passes the LaunchMON event to
the LaunchMON Event Handler, which invokes the handler
matching the observed event.

A particularly important event is when the RM reports
that the job is in a state where a tool can launch daemons

co-located with the job. The handler associated with this
event fetches the RPDTAB from the RM process address
space, invokes an efficient daemon launch command and
communicates the RPDTAB to the front end.

3.2 LaunchMON Front End

The engine’s complexity arises from its interaction with
RMs and other system software components. In contrast,
the complexity of the LaunchMON FE API stems from the
services that it provides to HPC tools. This subsection iden-
tifies the main functionalities required by HPC tool front
ends. We then combine these requirements with technologi-
cal constraints and performance optimization opportunities.

Our analysis determined seven main requirements for the
FE API, consistent with previous studies of the interactions
between tools and RMs [14, 20]. First, the FE API must
launch or attach to an RM process, instructing it to prepare
the job for tracing. Second, it must co-locate back end dae-
mons with application tasks. Third, the FE API must launch
middleware daemons. Fourth, it must fetch data, such as
the RPDTAB, from the RM process. Fifth, it must transfer
a tool’s data between its front end and daemons. Sixth, the
FE API must control a target job or daemons. Finally, it
must bind its commands to a job or a group of daemons.

We easily map all but the last requirement to distinct pro-
cedure calls. We use a session, an abstraction for a group
of daemons associated with a job, to provide the binding
method. Most FE API procedures, which capture the other
requirements, include a session parameter. In particular, our
design requires users to create a session for each back end
or middleware daemon launching and to pass that handle to
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each FE API call. Internally, the front end runtime main-
tains a session resource descriptor table.

Our primary design goals of portability and perfor-
mance, including scalability, led to FE API refinements.
For example, on various platforms, the APAI tightly cou-
ples the operations of controlling and interacting with the
RM and daemon co-location. Accordingly, our API com-
bines these functionalities by supporting attachAndSpawn
and launchAndSpawn calls but not calls that separate the
actions. We also provide calls that allow a tool to regis-
ter pack and unpack functions for enhanced performance.
These calls can transfer the tool’s data to and from either
a back end or middleware master daemon. This enables
piggybacking of the tool’s data with the LaunchMON front
end’s handshaking exchanges with the daemons.

3.3 LaunchMON Back End

As with the FE API, our analysis of HPC tool require-
ments led to a procedural form for the LaunchMON BE
API. However, rigorous scalability requirements also guide
our software design for this module: we need basic col-
lective communications for back end daemons to propagate
and to gather launch and setup information. Since these col-
lective services are useful for other tool functionality, the
BE API makes them available for general use. We lever-
age native communication subsystems that the RM sets up
if possible; our layered approach encapsulates interactions
with native communication subsystems in the Internal Col-
lective Communication Layer (ICCL). ICCL maps native
interfaces to our back end collective calls; hence it is the
only layer with significant platform dependencies.

Our collective services are not intended to replace TBŌN
infrastructures but instead provide the minimal services
needed for daemon launching. Tools that require ex-
treme scalability and more flexibility should leverage a
more advanced communication infrastructure, like MRNet.
Supporting minimal services reduces porting efforts when
building on top of native services and facilitates provid-
ing efficient generic implementations. Their use beyond
LaunchMON’s primary goals is only intended to provide
tools with rudimentary inter-daemon communication ser-
vices. For these reasons, we only support simple barriers,
broadcasts, gathers and scatters.

3.4 LaunchMON Middleware

Our analysis showed requirements for the LaunchMON
MW API are similar to those for the BE API: once launched
into a set of newly allocated nodes, each TBŌN daemon
must set up the TBŌN based on information that Launch-
MON scalably distributes to it. Specifically, the MW API
assigns to each simultaneously launched TBŌN daemon a

unique personality handle that is similar to an MPI rank. It
also sets up a simple network fabric based on a native com-
munication subsystem such that a TBŌN daemon can send
data to and receive data from other daemons collectively
or individually using the personality handles, which TBŌN
daemons can use to bootstrap their own network.

LaunchMON’s middleware initialization also distributes
the RPDTAB to the TBŌN daemons. The RPDTAB al-
lows TBŌN daemons to locate the target program and the
back end daemons. Some TBŌN implementations need
other data in order to bootstrap their networks completely.
Thus, our design allows piggybacking of tool specific data
with LaunchMON’s handshaking data exchanges between a
front end and a TBŌN master daemon.

3.5 LMONP Communication Protocol

We provide a simple inter-component communication
protocol, LMONP, built on TCP/IP that facilitates com-
ponent communication. However, LMONP only supports
communication between pairs of representatives, one repre-
sentative per component, to achieve high performance and
scalability. Our protocol must support the communications
needed for daemon launching and initialization, such as dis-
tribution of the RPDTAB, and allows bundling of client tool
data for efficient overall tool startup. LMONP compactly
encodes these functionalities and offers a straightforward
path for extension if more complex requirements emerge as
LaunchMON is adopted more widely.

LMONP has a 16 Byte header and two variably sized
payload sections: one for LauchMON data and one for user
data. Besides a message tag and payload attributes, such as
length, the header also includes a three bit msg class field
that encodes a communication pair. Three of the eight pos-
sible pairs are currently used for (front end, LaunchMON
Engine), (front end, back end), and (front end, middleware)
connections. We could use the remaining pairs for a (mid-
dleware, middleware) connection that would support the
use of multiple communication infrastructures or spread-
ing a single communication infrastructure across multiple
resource allocations.

4 Evaluating Overhead and Scalability

We construct an analytic model of launchAndSpawn, a
key LaunchMON service that launches a parallel job un-
der a client tool’s control, in order to study the overhead
and scalability properties of our infrastructure. We ana-
lyze the events on the critical path of this service and in-
vestigate their component costs. We denote the events as
ei with the duration between two events ei and ej (with
i < j) as T (ei, ej). The total time for launchAndSpawn
is

∑
T (ei, ei+1) of these critical path events .
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Figure 2 shows that our launchAndSpawn model in-
cludes eleven critical path events. The client initiates this
service by calling the corresponding FE API function in
e0, which invokes the LaunchMON engine at e1. The en-
gine then executes the RM’s job launcher under its control
at e2. The RM prepares to launch the job, including al-
locating a set of nodes for the job, after which it calls the
MPIR Breakpoint function and stops at e3. The engine then
fetches the RPDTAB from the RM process at e4. Next, the
engine either invokes another RM launcher or simply in-
structs the existing launcher to spawn tool daemons at e5.
The RM finishes spawning the daemons at e6, and Launch-
MON begins its handshaking process that establishes dae-
mon input parameters at e7. As part of this process, the mas-
ter back end daemon begins coordinating the inter-daemon
network setup with the RM-provided communication fab-
ric at e8. The network setup completes at e9 and the mas-
ter daemon finishes the handshaking process by sending a
ready message to the front end at e10. The launchAndSpawn
service completes when it returns control to the client tool
at e11.

We group critical path events into regions based on their
dominant contributors as shown in Figure 2 and separately
analyze their costs as we increase job size. T (e0, e2) and
T (e10, e11) are local operations and do not impact scaling.
Region A is dominated by the RM performance, while Re-
gions B and C are LaunchMON overheads.

We model Region A’s cost as the sum of several RM
activities, specifically the spawning of the job tasks and
the tool daemons, the inter-daemon communication fabric
setup, and the handshake message distribution. We de-
note the costs of these activities as T (op) where op is job
for spawning the job tasks, daemon for spawning the tool
daemons, setup for the communication fabric setup, and
collective for broadcasting, gathering and scattering hand-
shake messages. Our analysis shows that LaunchMON’s
only contribution to the overhead of Region A is the cost
of tracing the RM process in T (e2, e3). We model this cost
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with the number of RM debug events times LaunchMON’s
average event handler cost. If the RM debug events increase
with job size then this cost can increase with the job size;
our experience shows that a well designed RM does not
have this property.

Region B and C have limited costs that are impacted by
job scale. The size of the RPDTAB, which is fetched during
Region B, is linear in the number of job tasks. Similarly, the
handshake messages between the front end and the master
back end daemon in region C include data on all daemons
so their size grows linearly with scale.

We validate this model on Atlas, a 1,152 node/9,216
core Linux cluster with four-way, dual-core 2.4 GHz AMD
Opteron nodes, 16 GB of main memory per node and con-
nected with 4x DDR Infiniband. The hardware, as well as
the software stack, of its front end nodes is identical to that
of its compute node. All nodes run a full-featured Linux
using the CHAOS distribution [18] version 3.3, a derivation
of Red Hat Enterprise Linux (RHEL) 4 [21]. This machine
runs Moab [9] for job scheduling, which leverages SLURM,
the Simple Linux Utility for Resource Management [15],
for job scheduling and remote process management.

We empirically build functions for T (op) functions with
a simple benchmark and gather LaunchMON overhead met-
rics by running an instrumented version of LaunchMON.
The experiments with the instrumented version reveal that
SLURM currently has no events that occur more frequently
with increasing scale, a change that arose due to our in-
teractions with SLURM developers. Thus, LaunchMON’s
contribution to Region A, the tracing cost, is 18 ms, regard-
less of scale. The other costs that are independent of scale,
including those not in Regions A, B and C, amount to 12
ms. We measured other costs at small scales and then fit
models for them. Figure 3 compares the performance pre-
dicted by our model (with various breakdowns) to the mea-
sured performance from 16 nodes to 128 nodes with the in-
terval of 16 nodes (eight MPI tasks and one daemon per
node). Both the model and the measured data demonstrate
that launchAndSpawn scales well, taking less than one sec-
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ond at 128 nodes (1024 MPI tasks). Further, the portions
due to LaunchMON constitute only about 5.2% of that total
time.

We have also ported LaunchMON to BlueGene/L. Our
experiments on that platform demonstrate that LaunchMON
has similar overheads on it. However, we found that the
time for spawning the job tasks and tool daemons (i.e.,
T (job) and T (daemon)) by mpirun, the RM on that sys-
tem, were significantly higher. We are currently working
with IBM to reduce these RM costs.

5 Tool Creation with LaunchMON

We demonstrate that LaunchMON supports a wide va-
riety of HPC tools by implementing a new tool, Jobsnap,
on top of it as well as integrating it into two existing tools,
STAT and Open|SpeedShop .

5.1 Fast, Scalable Tool Creation: Jobsnap

Jobsnap gathers the distributed state of a parallel ap-
plication including the task’s personality (such as its rank
and executable name), state (process state, program counter
value and the number of active threads) and various mem-
ory statistics on both virtual and physical memory (i.e.,
high watermark and locked memory size). It then concisely
presents this information as well as simple performance
metrics including user time, system time and the number
of major page faults to the user.

Figure 4 illustrates Jobsnap’s use of LaunchMON. The
Jobsnap front end launches lightweight back end daemons
on each node being used by a running parallel job (step 1).
Each daemon collects process snapshots for its local tasks
identified in the RPDTAB (step 2). A master daemon then
uses ICCL to collect the data from each back end daemon
(step 3), which it merges and writes into a text file, one line
per task (step 4). LaunchMON allowed us to implement this
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tool with about 100 lines of the front end code and 500 lines
for the back end.

Figure 5 shows Jobsnap total performance on Atlas, as
well as the time spent in the LaunchMON functionality that
starts the tool daemons. Jobsnap scales well up to 4096
tasks, taking under 1.5 seconds total and requiring less than
an additional half second compared to 512 tasks. At 8192
tasks, the maximum process count in our test, the total time
is 2.92 seconds, of which 2.76 seconds are spent in the
LaunchMON functionality. We speculate that the additional
cost for the last processor count doubling is mostly due to
the sub-optimal scaling characteristics of the RM function-
ality at this scale. In addition, we are considering a TBŌN
architecture that would reduce the impact of collecting and
printing information from each back end daemon.

5.2 Improving STAT Start-up

The Stack Trace Analysis Tool (STAT) [4] is a highly
scalable, lightweight debugging tool. It gathers and merges
multiple stack traces from a parallel application’s processes
to form a call graph prefix tree that identifies process equiv-
alence classes (i.e., similarly behaving processes). A full
featured debugger can attach to equivalence class represen-
tatives to perform root cause analysis at a manageable scale.

STAT uses a TBŌN model to gather its stack trace data;
specifically, it uses MRNet for scalable tool communication
and data collection and reduction. MRNet itself relies on a
manual process to specify the target nodes and uses remote
access protocols like ssh or rsh, which reduces the usage
threshold of STAT as well as its portability.

To overcome these problems, we integrated STAT with
LaunchMON, which identifies all applications tasks using
the RM’s RPDTAB and launches STAT’s stack sampling
daemons co-located with the application tasks. STAT also
uses LMONP to broadcast MRNet communication tree in-
formation from the front end to the daemons. This infor-
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mation was previously communicated through less scalable
methods such as command line arguments or through a sin-
gle file accessed by all daemons.

Integrating LaunchMON into STAT not only improves
STAT’s portability—by removing its dependence on sys-
tem specific interfaces–but also enhances its performance.
Figure 6 compares the performance of the two STAT ver-
sions using the native MRNet startup mechanism and using
LaunchMON. Both tests were run on Atlas using the same
tree topology (1-to-N).

Even with just four compute nodes, LaunchMON im-
proves STAT daemon launch from 0.77 seconds to 0.46. At
256 compute nodes, the MRNet launching mechanism takes
60.8 seconds. In comparison, the LaunchMON implemen-
tation provides an improvement of over an order of mag-
nitude, requiring only 3.57 seconds, of which 0.77 seconds
occur in MRNet’s handshaking protocol. At 512 compute
nodes, the ad hoc approach consistently fails when forking
an rsh process. If it had succeeded at that scale, it would
take approximately two minutes, assuming the clear linear
scaling trend (it could be worse). At that scale, Launch-
MON launches all daemons in only 5.6 seconds.

5.3 Eliminating Root Daemons in
Open|SpeedShop

Open|SpeedShop (O|SS) [17] is a parallel performance
analysis toolset that includes support for PC sampling, hard-
ware counter analysis as well as MPI and I/O tracing. It
builds on DPCL’s [11] binary instrumentation functionality.
For parallel applications it uses that instrumentation mech-
anism to interface with the system’s native APAI to locate
all target application processes. However, DPCL does not
contain any mechanisms to start its daemons along with the
application: it either relies on a set of preinstalled root dae-
mons, which is infeasible in production or security-sensitive
environments, or requires a cumbersome manual launch of

Number of Nodes 2 4 8 16 32
DPCL 33.77s 34.27s 34.31s 34.32s 34. 66s
LaunchMON 0.606s 0.627s 0.604s 0.617s 0.626s

Table 1. O|SS APAI Access Times

the daemons. The O|SS approach also treats the RM pro-
cess in the same way as the target application, including
parsing its binary fully, which entails unnecessary overhead.

We integrated LaunchMON into O|SS by replacing its
central Instrumentor class, which encapsulates all interac-
tions between the tool and the target application. Our new
version uses LaunchMON to acquire RPDTAB instead of
DPCL and then passes this information to the DPCL startup
routines to connect to all target processes. We augmented
the DPCL daemons so the front end can directly start them
instead of a system daemon and added capabilities to con-
nect back to the main tool. The only change necessary for
this mode of operation was the inclusion of the appropriate
back end calls inside the DPCL daemon startup routines.

These changes significantly improve the usability of
Open|SpeedShop. In its current version users must start
the daemons manually, including explicit identification of
the application partition. Even worse, users must explicitly
verify launch completion before using the tool daemons or
the performance experiment would fail. The LaunchMON
integration removes both usability issues to provide a fully
transparent and automatic solution.

From a performance and scalability perspective, how-
ever, we did not expect any significant improvements
since O|SS already used an efficient launching mechanism.
However, LaunchMON is specifically designed to read the
information from APAI efficiently, unlike the general pur-
pose remote instrumentation infrastructure of DPCL. Thus,
the changes result in a roughly constant reduction in APAI
access time. We see this effect in Table 1, which compares
the time between initiating a performance experiment and
when O|SS has acquired all APAI information.

6 Conclusions

Many parallel tools, including debuggers and perfor-
mance analyzers, must launch and control tool daemons.
Large scale tools also often use additional middleware dae-
mons for scalable communication. Launching and control-
ling these daemons are non trivial tasks that require an ef-
ficient, portable, secure solution that can be reused across a
wide set of tools.

LaunchMON fills this gap using a general purpose, dis-
tributed infrastructure. Its main component, the Launch-
MON Engine, directly leverages the services offered by the
underlying resource manager on the target platform. Thus,
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it uses efficient platform specific mechanisms to launch and
to manage daemons that have accepted security properties.
Tool developers can control this process with a set of li-
braries and APIs from the front end tool, the tool daemons
running on the application nodes and, if applicable, middle-
ware nodes. The latter two APIs include simple communi-
cation mechanisms that are useful for tool coordination.

We used LaunchMON in three tools: Jobsnap, a tool that
gathers a distributed application’s state; STAT, a tool to an-
alyze distributed stack traces; and Open|SpeedShop, a gen-
eral purpose performance analysis tool. In all three cases,
LaunchMON provides significant advantages in terms of
performance, efficiency, and usability as well as guaran-
teed scalability for launching and controlling daemons. Our
case studies clearly demonstrate that LaunchMON’s flexi-
bility successfully provides the commonly needed mecha-
nisms for scalable tool daemon management. Further, our
LaunchMON performance model not only demonstrates the
efficiency of LaunchMON functions but can also guide im-
provements in standard system services such as RM appli-
cation launch.
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