Semantics of Interaction

Samson Abramsky

Abstract

The “classical” paradigm for denotational semantics models data typlesrasns

i.e. structured sets of some kind, and programs as (suitlblejionsbetween do-
mains. The semantic universe in which the denotational modelling is carried out
is thus a category with domains as objects, functions as morphisms, and compo-
sition of morphisms given by function composition. A sharp distinction is then
drawn between denotational and operational semantics. Denotational semantics is
often referred to as “mathematical semantics” because it exhibits a high degree of
mathematical structure; this is in part achieved by the fact that denotational seman-
tics abstracts away from the dynamics of computation—from time. By contrast,
operational semantics is formulated in terms of the syntax of the language being
modelled; it is highly intensional in character; and it is capable of expressing the
dynamical aspects of computation.

The classical denotational paradigm has been very successful, but has some
definite limitations. Firstly, fine-structural features of computation, such as se-
guentiality, computational complexity, and optimality of reduction strategies, have
either not been captured at all denotationally, or not in a fully satisfactory fashion.
Moreover, once languages with features beyond the purely functional are consid-
ered, the appropriateness of modelling programs by functions is increasingly open
to question. Neither concurrency nor “advanced” imperative features such as local
references have been captured denotationally in a fully convincing fashion.

This analysis suggests a desideratuniménsional Semanti¢snterpolating
between denotational and operational semantics as traditionally conceived. This
should combine the good mathematical structural properties of denotational se-
mantics with the ability to capture dynamical aspects and to embody computational
intuitions of operational semantics. Thus we may think of Intensional semantics
as “Denotational semantics + time (dynamics)”, or as “Syntax-free operational
semantics”.

A number of recent developments (and, with hindsight, some older ones) can
be seen as contributing to this goal of Intensional Semantics. We will focus on the
recent work on Game semantics, which has led to some striking advances in the
Full Abstraction problem for PCF and other programming languages (Abramsky
et al. 1995) (Abramsky and McCusker 1995) (Hyland and Ong 1995) (McCusker
1996a) (Ong 1996). Our aim is to give a genuinely elementary first introduction;
we therefore present a simplified version of game semantics, which nonetheless
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contains most of the essential concepts. The more complex game semantics in
(Abramskyet al. 1995) (Hyland and Ong 1995) can be seen as refinements of
what we present. Some background in category theory, type theory and linear
logic would be helpful in reading these notes; suitable references are (Crole 1994),
(Girardet al. 1989), (Girard 1995) (which contain much more than we will actu-
ally need).

Acknowledgements | would like to thank the Edinburgh “interaction group”
(Kohei Honda, Paul-AndrMellies, Julo Chroboczek, Jim Laird and Nobuko Yoshida)
for their help in preparing these notes for publication, Peter Dybjer for his com-
ments on a draft version, and Peter Dybjer and Andy Pitts for their efforts in orga-
nizing the CLiCS summer school and editing the present volume.

Contents

1 Game Semantics 3
2 Winning Strategies 16
3 Polymorphism 18

4 Relational Parametricity 25

Notation

If X is a set,X™ is the set of finite sequences (words, strings) averWe use

s, t, u, v to denote sequences, aadb, ¢, d, m, n to denote elements of these
sequences. Concatenation of sequences is indicated by juxtaposition, and we won't
distinguish notationally between an element and the corresponding unit sequence.
Thusas denotes the sequence with first elemeand tails.

If f: X — Ythenf*: X* — Y™ is the unique monoid homomorphism
extendingf. We write |s| for the length of a finite sequence, andfor the ith
element ofs, 1 < i <|s|.

Given a setS of sequences, we writg*"°", S°d4 for the subsets of even- and
odd-length sequences respectively.

We write X + Y for the disjoint union of setX, Y.

If Y C X ands € X*, we writes | Y for the sequence obtained by deleting
all elements not irY” from s. In practice, we use this notation in the context where
X =Y + Z, and by abuse of notation we take Y € Y*, i.e.we elide the use of
injection functions.

We writes C t if s is a prefix oft, i.e.t = su for someu.
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Pref(S) is the set of prefixes of elements 8f C X*. S is prefix-closedf
S = Pref(5).

1 Game Semantics

We give a first introduction to game semantics. We will be concerned with 2-
person games. Why the number 2? The key feature of games, by comparison with
the many extant models of computation (labelled transition systems, event struc-
tures, etc. etc.) is that they provide explicit representation of the environment

and hence model interaction in an intrinsic fashion. (By contrast, interaction is
modelled in, say, labelled transition systems using some additional structure, typi-
cally a “synchronization algebra” on the labels.) One-person games would degen-
erate to transition systems; it seems that multi-party interaction can be adequately
modeled by two-person games, in much the same way that functions with multiple
arguments can be reduced to one-place functions and tupling. We will use such
games to model interactions between a System and its Environment. One of the
players in the game is taken to represent the System, and is referred to as Player or
Proponent; the other represents the Environment and is referred to as Opponent.
Note that the distinction between System and Environment and the corresponding
designation as Player or Opponent depengaint of view

If Tom, Tim and Tony converse in a room, then from Tom’s point
of view, he is the System, and Tim and Tony form the Environment;
while from Tim’s point of view, he is the System, and Tom and Tony
form the Environment.

A single ‘computation’ or ‘run’ involving interaction between Player and Oppo-
nent will be represented by a sequencenuives made alternately by Player and
Opponent. We shall adopt the convention t@gaponent always makes the first
move This avoids a number of technical problems which would otherwise arise,
but limits what we can successfully model with games tortbgative fragmentf
Intuitionistic Linear Logic. (This is they, —, &, !, V fragment).

A game specifies the set of possible runs (or ‘plays’). It can be thought of as a

tree
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where hollow nodes represent positions where Opponent is to move; solid nedes
positions where Player is to move; and the arcs issuing from a node are labelled
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with the moves which can be made in the position represented by that node.
Formally, we define a gam@ to be a structuréM, \¢, Ps), where

e My is the set omovesof the game;

e \c : Mg — {P,0} is a labelling function designating each move as by
Player or Opponent;

o P Crerret )jalt je. Py is a non-empty, prefix-closed subset/aft, the
set of alternating sequences of moved/p.

More formally, M is the set of alk € M, such that

Vi:l<i<|s| even(i) = Ag(s;) = P
A odd(i) = Ag(si) = O

i.e.
S = ai Qy - A2k+1 A2k42
A 1| ! !
O P 0] P

Thus P represents the game tree by the prefix-closed language of strings labelling
paths from the root. Note that the tree can have infinite branches, corresponding to
the fact that there can be infinite plays in the game. In terms of the representation
by strings, this would mean that all the finite prefixes of some infinite sequence of
moves would be valid plays.

For example, the game

({a17a2,bbbz,b3}7 { ap , ay , by , by , b3 }7 {6,al,albl,amazb%%bs})
l 1 l l l
O O P P P

@)
N
[ J [ J
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We are using games to represent the meanirigg€al formulasor types A
game can be seen as specifying the possible interactions between a System and its
Environment. In the traditional interpretation of types as structured sets of some
kind, types are used to classiflues By contrast, games classifyehaviours

Proofsor Programswill be modelled bystrategiesi.e. rules specifying how the
System should actually play.

represents the tree



Semantics of Interaction 5

Formally, we define a (deterministic) strategpn a game= to be a non-empty
subsetr C Pg'" of the game tree, satisfying:

(sl) eco
(s2) sabeoc = s€o
(s3) sab,sac € 0 = b=rc.

To understand this definition, think of
s=aiby---apb, € 0

as a record of repeated interactions with the Environment following can be
read as follows:

If the Environment initially doeg,,
then respond with;;
If the Environment then does,
then respond witlh,;

If the Environment finally does;,,
then respond witlh,.

The first two conditions ol say that it is a sub-tree df; of even-length paths.
The third is a determinacy condition.

This can be seen as generalizing the notion of graph of a relaowf a set
of ordered pairs, which can be read as a set of stimulus-response instructions. The
generalization is that ordinary relations describe a single stimulus-response event
only (giving rules for what the response to any given stimulus may be), whereas
strategies describe repeated interactions between the System and the Environment.
We can regardab € o as saying: ‘when given the stimulusin the contexts,
respond withb’. Note that, with this reading, the condition (s3) generalizes the
usual single-valuedness condition for (the graphs of) partial functions. Thus a
useful slogan is:

“Strategies are (partial) functions extended in time.”
Example 1.1 LetB be the game
({*7 tt)ﬁ}? {* = 07 tt = P)ﬁ = P}? {67 *7 *tt7 *ﬁ})
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This game can be seen as representing the data type of booleans. The opening
movex is a request by Opponent for the data, which can be answered by &ither
or ff by Player. The strategies @hare as follows:

{e} Pref{xtt} Pref{xff}

The first of these is the undefined strategy’}; the second and third corre-
spond to the boolean values and ff. Taken with the inclusion ordering, this
“space of strategies” corresponds to the usual flat domain of booleans:

N

Constructions on games

We will now describe some fundamental constructions on games.

Tensor Product
Given gamesA, B, we describe the tensor produtiz B.

Muygwp = My+ Mp

)\A®B - [)\Aa)\B]
PA@B = {SGMX{%B|STMAEPA/\S[MBEPB}

We can think ofA ® B as allowing play to proceed imoththe subgamed and
B in an interleaved fashion. It is a form of ‘disjoint&. non-communicating or
interacting) parallel composition’.

A first hint of the additional subtleties introduced by the explicit representation
of both System and Environment is given by the following result.

Proposition 1.1 (Switching condition)
In any plays € Pagp, if successive moves, s;.; are in different subgamesé€.
one is inA and the other inB), thenA g 5(s;) = P, Aags(sit1) = O.

In other words, only Opponent can switch from one subgame to another; Player
must always respond in the same subgame that Opponent just moved in.

To prove this, consider for eaghe P, p the ‘state’
"s7 = (parity(s [ A), parity(s | B))

We will write O for even parity, and® for odd parity, sincee.g.after a play of
even parity, it is Opponent’s turn to move. Initially, the statéds = (O, O).
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Note that O can move in either sub-game in this state. If O movef then the
state changes t@P, O). P can now only move in the first component. After he
does so, the state is back(t0, O). Thus we obtain the following ‘state transition

diagram’:
(0,0)
(P,0) (O, P)

We see immediately from this that the switching condition holds; and also that
the statg P, P) can never be reacheid. for nos € Psgpis™s' = (P, P)).
Linear Implication
Given gamesA, B, we define the gamd — B as follows:

My = Ma+ Mp

— - P when\ =0
Mg = [Aa, As] where A\ (m) = 0 when/\jgg _p
Pis_op = {SEM%&OBLSTMAGPAASTMBGPB}

This definition isalmostthe same as that of ® B. The crucial difference is the
inversion of the labelling function on the moves 4f corresponding to the idea
that on the left of the arrow théles of Player and Opponent are interchanged.

If we think of ‘function boxes’, this is clear enough:

Input Output

On the output side, the System is the producer and the Environment is the con-
sumer; thesedles are reversed on the input side.

Note that)M3", 5, and henceP,_., are in general quite different /%% ;,
Pagp respectively. In particular, the first move iy .5 must always be in3,
since the first move must be by Opponent, and all opening movése labelled
P by \,.

We obtain the following switching condition fot — B:

If two consecutive moves are in different components, the first was

by Opponent and the second by Player; so only Player can switch
components.
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This is supported by the following state-transition diagram:

|

(P, 0)

o

(P, P)

Example 1.2 The copy-cat strategy.
For any gamed, we define a strategy oAt — A. This will provide the identity
morphisms in our category, and the interpretation of logical axidrsA.

To illustrate this strategy, we undertake by the power of pure logic to beat a
Grand-Master in chess. To do this, we play two games, one against, say, Kasparov,
as White, and one against Short) as Black. The situation is as follows:

Kasparov Short
B w
w B

We begin with the game against Short. He plays his opening move, and we play
his move in our game against Kasparov. After Kasparov responds, we play his
move as our response to Short. In this way,plsy the same game twideutonce
as Whiteandonce as Black Thus, whoever wins, we win one game. Otherwise
put, we act as a buffer process, indirectly playing Kasparov off against Short.

This copy-cat process can be seen as a ‘dynamic tautology’, by contrast with
classical propositional tautologies, which are vacuous static descriptions of states
of affairs. The logical aspect of this process is a certain ‘conservation of flow of
information’ (which ensures that we win one game).

Exercise 1.1 Suppose we had to play iwo gamesagainst Short, both as Black,
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as well as one game against Kasparov as White.

Kasparov Short Short
B w w
wW B B

Would the same idea work?
How about playing in two games against Kasparov, both as White?

Kasparov Kasparov Short
B B W
W W B

Comment on the logical significance of these observations.

In general, a copy-cat strategy dnproceeds as follows:

A —o A
Time
1 aq O
2 aq P
3 Qo O
4 as P

idy = {s € P{%, 4, | Vteven-length prefix of : ¢[A; = t[As}

(Here, we writeA,, A, to index the two occurrences dfin A — A for ease of
reference. Note also that we write] A, rather thans[M,,. We will continue
with both these notational “abuses”).

N
We indicate such a strategy briefly by — A, alluding to axiom links in the
proof nets of Linear Logic.
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Example 1.3 Application Modus Ponens

Apyp:(A—-B)®A—oB

This is the conjunction of two copy-cat strategies

- 7 3 N
4 - B © A - B

Note thatA and B each occur once positively and once negatively in this for-
mula; we simply connect up the positive and negative occurrences by ‘copy-cats’.

Apyp = {se P(ef\{?ioB1)®A2 —o By |
Vt even-length prefix of : t[A; = t[Ay A t]By =t]Bs}

To understand this strategy as a protocol for function application, consider the
following play:
(A - B ) ® A — B
ro

ro ro — request for output

ri — request for input
id — input data
od — output data

ri
ri
id
id
od

TO WO WO WO

od

The request for output to the application function is copied to the output side of
the function argument; the function argument’s request for input is copied to the
other argument; the input data provided at the second argument is copied back to
the function argument; the output from the function argument is copied back to
answer the original request. It is a protocol fimear function application since

the state of both the function and the argument will change as we interact with
them; we have no way of returning to the original state. Thus we “consume” our
“resources” as we produce the output. In this way there is a natural match between
game semantics and linear logic.

The Category of Gamegj
e Objects: Games

e Morphisms:.c : A — B are strategies on A — B.

e Composition: interaction between strategies.
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This interaction can be described as “parallel composition plus hiding”.

c:A—B 17:B—C
o1 A= C
o;7 = (0| 7)/B = {s]A,C|sea]|T}
ollr = {se€(Ms+ Mg+ Mc)|s|[A,Beao A s|B,C € T}.

(Note that we extend our abuse of notation for restriction here;[By B we
mean the restriction of to M4 + Mg as a “subset” ofM 4 + Mp + M, and
similarly for s|A,C ands|B,C.) This definition looks very symmetric, but the
actual possibilities are highly constrained by the switching condition.

T

4 % B B W C

&1
by
by
by
by
by
br

ay

Initially, Opponent must move id' (say withc;). We considerr’s response. If
this is inC, then this is the response of, 7 to ¢;. If 7 responds inB, say with

b1, then a move by Player i in B — C'is a move by Opponent id — B.

So it makes sense to consides response té;. If it is in A, this is the overall
response of; 7 to ¢;. If o responds witth, in B, thenb, is a move by Opponent
in B — (', and we considet’s response. Continuing in this way, we obtain a
uniquely determined sequence.

Cibiby by - - -

If the sequence ends in a visible action4nor C, this is the response by the
strategyo; T to the initial movec;, with the internal dialogue betweenandr

in B being hidden from the Environment. Note tlhaaindr may continue their
internal dialogue inB forever. This is “infinite chattering” in CSP terminology,
and “divergence by an infinite-computation” in CCS terminology.

As this discussion clearly shows compositiorgirs interaction between strate-
gies. The following fact is useful in the analysis of composition.

The maps — s[A, C induces a surjective map

biolr — oir
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Covering Lemma. 1 is injective (and hence bijective) so for each o; r there
iSauniques € o || T suchthats | A,C =t.

If t = myms....ms, thens has the form
miurmsaoug.... Ug—1M

whereu; € M3, 1 <i < k.

Exercise 1.2 Prove the Covering lemma by formalizing the preceding discussion.

An alternative definition of Cut

We give a more direct, ‘computational’ definition.

o;T={s;t|s€oANteTANs|B=1t]B}.

This defines Cut ‘pointwise’ via an operation on single plays. This latter operation
is defined by mutual recursion of four operations covering the following situations:

s||t Oistomove inA.
s|]jt OistomoveinC.
s\t o tomove.
s/t Ttomove.

el e

ysllt = (s\?)

ellt =
SJJJJbt = b(s/t)
s\t = (sllt) (yeMr

s/bt = b(s]t)

( )
as\\at = s/t ((aEMAg
as fat = s\t ( )

We can then define
st = s||t.

Exercise 1.3 Prove that the two definitions of r coincide.
Proposition 1.2 G is a category.
In particular,id, : A — A is the copy-cat strategy described previously.

Exercise 1.4 Verify this Proposition.
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Exercise 1.5 Define a strategynot : B — B on the boolean game defined
previously to represent Boolean complement. Calculate explicitly the strategies

L:;not tt; not ff; not

and hence show that this strategy does indeed represent the intended function. (For
this purpose, treat strategieon B as strategies : [ — B where

I = (®7 (Z)a {5})

is the empty game, so that the above compositions make sense).

Exercise 1.6 Embed the category of sets and partial functions faithfully ¢hto
Is your embedding full? What about the category of flat domains and monotone
maps?

Tensor structure of G

We will now see (in outline) tha@ is an “autonomous™= symmetric monoidal
closed category, and hence a model for IMLL, Intuitionistic Multiplicative Linear
Logic.
We have already defined the tensor proddict B on objects. Now we extend
it to morphisms:
c:A—-B 17:A =B
cRT:ARQA - B® B’
o®T = {s€ Pyl pep | SIABco N s| A, B et}

This can be seen as disjoint (i.e. nhon-communicating) parallel composition of
andr.

Exercise 1.7 Check functoriality, i.e. the equations
e (c@7)(d®71) = (0;0)® (1;7).
e idy ® idgp = idags.

The tensor unit is defined by:

I = ((Z)a (Z)a {5})
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The canonical isomorphisms are conjunctions of copy-cat strategies.

assocs pC (A B)®C — A® (B® ()
r / 7 ) N N
A ® B) ® C —- A ® (B ® 0O
symm, p AR B B®A
4 S A

unitly : (I®A) — A
N
I ® A — A

unitry : (AI)— A

r B
A ® I) — A
The application (or evaluation) morphisms
Apyp:(A—-B)®A— B
have already been defined. For currying, given
0: AR B —C

define
Ao): A— (B — ()
by
Alo) ={a"(s) | s € o}
wherea : (My+ Mp)+ Mc — Ma+ (Mp+ M) is the canonical isomorphism
in Set

Exercise 1.8 Verify that the above definitions workE.g. verify the equations
Apo (Alo) ®idy) = o

Ap

A(O’) ® idA

C®A
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andA(Apo (T ®1idy)) = 7 for 7: C — (A — B).

Exercise 1.9 Prove thaf is terminal inG, i.e. for eachA there is a unique mor-
phismt, : A — 1.

This shows thag is really a model of Affine Logic, in which (unlike in Linear
Logic proper) the Weakening rule is valid. Indeed, tensor has “projections”:

unitr

A B 401 = A

Exercise 1.10 GivenA, B defineA& B by

Magp = Mo+ Mp
Mg = [Aa, AB]
Pagp = {inl*(s)|s € Py} U{inr*(t) | t € Ps}.

(Draw a picture of the game tree d&: B; it is formed by gluing together the trees
for A and B at the root. There is no overlap because we take the disjoint union
of the alphabets.) Prove thai& B is the product ofA and B in G, i.e. define
projections

A& A4B 25 B

and pairing
(,):6(C,A)xG(C,B) — G(C, A&B)

and verify the equations

(o, T); st = 0
(o, T); snd = 7
(v;fst, v;snd) = v forv:C — A&B

Exercise 1.11 Try to define coproducts in. What is the problem?

Exercise 1.12 A strategy on A is history-freeif it satisfies

e sab, tac € 0 = b=c.

e sab,t € o,tac€ Py = tabeo.

Prove thatid 4, assocy p,c, Syly g, ApA’B, unitly, unitry, fsty g, sndy p are

all history-free; and that i# and are history free so are; 7, 0 ® 7, andA(o).
Conclude that the sub-catego@’, of history-free strategies is also a model of
IMLL. What about the pairing operatiofs, 7)? DoesG" have binary products?



16 Abramsky

2 Winning Strategies

As we have seen, deterministic strategies can be viewed as partial functions ex-
tended in time. This partiality is appropriate when we aim to model program-
ming languages with general recursion, in which the possibility of non-termination
arises. However we would also like to use game semantics to model logical sys-
tems satisfying Cut Elimination or Strong Normalization. We would therefore like
to find a condition on strategies generalizing totality of functions. The obvious
candidate is to require that at each stage of play, a strategy A has some re-
sponse to every possible move by opponent.

(tot) s€o,sa€Py=3b: sabeo

Call a strategytotal if it satisfies this condition. However, totality as so defined
does not suffice ; in particular, it is not closed under composition.

Exercise 2.1 Find gamesi, B, C' and strategies : A — B andr : B — C,
such that

e o andr are total

e o7 is not total.

(Hint: use infinite chattering if3.)

The best analogy for understanding this fact is with the untypediculus: the
class of strongly normalizing terms is not closed under application. Thus in the
Tait/Girard method for proving strong normalization in various systems of typed
A-calculus, one introduces a stronger property which does ensure closure under
application. The approach we will pursue with strategies can be seen as a semantic
analogue of this idea.

The idea is to takevinning strategies. Given a game A, defing Rhe infinite
plays over A, by
Py ={s € MY | Pref(s) C Pa}
(By Pref(s) we mean the set dinite prefixes.) Thus the infinite plays correspond
exactly to the infinite branches of the game tree.

Now a setV C P’ can be interpreted as designating those infinite plays which
are “wins” for Player. We say that is a winning strategywith respect to W
(notation:o = W), if:

e o is total

o {se€ P}y | Pref(s) Co} CW.
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Thuse is winning if at each finite stage when it is Player’s turn to move it has a
well defined response, and moreover every infinite play following a win for
Player.

We introduce an expanded of refined notion of game as a @dail’4), where
Alis agame as before, amidy, C P} is the designated set of winning infinite plays
for Player. A winnining strategy fofA, W,) is a strategy ford which is winning
with respect tdV/ 4.

We now extend the definitions ¢f and— to act on the winning set specifica-
tions:

<A7WA)®(37WB> = (A®B7WA®B)
(A, Wy) — (B,Wg) = (A— B,W4_.p)
where
Wagp = {SEP‘Z’@BM A€ePAUW s As | BePgUWg}

Waop = {sePX pglslAePsUWy=s]| BeWg}
Exercise 2.2 Why did we not define
Wags = {s€Pigp|sTAeWaNns | BeWg}?

(Hint: consider the switching condition fay).

In order to check that these definitions work well, we must show that the construc-
tions on strategies we have introduced in order th model the proof rules of Linear
Logic are well-defined with respect to winning strategies.

Exercise 2.3 Show that, for anyA, W ,), the copy-cat strategid 4 is a winning
strategy.

Now we consider the crucial case of the Cut rule.

Suppose then that: (A, W,) — (B, Wg) andr : (B,Wg) — (C,Ws). We
want to prove that; 7 is total, i.e. that there can be no infinite chattering in B.
Suppose for a contradiction that there is an infinite play

t = sboby--- € o||T

with all moves after the finite prefix in B. Thent | A, B is an infinite play in
A — B following o, while¢t [ B, C' is an infinite play inB — C following 7.
Sinceor is winning andt [ A is finite, we must have | B € Wg. But then since
7 is winning we must have | C' € W, which is impossible since| C'is finite.

Exercise 2.4 Give a direct proof (not using proof by contradiction) that winning
stratregies compose.
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Exercise 2.5 Prove thatidy, assoca g ¢, Symy g, Ap4 g, unitly, unitry, fsta g,
snd 4 p are all winning strategies; and that if andr are winning, so ares ; T,
o®T, (o, ), andA(o).

Exercise 2.6 Verify that the total strategies
c:B—DB

correspond exactly to the total functions on the booleans.

Exercise 2.7 Consider a game of binary strea8ts

|
)
[
with plays=b; x by * b3 . . ., alternating between requests for data by Opponent and
bits supplied by Player. Lét’s,, be all infinite plays of this game.

Verify that the winning strategies o8{r, W) correspond exactly to the infinite
binary sequences. Verify that the winning strategies

g (Str, Wgtr) - (StT, Wstr)

induce functions which map infinite streams to infinite streams. Can you charac-
terize exactly which functions on the domain

{0,1}u {0, 1}~

with the prefix ordering are induced by winning strategies?

3 Polymorphism

Our aim now is to use game semantics to give a model for polymorphism. We
extend our notation for types with type variabl&sY’, ... and with second order
quantifiers

VX.A

As a test case, we want our model to have the property that the interpretation it
yields of the polymorphic (affine) booleans

has only two elements, corresponding to the denotations of the terms

ttdEef/lX.)\a:,y:X.q:
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def

Ff=AX Xz, y: Xy

Firstly, we need some control over tezeof the universe of types. To achieve
this, we assume a non empty 3$&satisfying

V+VYCvy
(for example také’ = {0, 1}*).
Now we define a gami by:
My=V+V
M\ = [KP, KO
Py = Mf".

(HereKP is the constant function valued &) We can define a partial order on
games by:

dei

ALdB = MAy4CMp A X=X [ My A PyCPg

Now define
Gu={A€0bj(G)| AU}

We define avariable type(in & variables) to be a function (monotone with
respect to<)
F gf, — Gu
Note that
ABeGy = AR BA—- Begy

(that was the point of having + V C V)

Exercise 3.1 (If you care about details) The above is gaitetrue. Amend the
definition of A ® B, A — B slightly to make it true.

Thus variable types will be closed underand—. GivenF, G : G — G, we
can define ~ . .
F® G(A) = F(A)®G(A)

-, -, -,

F — G(A) = F(A) — G(A)

A uniform strategys on a variable type is defined to be a strategy dn(i/)
such that, for alld € G/}, o; is a well-defined strategy of'(A), whereo ; is
defined inductively by

oz ={et U {sab|s € oz, sa€Ppz,sab € o}

(NB: in this notationg = o).
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Exercise 3.2 Show that the following properties hold for a uniform strategyn
E
i A glqg (component-wise}> 0 ;3 = 05N Pp 5y € 05
(i) if (A; i €1)isa<-directed family inG/, then
oy A= Uietos,  where
\/,) Ai is the directed join of thel; (defined by component-wise union),
and(J,.|o 4, is the directed union of the strategies .

Our aim now is to show that, for eaéhe w, we obtain a categor§ (k) with:

objects . variable typeE : G — Gy
morphisms : o : F' — G are uniform strategieson F — G

MoreovergG (k) is an autonomous category.

The idea is that all the structure is transferred pointwise f¢bto G(k). E.g if
o:F—G,7:G— H,theno;7: F'— His given byo; T = o0, 7.

Exercise 3.3 Check that; 7 is a well-defined uniform strategy an — H.

Similarly, we define
idF - ldF(Zz)
Aprc = APru c@
etc.

Now we define a “base category8 with the objectsGt, k¥ € w, and <-
monotone functions as morphisms. For each objcof B, we have the au-
tonomous categorg (k). For each monotone

F=(F,....,F): G — G,

we can define a functor

by

Proposition 3.1 The above defines a (strict) indexed autonomous category.

At this point, we have enough structure to interpret types and terms with type
variables. It remains to interpret the quantifiers. For notational simplicity, we
shall focus on the caséX.A(X) where X is the only type variable free inl.
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Semantically A will be interpreted by a functidn: G,; — G;;. We must define a
gamell(F') € Gy, as the interpretation ofX. A

F+t:vX.A
I'F¢{B}: A|B/X]

Corresponding to the polymorphic type inference rité — elim)
we must define a uniform strategy

m: KII(F) — F.

(HereKII(F) : Gy — Gy is the constant function valued &i(F'). Note that
K = ¢, wheret : Y — 1 = G} is the map to the terminal object i)

Corresponding to the type inference rule

't A
IT'FAXt:VX.A

we must prove the following universal property:

(V — intro) if X¢FTV(D)

for everyC € G, and uniform strategy : KC' — I there exists a
unique strateg\?(o) : C' — TI(F) such that

KII(F) F
KA?(0)
o
KC
This says that there is an adjunction
ty

Gu=06u0) 1  Gu(l)

I(F)

Furthermore, we must show that the Beck-Chevalley condition holds (see (Crole
1994)).

Remark 3.1 More generally, we should show the existence of adjunctions

*

p
Gu=06ukk) 1 gu(k + 1)
I, (F)

wherep : G&™' — GF is the projection function.

Now, how are we to construct the gari¢F')? Logically,II is a second-order
quantifier. Player must undertake to defefigt any instancé’'(A), whereA is
specified by Opponent. If Opponent were to specify the entire instdraiethe
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start of the game, this would in general require an infinite amount of information to
be specified in a finite time, violating a basic continuity principle of computation
(“Scott’'s axiom”). Instead we propose the metaphor of the “veil of ignorandge” (
John RawlsA Theory of Justice). That is, initially nothing is known about which
instance we are playing in. Opponent progressively reveals the “game board” ; at
each stage, Player is constrained to play within the instdncefar revealedy
Opponent.

Time
0] 1
P Ay 2
0] 3
P As 4
0] 5
P As 6

This intuition is captured by the following definition.
Mmr) = Mpw)

An(ry = Ar)
Pr(r) is defined inductively as follows:
Pur = {e}
U {sa|se P%V(CI?) A JA.sa € Ppiay}
U {sab|sa € P%C}‘};) N YA.sa € Ppay = sab € Preay}

The first clause in the definition ofyy ) is the basis of the induction. The
second clause refers to positions in which it is Opponent’s turn to move. It says
that Opponent may play in any way which is validdomeinstance (extending
the current one). The final clause refers to positions in which it is Player’s turn
to move. It says that Player can only move in a fashion which is valevary
possible instance.

For the polymorphic projection
I(F) ™ F(A)

w4 plays copy-cat betweeH(F') and F'(A). This is uniform, witnessed by the
“global copy-cat’idpy).
Why does this definition work? Consider the situation

M(F) — F(A)
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At this stage, it is Opponent’s turn to move, and of course there are many moves
in IT1( F") which would not be valid inF'(A). However, Opponent ifl(£) in con-
travariant (i.e negative) position must play as Playell{i#’), and hence is con-
strained to respond @only in a fashion which is valid ieveryinstance in which

a can be played, and which in particular is valid #i{A). Hence Opponent’s
response can safely be copied back iA{ol).

Now for the universal property. Given uniforsn: KC' — F, we define
AN(o)=0:0C —I(F)

That this is valid follows from the uniformity af so that at each stage its response
must be valid iranyinstance that we might be in. It is then clear that

KA*(o);7m = 0;idpy = 0

and hence that this definition fulfills the required properties.

Since we are interested in modeling IMLL2 (second order IMLL) we will refine
our model with the notion of winning strategy, as explained in the previous section.

Firstly, we briefly indicate the additional structure required of a specification
structure in order to get a model for IMLL2 in the refined category.

We assume that variable types are modeled by monotone fundtiong, —
G equipped with actions
Fa: PA— P(FA)

for eachA € G.
Also there is an action:

p: 1— P(II(F))

satisfying:
(V — elim) Mp{ma}p (A€ Gy, o€ P(FA))
(V—intro) (VA € Gy,v € PA.¢p{oa} Fa(v)) = ¢{A?(0) HIE.
Now in the case of the specification structd#é for winning strategies, we
define:

lp = {s € Py | VA € Gy, W CPY.s € Pry)y = s € Fa(W)}.

Exercise 3.4 Verify that this satisfiegv-intro) and(V-elim).

Thus we have a game semantics for IMLL2 in which terms denote winning strate-
gies. How good is this semantics? As a basic test, let us look at the type
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which we write as
\V/XXl —0 (XQ —0 Xg)

using indices to refer to the occurrencesXaf What are the winning strategies for
this type? Note that the first move must beXp. Because of the definition af,
Player can only respond by playing the same move in a negative occurreige of
i.e X7 or X,. Suppose Player respondsii:

VXXl—O (X2 —0 Xg)
a
a

At this point, by the switching condition Opponent must respon&in say
with a moveb ; what can Player do next? If he were playing as the tét\z, y :
X.y, then he should copy back to X5. However there is another possiblity
(pointed out by Sebastian Hunt): namely, Player pky « in X;, and continue
thereafter by playing copy-cat betwe&n and X;. This certainly yields a winning
strategy, but does not correspond to the denotation of any term.

To eliminate such undesirable possibilities, we introduce a constraint on strate-
gies. Recall from Exercise 1.10 that a strategyistory-freeif its response at any
point depends only on the last move by Opponent: that is, if it satisfies:

sab € o,ta € Py = tab € o.

The history-free strategies suffice to model the multiplicatives and polymorphism,
so we get a mode}Y, of IMLL2.

Now consider again the situation

VXXl—O (XQ —o Xg)
a
a

b

Player can only respond taby copyingb into X if he is following a history-free
strategy: the option of playingin X is not open to him, becauses not “visible”
to him. Thus he can only proceed by

VXXl—O (X2 —0 Xg)
a
a

b
b

Moreover, Player must continue to play copy-cat betw&erand X; ever there-
after, since the information available to him at each stage is only the move just
played by Opponent.



Semantics of Interaction 25

Note also that Player must play in the same way, regardless of which move is
initially made by Opponent. For example, suppose for a contradiction that Player
responded ta;, by copying it toX, and toa; by copying it to.X,. Now consider

the situation:
vX. X1 —° (XQ —o Xg)

ai
aq
by
by
5)

a2

Since Player is following a history-free strategy, he malstaysrespond tou,

by copying it toX,; but the above position is clearly not valid, since there is an
instanceA with Py = Pref{a;b,a2} in which a, cannot be played as an initial
move.

Thus we conclude that for our test case the matéldoes indeed have the
required property that the only strategies for the game

are the denotations of the terms:

AX A x,y: Xx AX A x,y: Xy
copycat betweelX; and X3  copycat betweeX; and X5.

Exercise 3.5 Show that the only two strategies@’, for the game
VX (X ®X) - (X ®X)
are those corresponding to the identity and the twist map.
Open problem For which class of (closed) types of IMLL2 do we get a “Full

Completeness” result, i.e. that all strategies at that typ&)inare definable in
IMLL2?

4 Relational Parametricity

In this section, we investigate how the notion of relational parametricity can be
adapted to the setting of games.

Firstly, we go back to the general level of Specification Structures. We use some
notions due to Andy Pitts (1996).

Giveng, ¢ € PA, we define:

p<v = o{ida}y.
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This is always a preorder lgsl)and(ss2) Say that the specification structuse

is posetalif it is a partial order (i.e. antisymmetric). Now the notion of meet of
properties)\,.; ¢; can be defined o A. Say thatS is meet-closed it is posetal
and eachP A has all meets.

Now we define a notion ofelationson games. We shall focus on binary re-
lations. Say thaf? is a relation fromA to B (notation: R C A x B) if Ris a
non-empty subse® C P, x Pp satisfying:

e R(s,t) = |s|=|t].
e R(sa,th) = R(s,t).

(So R is a length-preserving non-empty prefixed closed subset).

We shall define a specification structuReon the product categoy x G by
taking P(A, B) to be the set of relation® C A x B. Given a relation? C
A x B, we lift it to a relationR between strategies ot and strategies oR, by
the following definition:

}A%(U, T) <= Vs&€o,teT R(sa,ta)
= [(sa € dom(o) < td' € dom(r))
A sab € o,tad'l € T = R(sab,ta’t’)]

This definition is “logical relations extended in time”; it relativizes the usual clause:
R(z,y) = [(fzl < gyl) A (fzl, 9yl = R(fz,gy))]
to the context (previous history) It can also be seen as a form of bisimulation:

“If 0 and7 reach related states ats turn to move, then one has a
response iff the other does, and the states after the response are still
related.”

Also,if RC A x A andS C B x B’, then we define:

R®(A,A'),(B,B’) S = { (S,t) & PA®B X PA’®B’ |
R(sT At A) AN S(s|B,t]B)
A out*(s) = out*(t)) }
whereout : M, + Mz — {0, 1} is given by:
out = [KO0, K1]
Similarly we define:

R—ouanmenS = { (51) € Pawp X Puop |
R(sT At 1A AN S(s| B,t| B')
A out*(s) = out*(t)) }

Now we define:
R{(c,7)}S = R — S(o,7)
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Proposition 4.1 This is a specification structure @ x G. In particular,

R{(o,7)}S, S{(¢',7")}T = R{(c;0',7;7)}T

A\ ] B\ T C\
BN LN LN
A B c’
b1 C
\s\ — \T\
by ¢
A2
by
AN
N
by
4
a bk E
Neo— N\
N \
a v,

Exercise 4.1 Prove this! (The above “logical waterfall” diagram gives the idea of
the proof.)

We shall in fact be more interested in “pulling back” this specification structure
along the diagonal functoh : G — G x G. That is, we are interested in the
categoryGr with objects(A, R) whereR C A x A and morphisms : (A, R) —
(B, S) which are strategies : A — B such thatR/—o\S(a, o). We are also
interested in the catego,, where we combine the winning strategy and rela-
tional structures, so that objects ark W4, R4), wherelV 4 is a set of designated
winning plays, and?s C A x A is a relation andr : (A, Wy, R4) is a strategy
o : A — BsuchthatV,{c}Wg A Ra{c}Rp.

Now we build a model of IMLL2 by refining our previous model with this
specification structur®. A variable type will now be a monotone function

F:(Gu,<) — (Gu, Q)

with an action
Fy:PA— P(FA).
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We assume that the specification structure is monotone, in the sense that:
AdB = PACPB

(this is easily seen to hold fa¢ andV), and that
PA——~ PB

Fy Fp

P(FA) —— P(FB)
We also require thatib € PA, v € PA,A < A'andB < B/, then
HFrapy & {F}ap.

We further assume that the specification structure is meet-closed. Then we define:

e % A\{Fa(0) | A€ Gu.o € PAY = N\{Fal9) [0 € PU}  (42)

(This latter equality holds because of the above monotonicity properties).

The fact that {-intro) and {/-elim) are satisfied then automatically holds be-
cause of the definition dfi - as a meet.

To apply this construction t&, we must show that it is meet-closed.

Firstly, we characterise the partial order on propertieB.in

Proposition 4.2
R<S & R (s,t) A S(sa,tb) = R(sa,tb)
A S°U(s t) A R(sa,tb) = S(sa,tb).
We can read this as: at O-mov&8s_ R and at P-move®& C S.

] —— a1
AN AN
N N

by ———by
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Proposition 4.3 A,_; R; is defined inductively by:

/\ie[ Rl = {(5’ 5)}
U {(sa,td) | (s,t) € Nier RSV™ A
Ji € I.R;(sa,ta’)}
U {(sab,ta’¥’) | (sa,td’) € Nicy R A
Vi € I.R;(sa,ta’) = R;(sab,ta’t)}.

Note the similarity between this definition and that/af »y, which is in fact
the unary case of the above, indexed o€ P! P ).

Exercise 4.2 1. Verify these propositions.
2. For the specification structui®’, show that:

o VW & VCW.
o /\z‘eIVVi:ﬂz‘eIVVi'

Thus we obtain a modél!, . of IMLL, incorporating both:

¢ the refinement to winning strategies

e a notion of “relational parametricity”.
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