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Abstract

Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic
risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association
studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African
Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D
comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms
(SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site,
and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was
conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to
6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We
identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide
significance (4.15610294,P,561028, odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously
identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2610223 , locus-wide
P,0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic
variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D
in African Americans. A substantial number of previously reported loci are transferable to African Americans after
accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.
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Introduction

The prevalence of type 2 diabetes (T2D) among adults in the

USA is currently 11.3%, with substantially higher prevalence in

African Americans (18.7%) than in European Americans (10.2%)

[1]. To date, genome-wide association studies (GWAS) have

identified .70 susceptibility loci for T2D [2–8]. While it is known

that T2D is heritable in African Americans [9], it is unclear how

much heritability is explained by the known genetic associations

discovered primarily from European ancestry populations and

whether there are risk loci specific to African Americans. Given

that individuals of African ancestry tend to harbor more genetic

diversity than individuals of other ancestries [10], we hypothesized

that large-scale association analyses in African Americans could

shed light on the genetic architecture of T2D and the risk

attributable to cosmopolitan vs. population-specific variants.

Results

Study overview
We conducted a meta-analysis of 17 African American GWAS on

T2D comprising 8,284 cases and 15,543 controls (Tables S1 and

S2). Missing genotypes in individual studies were imputed to one of

the HapMap reference panels (Phase II release 21–24 CEU+YRI,

Phase II release 22 all populations, Phase II+III release 27 CEU+
YRI, Phase II+III release 27 CEU+YRI+ASW or Phase II+III

release 27 all populations) using MACH, IMPUTE2 or BEAGLE

(Table S3). Genomic control corrections [11] were applied to each

study (l= 1.01–1.08) and after meta-analysis (l= 1.06) due to

modest inflated association results (Table S3) [12]. Association

results for ,2.6M SNPs were subsequently examined.

From stage 1 meta-analysis, 49 SNPs moderately associated

with T2D (P,161025) and two candidate SNPs near the p value

threshold (rs231356 at KCNQ1, P = 2.8461025 and rs2244020 at

HLA-B, P = 1.0261025) totaling 51 SNPs in 21 loci were followed

up for replication. rs231356 is 14 kb downstream of the reported

T2D index SNP, rs231362, in Europeans [3]. Moderate associ-

ations have also been observed across the HLA region in

Europeans [3]. The stage 2 replication included in silico and de
novo replication in up to 11,544 African American T2D cases and

controls, as well as in silico replication in 47,117 individuals of

European ancestry from DIAGRAMv2 [3] (Table S4). Meta-

analyses were performed to combine results from African

Americans (stage 1+2a, n#35,371, Table S4) and both African

Americans and Europeans (stage 1+2a+2b, n#82,488, Table S4).

T2D loci reaching genome-wide significance
Five independent loci reached genome-wide significance (P,

561028). Stage 1 meta-analysis identified the established TCF7L2
locus. Stage 1+2a meta-analysis identified the established KCNQ1
and HMGA2 loci. Stage 1+2a+2b meta-analysis identified a

second signal at KCNQ1 and a novel HLA-B locus. Secondary

analysis including body mass index (BMI) adjustment in stage 1+
2a meta-analysis identified the second novel locus at INS-IGF2
(Table 1 and Figure 1). None of the most strongly associated SNPs

at these loci demonstrated significant heterogeneity of effect sizes

among studies within each stage, between African Americans in
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stages 1 and 2a, or between African Americans in stage 1+2a and

Europeans in stage 2b after Bonferroni correction of multiple

comparisons (Phet.0.001) (Figure S1).

At the TCF7L2 locus, the most strongly associated SNP in stage

1+2a African Americans samples was rs7903146 (OR = 1.33,

P = 4.78610244, Table 1 and Figure 2). rs7903146 is also the

index SNP (most significantly associated with T2D in prior studies)

in Europeans (OR = 1.40, P = 2.21610251) [3], South Asians

(OR = 1.25, P = 3.4610219) [4] and East Asians (OR = 1.48,

P = 2.44610215) [13].

Two association signals were observed at KCNQ1 (Table 1 and

Figure 2). The first association signal was represented by rs2283228

located at the 39 end of KCNQ1 (stage 1+2a OR = 1.20,

P = 9.90610211; stage 1+2a+2b OR = 1.19, P = 4.87610213).

Using data from individuals of African ancestry in Southwest USA

(ASW) from the 1000 Genomes Project (1KGP) [14], rs2283228

mapped to the same linkage disequilibrium (LD)-based interval as

index SNPs from other populations (rs2283228 [15] and rs2237892

[16–17] in Japanese, rs2237892 in Hispanics [18], rs163182 [19]

and rs2237895 [20] in Han Chinese). The second association signal

was represented by rs231356 (r2 = 0 with rs2283228 in both ASW

and CEU) (stage 1+2a OR = 1.11, P = 1.9461025; stage 1+2a+2b

OR = 1.09, P = 3.9361028), located 144 kb upstream of the first

signal. rs231356 is located at the same LD interval as the index SNPs

rs231362 in Europeans [3] and rs231359 in Chinese [20].

At the HMGA2 locus, the most strongly associated SNP was

rs343092 (stage 1+2a OR = 1.16, P = 8.7961029; stage 1+2a+2b

OR = 1.14, P = 2.75610212; Table 1 and Figure 2). rs343092 is

located 76 kb downstream and at the same LD interval as of the

index SNP rs1531343 reported in Europeans [3].

Two novel T2D loci were identified. The effect sizes of

rs2244020 located near HLA-B were similar in African Americans

and Europeans (OR = 1.11 vs. 1.07, Phet = 0.26; stage 1+2a+2b

P = 6.5761029) (Table 1 and Figure 2). HLA-B encodes the class

I major histocompatibility complex involved in antigen presenta-

tion in immune responses.

The most strongly associated SNP near INS-IGF2 was

rs3842770 in African Americans (OR = 1.14, P = 2.7861028,

stage 1+2a BMI adjusted, Table 1 and Figure 2) but the risk A

allele was absent in the CEU population. Insulin plays a key role in

glucose homeostasis. Mutations at INS lead to neonatal diabetes,

type 1 diabetes, and hyperinsulinemia [21]. Insulin-like growth

factor 2 (IGF2) is involved in growth and development. IGF2

overexpression in transgenic mice leads to islet hyperplasia [22]

and IGF2 deficiency in the Goto–Kakizaki rat leads to beta cell

mass anomaly [23].

Associations at previously reported T2D and glucose
homeostasis loci

We investigated index SNPs from 158 independent loci

associated with T2D and/or glucose homeostasis from prior

genome-wide and candidate gene studies in individuals of

European, East Asian, South Asian, or African American ancestry

(Table S5). Among the 104 T2D-associated index SNPs, 19 were

associated with T2D in stage 1 African American samples (P,

0.05). Most of the 17 T2D-associated SNPs that showed consistent

direction of effects had similar effect sizes between this study and

prior reports, despite that rs10440833 at CDKAL1 had substan-

tially stronger effect size in Europeans (OR = 1.25) than in African

Americans (OR = 1.06, Phet = 5.8661026). Additionally, 3 out of

54 trait-increasing alleles from glucose homeostasis-associated

index SNPs were associated with increased T2D risk in African

Americans (P,0.05).

We also performed a locus-wide analysis to test for associations

of all SNPs within the LD region at r2$0.3 with the previously

reported index SNPs and results were corrected for the effective

number of SNPs [24]. Since the causal variant(s) at each locus may

be different or reside on different haplotypes across populations

with different LD structures, this approach allows the identifica-

tion of the most strongly associated SNPs in African Americans

that may or may not be in LD with the index SNPs reported in

other populations. A total of 55 T2D- and 29 glucose-associated

loci were associated with T2D in African Americans (Plocus,0.05,

corrected for LD in ASW for SNPs within a locus; Table S6). We

compared the genetic architecture between the previously

reported index SNPs and our fine-mapped SNPs for these 84

loci. The respective average risk allele frequencies were 0.51 and

0.46, and the distributions or pairwise differences of risk allele

frequencies were not significantly different (P = 0.255, Wilcoxon

rank sum test; and P = 0.295, Wilcoxon signed-rank test,

respectively, Figure S2). In contrast, the average odds ratios for

the risk alleles were higher for the fine-mapped SNPs as compared

to the index SNPs (1.14 vs. 1.05). The distributions and pairwise

differences of risk allele odds ratios were significantly different

(P = 1.18610219 and 5.55610214, respectively, Figure S2). Thus,

the locus-wide analysis identified variants with larger effect sizes

and similar allele frequencies.

We leveraged differences in LD between African Americans and

Europeans to fine-map and re-annotate several established loci.

The association signal spanning ,100 kb at INTS8 in African

Americans overlapped the ,200 kb TP53INP1 T2D locus in

Europeans [3]. The most strongly associated SNP in MEDIA

tended to have larger effect size in African Americans than in

Europeans (rs17359493, OR = 1.13 vs. 1.06, P = 1.3961027 vs.

3.2061022, respectively, Phet = 0.06) (Table S4). However,

rs17359493 at intron 10 of INTS8 was only in weak LD with

the reported index SNP rs896854 in Europeans (r2 = 0.21 in CEU,

0.10 in ASW). Neither the reported index SNP rs896854 nor its

proxies from the CEU data demonstrated significant association to

T2D in African Americans (Table S6 and Figure S3a,b),

suggesting that rs17359493 may be an independent novel signal.

INTS8 encodes a subunit of the integrator complex which is

involved in the cleavage of small nuclear RNAs. At KCNQ1, the

most strongly associated SNP rs231356 was in weak LD with the

Author Summary

Despite the higher prevalence of type 2 diabetes (T2D) in
African Americans than in Europeans, recent genome-wide
association studies (GWAS) were examined primarily in
individuals of European ancestry. In this study, we performed
meta-analysis of 17 GWAS in 8,284 cases and 15,543 controls
to explore the genetic architecture of T2D in African
Americans. Following replication in additional 6,061 cases
and 5,483 controls in African Americans, and 8,130 cases and
38,987 controls of European ancestry, we identified two
novel and three previous reported T2D loci reaching
genome-wide significance. We also examined 158 loci
previously reported to be associated with T2D or regulating
glucose homeostasis. While 56% of these loci were shared
between African Americans and the other populations, the
strongest associations in African Americans are often found
in nearby single nucleotide polymorphisms (SNPs) instead of
the original SNPs reported in other populations due to
differential genetic architecture across populations. Our
results highlight the importance of performing genetic
studies in non-European populations to fine map the causal
genetic variants.
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index SNP rs231362 reported in Europeans [3] (r2 = 0.24 in CEU

and 0.17 in ASW). Given rs231362 was modestly associated with

T2D in African American (P = 0.04) and was in weak LD

(r2 = 0.21 to 0.46 in CEU) with other associated SNPs in this

region (Table S6 and Figure S3c,d), the results suggest a

refinement of the localization of causal variant(s) to variants in

strong LD with rs231356. At HMGA2, the most strongly

associated SNP rs343092 was in moderate LD with the index

SNP rs1531343 (r2 = 0.60 in CEU and 0.32 in ASW). Despite

rs1531343 and its proxies in high LD were not associated with

T2D in African Americans (P.0.05), several SNPs in moderate

LD, including rs343092, showed nominal to strong associations

(Table S6 and Figure S3e,f). Trans-ethic fine mapping will be

particularly useful to dissect the causal variant(s) at this locus.

Effect of obesity on T2D susceptibility loci
We investigated the influence of obesity by comparing the stage

1 meta-analysis results with or without adjustment for BMI at the

51 most significantly associated SNPs from the GWAS for follow

up (Tables S4 and S7) and 158 established T2D or glucose

homeostasis index SNPs (Table S5). Association results were highly

similar with and without BMI adjustment (correlation coefficients

were 0.99 for both effect sizes and 2logP values). Of particular

note, FTO is suggested to influence T2D primarily through

modulation of adiposity in Europeans [3,25], but evidence is

contradictory across multiple ethnic groups [26–28]. The index

SNP rs11642841 was not significantly associated with T2D in

African Americans without and with BMI adjustment (P = 0.06

and 0.23, respectively) (Table S5). The frequency of the risk A

allele was 0.13 in this study. It had 100% power to detect

association at the reported OR of 1.13 at type 1 error rate of 0.05,

suggesting that FTO is unlikely a key T2D susceptibility gene in

African Americans.

Gene expression and bioinformatics analyses
Among the six genome-wide significant loci (Table 1), we found

no coding variants in the most significantly associated SNPs or

their proxies. These SNPs demonstrated only weak associations

with expression quantitative trait loci (eQTLs) (P.0.001, Table

S8). Examination of the ENCODE data [29] revealed that several

SNPs at TCF7L2, KCNQ1, and HMGA2 were located at protein

binding sites or were predicted to alter motif affinity for

transcription factors implicated in energy homeostasis (Table

S9). The most strongly associated SNP rs7903146 in TCF7L2 is

predicted to alter the binding affinity for a POU3F2 regulatory

motif [30]. POU3F2 is a neural transcription factor that enhances

the activation of genes regulated by corticotropin-releasing

hormone which stimulates adrenocorticotropic hormone (ACTH).

ACTH is synthesized from pre-pro-opiomelanocortin (pre-

POMC) which regulates energy homeostasis. For the 39 signal at

KCNQ1, several tag SNPs are predicted to alter the binding

affinity for regulatory motifs, including SREBP, CTCF and

HNF4A. SREBP is a transcription factor involved in sterol

biosynthesis. CTCF regulates the expression of IGF2 [31].

HNF4A is a master regulator of hepatocyte and islet transcription.

The tag SNP rs2257883 at HMGA2 is predicted to alter the

binding affinity of MEF2, which regulates GLUT4 transcription in

insulin responsive tissues [32].

Discussion

We have performed the largest genetic association analysis to

date for T2D in African Americans. Our data support the

hypothesis that risk for T2D is partly attributable to a large

number of common variants with small effects [7]. We identified

HLA-B and INS-IGF2 as novel T2D loci, the latter specific to

African Americans. We found evidence supporting association for

88 previously identified T2D and glucose homeostasis loci. Taken

together, these 90 loci yielded a sibling relative risk of 1.19. The

phenotypic variance measured on the liability scale is substantially

larger in African Americans than in European Americans (17.5%

vs. 5.7%) [7] due to larger effect sizes upon fine-mapping as well as

higher disease prevalence in African Americans.

The two novel T2D loci, HLA-B and INS-IGF2, have been

implicated in type 1 diabetes (T1D) risk in Europeans [33–35].

One limitation of our study is the lack of autoantibody

measurement. However, our results are unlikely to be confounded

by the presence of misclassified patients. Among diabetic youth

Figure 1. Association results of stage 1 meta-analysis in African Americans in a model adjusted for age, sex, study sites and study-
specific principle components. (A) Manhattan plot. Previously identified loci are denoted in red. Novel loci identified in this study are denoted in
blue. (B) Quantile-quantile plot. The observed P values (y axis) were compared with the expected P values under the null distribution (x axis).
doi:10.1371/journal.pgen.1004517.g001
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aged ,20 years, T2D characterized by insulin resistance without

autoimmunity is more prevalent in African Americans (40.1%)

than in European Americans (6.2%), while African Americans less

often present with autoimmunity and insulin deficiency resembling

T1D compared to European Americans (32.5% vs. 62.9%,

respectively) [36]. Autoimmunity is also uncommon in African

American diabetic adults [37]. Furthermore, associations for T1D

are stronger at HLA class II (HLA-DRB1, -DQA1, and -DQB1)

than HLA class I regions in Europeans [33–34,38–41] (http://

www.t1dbase.org). In African Americans, T1D individuals showed

both shared and unique risk and protective HLA class II

haplotypes as compared to European T1D individuals [42–43].

Figure 2. Regional plots of five previously and newly identified T2D loci in African Americans. Association P values (on a 2log10 scale) of
genotyped and imputed SNPs from stage 1 meta-analysis are plotted as a function of genomic position (NCBI Build 36). Plots for HLA-B, TCF7L2,
KCNQ1, and HMGA2 used the model without BMI adjustment whereas plots for INS-IGF2 used the model with BMI adjustment. In each panel, the most
strongly associated SNP from stage 1 and stage 1+2a+2b meta-analysis is denoted by a purple circle and a purple diamond, respectively. The color of
all other SNPs indicates LD with the most strongly associated SNP based on the HapMap 2 YRI data. At KCNQ1, two independent signals are shown.
doi:10.1371/journal.pgen.1004517.g002

PLOS Genetics | www.plosgenetics.org 7 August 2014 | Volume 10 | Issue 8 | e1004517

Type 2 Diabetes GWAS in African Americans

http://www.t1dbase.org
http://www.t1dbase.org


More importantly, these individuals also showed substantially

stronger associations at HLA class II (P,1610225) than class I

regions (P,161025) [42], which is in contradiction with our

finding of stronger associations at HLA class I than class II regions

in T2D individuals (HLA-B, Figure S4). The observed HLA-B
association may be due to LD with nearby causal gene(s) since

there is long range LD in this region. Recently, rs3130501 near

POU5F1 and TCF19 was reported for association with T2D in a

trans-ancestry meta-analysis [8]. rs3130501 was located 211 kb

upstream of rs2244020 and mapped to the same LD interval.

However, the two SNPs were not correlated in both CEU

(D9 = 0.57, r2 = 0.05) and ASW (D9 = 0.68, r2 = 0.16) from 1KGP

nor strongly associated with T2D in the stage 1 meta-analysis

(P = 0.04). Other potential non-HLA candidate genes may include

TNFA which regulates immune and inflammatory response. It has

been hypothesized that activated innate and adaptive immune

cells stimulate release of cytokines such as TNFa and IL-1b, which

promote both systemic insulin resistance and b-cell damage [44].

On the other hand, evidence has implicated T1D loci HLA-DQ/
DR, GLIS3 and INS in the susceptibility of latent autoimmune

diabetes in adults (LADA) and/or T2D [7,34,45–46], while T2D

loci such as PPARG and TCF7L2 was associated with T1D [47]

and LADA [46,48], respectively. More comprehensive studies are

needed to understand the shared and distinct genetic risks in

different forms of diabetes which will facilitate diagnosis and

personalized treatment.

Our results have several implications regarding the genetic

architecture of T2D. First, fine-mapping suggests that currently

known loci explain more of the risk than previously estimated.

Second, the loci conferring the largest risk for T2D appear to act

through regulatory rather than protein-coding changes. Third,

many, but not all, of the previously identified T2D loci are shared

across ancestries. The differential LD structure of African-ancestry

populations at shared loci provides an opportunity for fine mapping

in trans-ethnic meta-analysis. Fourth, the ,2.6M MEDIA SNPs

achieved only 43.3% coverage of the 1KGP ASW common SNPs,

suggesting that risk loci that are specific to African-ancestry

individuals are difficult to discover with the genotyping arrays

being used. Large-scale sequencing studies, such as those focusing

on whole genomes, exomes, and targeted resequencing for

associated non-coding regions, will be necessary to further delineate

the causal variants for T2D risk in African Americans.

Materials and Methods

Samples and clinical characterization
Stage 1 discovery samples included 17 T2D GWAS studies

(ARIC, CARDIA, CFS, CHS, FamHS, GeneSTAR, GENOA,

HANDLS, Health ABC, HUFS, JHS, MESA, MESA Family,

SIGNET-REGARDS, WFSM, FIND, and WHI) with up to

23,827 African American subjects (8,284 cases and 15,543

controls). Stage 2 replication samples included up to 11,544

African American subjects (6,061 cases and 5,483 controls), using

in silico replication of GWAS data from eMERGE and IPM

Biobank and de novo genotyping in IRAS, IRASFS, SCCS, and

WFSM. In general, T2D cases were defined as having at least one

of the following: fasting plasma glucose $126 mg/dl, 2 hour

glucose during oral glucose tolerance test (OGTT) $200 mg/dl,

random glucose $200 mg/dl, oral hypoglycemic agent or insulin

treatment, or physician-diagnosed diabetes. All cases were

diagnosed at $25 years (or age at study $25 years if age at

diagnosis was not available). For cohort studies, individuals who

met the criteria at any of the visits were defined as cases. Controls

with normal glucose tolerance (NGT) were defined by satisfying all

the following criteria: fasting plasma glucose ,100 mg/dl, 2 hour

OGTT,140 mg/dl (if available), no treatment of diabetes, and

age $25 years. For cohort studies, individuals who met the criteria

at all visits were defined as controls. All study participants provided

written informed consent, except for eMERGE that use an opt out

program, and approval was obtained from the institutional review

board (IRB) from the respective local institutions. Detailed

descriptions of the participating studies are provided in Text S1.

Genotyping, imputation and quality control
For stage 1 and 2 GWAS studies, genotyping was performed

with Affymetrix or Illumina genome-wide SNP arrays. Imputation

of missing genotypes was performed using MACH [49],

IMPUTE2 [50] or BEAGLE [51] using HapMap reference

haplotypes. For each study, samples reflecting duplicates, low call

rate, gender mismatch, or population outliers were excluded. In

general, SNPs were excluded by the following criteria: call rate ,

0.95, minor allele frequency (MAF),0.01, minor allele count ,

10, Hardy-Weinberg P-value ,161024, or imputation quality

score ,0.5 (Table S3). For de novo replication studies, genotyping

was performed using the Sequenom MassArray platform (Seque-

nom; San Diego, CA). Sample and SNP quality controls were

performed as with GWAS data.

Statistical analysis
Single SNP association was performed for each study by

regressing T2D case/control status on genotypes. To account for

uncertainty of genotype calls during imputation, genotype

probabilities or dosage were used for association tests in imputed

SNPs. The association tests assumed an additive genetic model

and adjusted for age, sex, study centers, and principal components.

Principal components were included to control for confounding

effects of admixture proportion and population structure.

Secondary analysis with additional adjustment for BMI was

performed for SNPs with P,161025 in stage 1 meta-analysis and

index SNPs previously reported to be associated with T2D or

glucose homeostasis traits. BMI adjustment allows increasing

power to detect T2D loci independent of BMI effect and diminish

associations at T2D loci with effects modulated through BMI.

Logistic regression was used for samples of unrelated individuals.

Generalized estimating equations [52] or SOLAR [53] were used

for samples of related individuals. Association results with extreme

values (absolute beta coefficient or standard error .10), primarily

due to low cell counts resulting from small sample sizes and/or low

minor allele frequencies, were excluded (Table S3).

Meta-analysis
In stage 1, association results were combined by a fixed effect

model with inverse variance weighted method using the METAL

software [12]. Genomic control correction [11] was applied to

each study before meta-analysis, and to the overall results after

meta-analysis. Results from SNPs genotyped in ,10,000 samples

and those with allele frequency difference .0.3 among studies

were excluded. A total of 2,579,389 SNPs were analyzed in the

meta-analysis (Table S3). In stage 2a, association results from

African American replication studies were also combined using a

fixed effect inverse variance weighted method. To assess the

overall effects in African Americans (stage 1+2a) and both African

Americans and Europeans (stage 1+2a+2b), association results

from studies in the respective stages were combined using a fixed

effect inverse variance weighted method. Genome-wide signifi-

cance is declared at P,561028 from the meta-analysis result of all

stages, which has better power than the replication-based strategy

[54].
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Among the 51 SNPs carried forward for replication, heteroge-

neity of effect sizes across studies within each stage was assessed

using Cochran’s Q statistic implemented in METAL. Meta-analysis

results from stages 1 and 2a, stage 1+2a and 2b were used to assess

heterogeneity of effect sizes between discovery and replication stages

in African Americans, and between African Americans and

Europeans, respectively. For SNPs with significant heterogeneous

effect size after multiple comparison corrections (Phet,0.001), meta-

analysis results including studies of all stages assessed by the random

effect model implemented in GWAMA [55] were reported.

Heterogeneous associations may partly due to differences in

ascertainment scheme across studies. For index SNPs reported in

prior studies, assessment of heterogeneity using Cochran’s Q

statistic between prior studies and this study were also reported.

Transferability analysis
Index SNPs associated with T2D or glucose homeostasis traits

from prior GWAS and candidate gene studies were examined for

association with T2D in African Americans (Table S5). For the

index SNP association tests, a per-SNP P value ,0.05 was defined

as significant. In the locus-wide analysis, the boundaries of a locus

were defined by the most distant markers (within 6500 kb) using

the 1KGP CEU data with r2$0.3 with the index SNP. All MEDIA

SNPs within these bounds were examined for association analysis.

All pairwise LD values within each locus were estimated using the

1KGP CEU and ASW data. To estimate the effective number of

SNPs at a locus, we retrieved genotypes from the 1KGP ASW data

for markers present in MEDIA, estimated the sample covariance

matrix from those genotypes, and spectrally decomposed the

covariance matrix [24]. The effective number of SNPs was

estimated using the relationship Neff ~
PK

k~1

lk

� �2
, PK

k~1

l2
k

� �
,

in which lk is the kth eigenvalue of the K6K covariance matrix for

the K SNPs in the locus [24]. The per-locus significance level was

defined as 0.05/effective number of SNPs (Table S6). By accounting

for all SNPs within the bounds of LD, the per-locus significance level

is corrected to account for markers in LD with the index SNP as well

as markers not in LD with the index SNP, thereby potentially

allowing for discovery of new associations at markers not tagged by

the index SNP.

Liability-scale variance explained
For each independent locus, we estimated the sibling relative

risk using the most strongly associated SNP within that locus. Let

pi and yi be the risk allele frequency and the corresponding odds

ratio at the ith SNP, respectively. Assuming the additive genetic

model and independence between SNPs, the contribution to the

sibling relative risk ls for a set of N SNPs is given by

ls~ P
N

i~1
1z

pi 1{pið Þ yi{1ð Þ2

2 1{pið Þzpiyið Þ2

 !2
2
4

3
5 [56]. Let K be the disease

prevalence. The liability-scale variance h2
L explained by the set of

N SNPs is given by h2
L~

2 T{T1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{ T2{T2

1

� �
1{ T

v

� �q� �
vzT2

1 v{Tð Þ
, in

which T~w{1 1{Kð Þ, T1~w{1 1{lsKð Þ, and v~
z

K
, with w{1

representing the standard normal quantile function and z
representing the standard normal density at T [57].

Coverage
The coverage of MEDIA SNPs to the human genome was

estimated using HaploView [58] via pairwise tagging at the

r2 = 0.8 threshold. We used all SNPs with minor allele frequencies

$1% in both MEDIA and the 1KGP ASW sequence data.

Coverage was estimated using non-overlapping bins of 1,000

SNPs.

Power analysis
Study power was calculated using the genetic power calculator

[59]. For SNPs with MAF$0.3, our study had .80% power to

detect odds ratios for T2D at OR$1.06 and $1.13 at P,0.05 and

P,561028, respectively, in stage 1 samples under an additive

model. The observed odds ratios among our stage 1 most

significantly associated SNPs with P,161025 ranged from 1.11

to 1.56 (Table S4). Given our African American sample size in

stage 1+2a, our study had .80% power to detect OR$1.1 at P,

561028 at MAF$0.3, thus provided good power to detect

genome-wide significance among the most significantly associated

SNPs using all African American samples. For T2D SNPs

reported from the literature, power was also calculated from the

reported effect size using the risk allele frequency from this study

for stage 1 samples at P,0.05 and P,561028, respectively (Table

S5).

Gene expression analysis
The MuTHER resource (www.muther.ac.uk) includes lympho-

blastoid cell lines (LCLs), skin, and adipose tissue derived

simultaneously from a subset of well-phenotyped healthy female

twins from the TwinsUK adult registry [60]. Whole-genome

expression profiling of the samples, each with either two or three

technical replicates, was performed using the Illumina Human

HT-12 V3 BeadChips (Illumina Inc.) according to the protocol

supplied by the manufacturer. Log2-transformed expression signals

were normalized separately per tissue as follows: quantile

normalization was performed across technical replicates of each

individual followed by quantile normalization across all individ-

uals. Genotyping was performed with a combination of Illumina

arrays (HumanHap300, HumanHap610Q, 1M-Duo, and

1.2MDuo 1M). Untyped HapMap2 SNPs were imputed using

the IMPUTE2 software package. In total, 776 adipose and 777

LCL samples had both expression profiles and imputed genotypes.

Association between all SNPs (MAF.5%, IMPUTE info .0.8)

within a gene or within 1 Mb of the gene transcription start or end

site and normalized expression values were performed with the

GenABEL/ProbABEL packages [61–62] using the polygenic

linear model incorporating a kinship matrix in GenABEL followed

by the ProbABEL mmscore score test with imputed genotypes.

Age and experimental batch were included as cofactors.

Genotype and gene expression in LCL in HapMap samples

were also available [63]. Association of genotypes and gene

expression of transcripts within 1 MB of tested SNPs were

analyzed separately for CEU and YRI populations. The variance

components model implemented in SOLAR was used for

association analysis which accounts for correlation among related

individuals [53].

In this study, we examined the association of the most

significantly associated SNPs from the six genome-wide significant

loci and their proxies (r2$0.8 in ASW) within 1 Mb of the

associated SNPs with cis-expression quantitative trait loci (eQTLs)

in peripheral blood leukocytes (LCL) and adipose tissue (Table S8).

ENCODE data analysis
We examined putative function of non-coding genome-wide

significant SNPs and their proxies within 1 Mb (r2$0.8 in 1KGP

ASW) using HaploReg [30] and RegulomeDB [64]. These

databases interrogated multiple chromatin features from the
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Encyclopedia of DNA Elements (ENCODE) project [29]. High

priority was given to variants annotated as protein-binding via

ChIP-seq, and motif-changing via position weight matrices, with

the respective transcription factors implicated in diabetes patho-

genesis and related biological processes.

Supporting Information

Figure S1 Forest plots of the most strongly associated SNPs at five

previously and newly identified T2D loci in African Americans.

Odds ratio and 95% CIs are presented for individual studies (black

circle and line) and meta-analysis results (red diamond and line). At

KCNQ1, two independent associated SNPs are shown.

(PDF)

Figure S2 (A) Distributions of risk allele frequencies for the

previously reported index SNPs (in black) vs. the MEDIA most

strongly associated SNPs (in red) in African Americans from stage

1 meta-analysis. (B) Distributions of odds ratios for risk alleles of

the index SNPs (in black) vs. the most strongly associated MEDIA

SNPs (in red) in African Americans from stage 1 meta-analysis.

(PDF)

Figure S3 Regional plots of stage 1 meta-analysis association results

in African Americans for the most strongly associated SNPs from this

study and the index SNPs from previous studies. (A–B) INTS8-
TP53INP1 region; (C–D) KCNQ1 region; (E–F) HMGA2 region. (A,

C, E) The most strongly associated SNP in MEDIA is denoted by a

purple circle and a red arrow with LD colored based on the HapMap

2 YRI data. (B, D, F) The index SNP is denoted by a purple circle and

a blue arrow with LD colored based on the HapMap 2 CEU data.

(PDF)

Figure S4 Regional plots of HLA-B and HLA-DQ/DR regions

for (A, C) stage 1 meta-analysis association results in African

Americans and HapMap 2 YRI LD data, and (B, D) stage 3

DIAGRAMv2 results in Europeans using HapMap 2 CEU LD

data. (A, B) The most strongly associated SNP rs2244020 at HLA-
B region from this study is denoted by a purple circle and a red

arrow. (C, D) The index SNP rs9272346 from Burton PR et al
(2007) [65] is denoted by a purple circle and a blue arrow.

(PDF)

Table S1 Design of studies in stage 1 GWAS and stage 2a

replication in African Americans.

(PDF)

Table S2 Clinical characteristics of study samples in stage 1

GWAS and stage 2a replication studies in African Americans.

(PDF)

Table S3 Genotyping methods, quality controls, imputation and

statistical analysis in stage 1 GWAS and stage 2a replication

studies in African Americans.

(PDF)

Table S4 SNPs with P value#161025 from stage 1 GWAS

meta-analysis (BMI unadjusted) selected for stage 2 in silico and de
novo replication in African Americans and in silico replication in

individuals of European ancestry from DIAGRAMv2.

(PDF)

Table S5 Stage 1 GWAS meta-analysis results for index SNPs at

established T2D or glucose homeostasis loci in African Americans.

(PDF)

Table S6 Locus-wide association at established T2D or glucose

homeostasis loci in stage 1 GWAS meta-analysis in African Americans.

(PDF)

Table S7 BMI-adjusted association for SNPs from stage 1

GWAS meta-analysis selected for replication.

(PDF)

Table S8 Expression Quantitative Trait Loci (eQTL) analysis

for the genome-wide significant SNPs for T2D. Results are shown

for suggestive evidence of cis-association (P,0.05) between the

genome-wide significant SNPs and their proxies with the genes

within 1 Mb of the associated SNPs.

(PDF)

Table S9 Putative regulatory SNPs predicted from the EN-

CODE project for the genome-wide significant SNPs and their

proxies at TCF7L2, INS-IGF2, KCNQ1 and HMGA2.

(PDF)

Text S1 Description of GWAS and replication studies.

(PDF)
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nabe76,90, Gonçalo R. Abecasis4, Bernhard O. Boehm31, Harry Camp-

bell42, Mark J. Daly1,2, Andrew T. Hattersley62,63, Frank B. Hu22–24, James

B. Meigs3,70, James S. Pankow91, Oluf Pedersen43,92,93, H-Erich Wich-

mann11,12,94, Inês Barroso10, Jose C. Florez1–3,95, Timothy M. Fray-

ling62,63, Leif Groop56,72, Rob Sladek65–67, Unnur Thorsteinsdottir5,96,

James F Wilson42, Thomas Illig11, Philippe Froguel17,97, Cornelia M. van

duijn13, Kari Stefansson5,96, David Altshuler 1–3,17,40,95, Michael

Boehnke4 & Mark I. Mccarthy6,14,98

1 Broad Institute of Harvard and Massachusetts Institute of Technology

(MIT), Cambridge, Massachusetts, USA.

2 Center for Human Genetic Research, Massachusetts General

Hospital, Boston, Massachusetts, USA.

3 Department of Medicine, Harvard Medical School, Boston,

Massachusetts, USA.

4 Department of Biostatistics, University of Michigan, Ann Arbor,

Michigan, USA.

5 deCODE Genetics, Reykjavik, Iceland.

6 Wellcome Trust Centre for Human Genetics, University of Oxford,

Oxford, UK.

7 CNRS-UMR-8090, Institute of Biology and Lille 2 University, Pasteur

Institute, Lille, France.

8 INSERM UMR915 CNRS ERL3147, Nantes, France.

9 Bioinformatics Program, University of Michigan, Ann Arbor,

Michigan, USA.

10 Wellcome Trust Sanger Institute, Hinxton, UK.

11 Institute of Epidemiology, Helmholtz Zentrum Muenchen, Neuher-

berg, Germany.

12 Institute of Medical Informatics, Biometry and Epidemiology,

Ludwig-Maximilians-Universität, Munich, Germany.

13 Department of Epidemiology, Erasmus University Medical Center,

Rotterdam, The Netherlands.

14 Oxford Centre for Diabetes, Endocrinology and Metabolism,

University of Oxford, Oxford, UK.

15 Ontario Institute for Cancer Research, Toronto, Ontario, Canada.

16 Division of Rheumatology, Immunology and Allergy, Brigham and

Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.

17 Department of Molecular Biology, Harvard Medical School, Boston,

Massachusetts, USA.

18 Medical Research Council (MRC) Epidemiology Unit, Institute of

Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK.

19 Department of Biostatistics, Harvard School of Public Health,

Boston, Massachusetts, USA.

20 Department of Biostatistics, Boston University School of Public

Health, Boston, Massachusetts, USA.

21 National Heart, Lung, and Blood Institute’s Framingham Heart

Study, Framingham, Massachusetts, USA.

22 Department of Nutrition, Harvard School of Public Health, Boston,

Massachusetts, USA.

23 Department of Epidemiology, Harvard School of Public Health,

Boston, Massachusetts, USA.

24 Channing Laboratory, Department of Medicine, Brigham and

Women’s Hospital and Harvard Medical School, Boston, Massachusetts,

USA.

25 Department of Internal Medicine, Erasmus University Medical

Centre, Rotterdam, The Netherlands.

26 MRC Human Genetics Unit, Institute of Genetics and Molecular

Medicine, Western General Hospital, Edinburgh, UK.

27 INSERM, CESP Centre for Research in Epidemiology and

Population Health, U1018, Epidemiology of Diabetes, Obesity and

Chronic Kidney Disease over the Lifecourse, Villejuif, France.

28 University Paris-Sud 11, UMRS 1018, Villejuif, France.

29 Landspitali University Hospital, Reykjavik, Iceland.

30 Icelandic Heart Association, Kopavogur, Iceland.

31 Division of Endocrinology, Diabetes and Metabolism, Ulm

University, Ulm, Germany.

32 The Human Genetics Center and Institute of Molecular Medicine,

University of Texas Health Science Center, Houston, Texas, USA.

33 National Human Genome Research Institute, National Institute of

Health, Bethesda, Maryland, USA.

34 Research and Development Centre, Skaraborg Primary Care,
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