
International Journal of Soft Computing and Engineering (IJSCE) 

ISSN: 2231-2307, Volume-2, Issue-6, January 2013 
 

241 

 

 

Abstract— This paper deals with the problem of displaying 

large Digital Elevation Model data in 3D GIS. Current 

approaches relate to the splitting algorithms by 2D Polygonal 

Vector Data such as Particle Swarm Optimization (PSO-TSA) and 

Genetic Algorithm (GA-TSA). We will, herein, present another 

method based on stochastic optimization for the considered 

problem. It also employs some ideas of Wife-Selection scenario 

and Stick Procedure. The new method allows us to quickly find 

the optimal saving threshold. The comparison with the 

state-of-the-art method will be made to verify the efficiency of the 

proposed method. 
 

Keywords— Digital Elevation Model, Geographic Information 

Systems, Stochastic Optimization, Terrain Splitting. 

I. INTRODUCTION 

Terrain Splitting Optimization (TSO) problem was 

presented by the authors in [4]. Its purpose is to reduce the 

displaying time of large terrain data, especially in the format 

of Digital Elevation Model (DEM), in 3D Geographic 

Information Systems (GIS). Terrain data are used to represent 

the three-dimensional compositions in the relation with 

geographic factors. Depending on the resolution, the size of a 

terrain is varied to express the information attached to that 

terrain. For example, a 30m DEM terrain has a volume of 280 

Megabytes (MB). The smaller the resolution of terrain is, 

more details are shown, and its size is increased as a result. 

Indeed, it takes long time to display such a terrain. 

Mathematically, this problem is described below. 
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where iS  ( ki ,1  ) is the area of a small terrain in a 

processor of a computing system . DEMS   is the area of 

terrain. The parameter   is the saving threshold. The last 

parameter   is the disparity. Normally, its range falls into (0, 

5). In equation (2), the first line states that the memory space 

in a processor is saved by  100  percents. The second one 

confirms that the difference between the memory spaces in 

two processors is small. 

Several soft computing methods were designed for TSO 

problem such as SESA [4], PSO-TSA [6] and GA-TSA [6].  

 

They relied on the ideas of using natural evolution 
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combined with heuristic search methods to specify the 

solutions. These algorithms achieved successful results as 

shown in the experiments of equivalent articles. 

The aim of this note is to investigate another optimization 

method for this problem. It employs the new ideas of 

Wife-Selection scenario and Stick Procedure. The proposed 

method is named as Stochastic sImulation Test based Terrain 

Splitting Algorithm (SIT-TSA) and is compared with the 

algorithms above to verify the efficiency. 

The remainder of this paper is organized as follows. 

Section 2 presents some related works for this problem. The 

proposed method is described in Section 3. Experimental 

results and discussions are given in Section 4. Finally, we will 

make conclusions and delineate future works in the last 

section. 

II. RELATED WORKS 

The authors in [4] introduced a conditional parallel 

partitioning method so-called SESA for TSO problem. The 

basic idea of this method is to traverse all partitions dividing 

n  elements into k  blocks. For each block, SESA calculates 

its area and checks the constraints. If a suitable partition is 

found, the algorithm will stop and output the results. 

Certainly, to reduce the number of traversed partitions, a 

pre-processing step based on geometric processing between 

polygons is carried out to arrange some elements into specific 

blocks. Additionally, parallel computing is also employed to 

accelerate the running time. 

However, the saving threshold found in SESA is not 

optimal. Authors [6] presented two algorithms to solve the 

original problem. The first one based on Genetic Algorithm 

[2] namely GA-TSA employs some ideas of natural evolution, 

such as inheritance, mutation, selection, and crossover for 

finding the best saving threshold in a search area. In this 

algorithm, an individual is a collection of indexes of all 

polygons that represent for all blocks in a current solution. 

Then, through a fitness function, all individuals are sorted in 

the ascending order, and half of them are selected to 

reproduce a new generation by the mean of Cross Over and 

Mutation operations. After pre-defined maximal iteration 

steps, the best generation is found, and the saving threshold 

can be extracted from it. 

The second algorithm in that literature started with an idea 

of Swarm Optimization, which is considered to be the most 

suitable strategy among all of Heuristic Optimization. The 

chosen algorithm to develop is Particle Swarm Optimization 

(PSO) which was invented by Kennedy et al. [3]. Indeed, the 

algorithm was named PSO-TSA. The basic idea of this 

algorithm lies on Seed Procedure. Basically, k  seeds are 

evenly distributed in the space. Each seed represents for a 

number of polygons. If the constraints (2) are not met, PSO 

algorithm is used to generate a new population until the 

stopping condition is reached. In the last iteration, the particle 

holding gBest value will be outputted if it satisfies the 

constraints. 
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In the experiments, PSO-TSA obtains a smaller saving 

threshold than GA-TSA does. However, the running time of 

PSO-TSA is longer than that one of GA-TSA. Certainly, two 

algorithms are better than SESA both by the saving threshold 

and running time. Therefore, PSO-TSA is considered as the 

state-of-the-art algorithm for TSO problem. 

III. THE PROPOSED METHOD 

A. Basic Ideas 

In this section, we present another approach for TSO 

problem. It is a stochastic, agent - based approach named 

Stochastic sImulation Test based Terrain Splitting Algorithm 

(SIT-TSA). Keep the problem in mind and temporarily forget 

about the previous ideas of using PSO and GA, all we need to 

know is a basic principle that covers all activities of SIT-TSA 

algorithm. In a simple way, it can be understood as: “It is 

supposed to be no satisfied solution with probability p1  

after a series of failed stochastic simulation tests on various 

possibilities derived from the original sample”. In the other 

word, this principle behaves as a similar way to Monte Carlo 

method - a class of computational algorithms that rely on 

repeated random sampling to compute their results [1]. 

Monte Carlo method is widely used in various fields such 

as in statistical physics, particularly Monte Carlo molecular 

modeling as an alternative for computational molecular 

dynamics as well as to compute statistical field theories of 

simple particle and polymer models. Therefore, a Monte 

Carlo - like approach is suitable for our problem in case of the 

number of polygons is large, and an intermediate answer is 

required. Now, consider the following Wife-Selection 

scenario in Fig. 1: “Once upon a time, there is a great 

Kingdom with a wise, brave king. Everybody admires him a 

lot. However, this king has only a son, and he pays attention to 

nothing except hunting or playing with friends. The old man is 

very sad because he is getting older, and his son cannot 

replace him. Sharing the worries, some servants suggest the 

king to find his son a fiancée. He recognizes it a good idea and 

immediately announces to all villages in the Kingdom. 

Besides, the old king assigns a duke to follow with the prince 

to come to each village for searching. Nevertheless, the prince 

is very lazy and does not want to go to all villages. The duke, 

who is a good mathematician, calculates by probability which 

village has more girls satisfying the king‟s conditions. 

However, these villages are still much, and it takes a lot of 

time to speak with all girls in a specific one. Instead, the duke 

chooses random girls from each village and tests. If he finds a 

suitable girl, then she will be added to his lists. The test is 

repeated in other selected villages. Finally, the duke will give 

the prince his list and let him choose the fiancée. If no suitable 

girl is found on the duke‟s list, the prince has to wait for next 

selection in some following years”. 

 
SIT-TSA acts like the scenario above. An agent is 

randomly initiated at a polygon. By using a local search 

method, an ordered list of polygons is established. Then, by 

multiple tests with random „sticks‟ dividing this list into k  

blocks, a candidate list of this agent is set up. This process is 

repeatedly performed for other agents. Finally, the optimal 

solution with minimal saving threshold parameters will be 

chosen from all the candidate lists. Certainly, we use parallel 

computing as an important aid for the reduction of total 

computing time due to independent works between agents. 

B. The Algorithm 

Input: a terrain, a polygon shape dataset, the total number 

of polygons ( l ), the number of processors ( k ), the disparity 

  and a test range ],[ 10 tt . 

Output: The optimal saving threshold  . 

SIT-TSA: 

Step 1: Divide the total number of agents following by the 

number of processors in the system. Then, the number of 

agents in each processor is calculated as follows, 

 klNA 2/ , (3) 

where l  is the total number of polygons and k  is the 

number of processors. Started nodes for all agents are 

ascending chosen from node 1. 

Step 2: For each processor, we find the candidate lists for 

all agents in it. In specific, consider a polygon as a node in a 

graph. Let CV  and DV  are the sets containing started nodes 

of all agents in this processor and visited nodes in an agent‟s 

life, respectively. Initially, DV . Two agent parameters 

a , b  are also randomly initiated by positive values, 

)1,0(randa   and ab 1 . (4) 

Step 3: Move the first node oI  of CV  to DV . 

 oCC IVV \ , (5) 

 oDD IVV  . (6) 

Step 4: For any node j  which is not in DV , calculate the 

probability, 

 
jISPbjIda
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0
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1
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where ),( 0 jId  is the distance between polygons 0I  and 

j , jISP
0

 is the area of two polygons 0I  and j . 

 
Fig 1. Wife – Selection scenario 
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Step 5: Choose node oj  which satisfies the condition 

below and add it to DV , 

    jIPjIP ,max, 000  , DVj , (8) 

 oDD jVV  . (9) 

Step 6: Repeat Step 4 and Step 5 with oj  is the started 

node until all nodes are in DV . Then, we will have a sequence 

 lXXX ,..,, 21  extracted from DV  where tX  is a 

polygon, lt ,1 . 

Step 7: Select a number of tests for this agent ( NoTest ) 

by the probability in equation (7), 

MinTestNoTest   

        ],max)[( jiPMinTestMaxTest  , 

(10) 

where ],[ MaxTestMinTest  is a given range of the 

number of test cases. Indexes i  and j  are two consecutive 

nodes in DV . 

Step 8: For each test case, perform Stick Procedure to find 

a suitable solution. In essence, we select )1( k  random 

„stick‟ to put into the sequence  lXXX ,..,, 21 . 

    8.1 ),,( iklStick  

 8.2   If 0k  then stop; 

 8.2  )1,1()(  klrandiStick ;  

 8.3 )1,1),((  ikiSticklStick ;  

 8.4 End. 

 (11) 

Step 9: For each block in this test case separated by two 

continuous „sticks‟, calculate the area of all polygons in it 

( iSP , ki ,1 ). 

Step 10: Check the constraints (2) for the current solution. 

If they are satisfied, we will find the maximum below, and add 

this test case‟s solution into the agent‟s candidate list. 
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Step 11: Repeat from Step 8 to Step 10 with other test 

cases. We will receive an agent‟s candidate list with different 

values CaseTest _ . Find the optimal solution for this agent, 

 
CaseTestagent _min   . (13) 

Step 12: Repeat from Step 2 to Step 11 with other agents in 

this processor. Extract the optimal solution of the processor 

from a list of solutions of agents agent , 

 agentprocessor  min . (14) 

Step 13: Synchronize all processors in the system and find 

the optimal saving thresholds from processor   if they exist. 

 
processoroptimal  min . (15) 

We then conclude that for given  , the optimal solution is 

optimal . Otherwise, no suitable solution is found. 

Some important points can be drawn from this algorithm. 

- Firstly, two agent parameters a  and b  are different to 

each agent. As we can see, in equation (7), the probability to 

choose a next node depends on these parameters. Because we 

have two criterions jISP
0

 and ),( 0 jId , the larger 

parameter will decide which criterion will be followed. 

Moreover, the advantage of random agent parameters can be 

seen as the way to avoid local solutions between agents due to 

different sequences of them. 

- Secondly, in Step 8, when selecting „sticks‟ to put into a 

sequence, it is possible that some test cases are the same. 

Therefore, the number of „real‟ test will be reduced. To 

increase it, we supplement a quantity related to the maximal 

probability of two nodes in the sequence. Thus, the number of 

test cases is still in a given range ],[ MaxTestMinTest . 

- Thirdly, we will try some combinations of adjacency 

polygons in a sequence to form solutions. In essence, our 

algorithm belongs to the greedy approaches. A sequence, in 

this way, is an ordered list of polygons whose combination 

between them will create more solutions than original 

sequence‟s ones with a specific probability. Consequently, it 

is better to investigate in a „good‟ sequence. 

- Fourthly, to ensure the time condition and avoid similar 

solutions between agents, we limit the number of agents to the 

half of the number of polygons, and process it by parallel 

computing. Then, the computational time and the solution will 

be ameliorated. 

- Finally, SIT-TSA method converges to the global 

solution instead of the local one due to the best solution 

selection process among all agents. Moreover, it can answer 

quickly whether a solution may exist for a given parameters 

  or not. 

C. An Example 

Assume that we have a polygon shape dataset below 

(Fig.2). The number of processors 3k . The number of 

agents in each processor is 1NA . In the first processor, 

1CV  and DV . Thus, a sequence found by the first 

agent and some tests from it is illustrated through Fig. 3. 

 
Fig 2. A polygon shape dataset 
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IV. EXPERIMENTS 

A. Theoretical Evaluation 

In this section, we will evaluate the proposed algorithm 

both by time and space complexity. In SIT-TSA algorithm, 

Step 4 to Step 6 requires   2/)1(  ll  calculations. Step 7 

to Step 11 takes lNoTest  operations. Each processor has  

 kl 2/  agents. Therefore, the total computing time of the 

algorithm is, 
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The memory space in each processor to store DV , 

probabilities of all nodes, and the sequences of all agents is 

)(lO . Therefore, the total memory space is )(lOk  . 

B. Experimental Setup 

Theoretical time complexity does not always indicate 

clearly the speed of an algorithm. For this, measurements of 

CPU time often give better information. Therefore, in this 

part, we have implemented the proposed algorithm in addition 

to PSO-TSA in C programming language, and executed them 

on a Linux Cluster 1350 with eight computing nodes of 

51.2GFlops. Each node contains two Intel Xeon dual core 3.2 

GHz, 2 GB Ram. In SIT-TSA, the parameters 

],[ MaxTestMinTest  and   are initially set as ]100,10[  

and 001.0 , respectively. In PSO-TSA, the population and 

the maximal iteration are 1000 and 100, respectively. Terrain 

data are taken from Bolzano - Bolzen province [5]. 

C. Saving Threshold Comparison 

Firstly, we calculate the values of saving threshold for 

SIT-TSA and PSO-TSA algorithms following by different 

number of polygons and number of processors in two terrain 

data. We compare the saving thresholds of two algorithms for 

a specific number of polygons and processors, and find the 

smallest one. Then, we increase the number of cases for the 

algorithm that has the smallest value of saving threshold by 

one. The statistics are grouped following by the number of 

polygons. Results are illustrated in Fig. 4. Similarly, we 

perform another comparison following by the number of 

processors, and summarize the results in Fig. 5. 

 

 
Fig. 4 clearly shows that the number of cases generated by 

SIT-TSA is larger than the one of PSO-TSA. For example, 

when the number of polygons is 20, SIT-TSA produces six 

best cases when PSO-TSA makes three cases only. The 

maximal difference between two algorithms is four cases 

when the numbers of polygons are 50 and 5000. PSO-TSA is 

only better than SIT-TSA when the number of polygons is 

500. In general, SIT-TSA still brings more cases than 

PSO-TSA does. 

Fig. 5 reconfirms that SIT-TSA generates more cases than 

PSO-TSA does. The maximal difference between two 

algorithms is larger than the result in Fig. 4. In fact, this 

number is 7 when the number of processors is 3. PSO-TSA is 

better than SIT-TSA when the numbers of processors are 8 

and 12. For the remains, SIT-TSA is shown to obtain better 

results than PSO-TSA. 

 

 
Fig 6. Average saving thresholds of algorithms by 

number of processors 

 
Fig 5. The number of cases following by the number of 

processors 

 
Fig 4. The number of cases following by the number of 

polygons 
 

Fig 3. (a) a sequence of an agent; (b) some tests from this 

sequence 
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In Fig. 6, we calculate the average numbers of saving 

threshold following by the number of processors in both 

algorithms. A comparison between them is made in this 

figure. This test clearly points out that the   values of 

SIT-TSA are smaller than the ones of PSO-TSA. The 

maximal and minimal differences between two lines are found 

at 0.96 and 0.02 when the numbers of processors are 4 and 16, 

respectively. 

Some remarks are extracted through this section: 

- Firstly, SIT-TSA really brings better results than 

PSO-TSA. 

- Secondly, as illustrated in Fig. 5 and Fig. 6, we should 

choose the number of processors from 3 to 8 in order to obtain 

the best results of SIT-TSA algorithm. 

D. Running Times Comparison 

In this section, we will make a comparison of the running 

times between two algorithms following by the number of 

polygons. The results are shown in Fig. 7. Obviously, 

SIT-TSA is faster than PSO-TSA when the number of 

polygons is smaller than 750. The largest difference between 

two algorithms is 595 times when the number of polygons is 

20. The difference is getting smaller when the number of 

polygon increases. When the number of polygons is larger 

than 1000, the difference is below one, and SIT-TSA is 

slower than PSO-TSA. 

The reason for slow running times of SIT-TSA, when the 

number of polygons increases, can be recognized through the 

incremental level. In PSO-TSA, the average increment 

between two consecutive numbers of polygons is 

approximately 2.5. This number in case of SIT-TSA is 17.3. 

As such, more polygons are added, the running times of 

SIT-TSA are longer. 

Some remarks can be found from this test: 

- Firstly, SIT-TSA is faster than PSO-TSA when the 

number of polygons is below 750. 

- Secondly, from Fig. 4 to Fig. 7 we get a remark that the 

number of polygons should be smaller than 500 to get the best 

results of SIT-TSA algorithm in both the saving threshold and 

the running times. 

 

V. CONCLUSION 

In this paper, we introduced a novel stochastic-based 

optimization algorithm namely SIT-TSA for TSO problem. 

This method employed the ideas of Wife-Selection scenario 

and Stick Procedure to find the optimal solution with the 

supports of parallel computing. It was verified by time and 

space complexity as well as numerical experiments. The 

experimental results showed that SIT-TSA obtains better 

saving thresholds than PSO-TSA and is suitable for TSO 

problem. 

 Future works will concern some methods to store terrains 

in a database as well as perform attribute queries in a 3D GIS 

system. 
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